TATI	NEW/CHANGE PROGRAM REQUEST		UUPC Approval <u>9/8/25</u>
	Undergraduate	Programs	UFS Approval
FLORIDA			Banner
ATLANTIC	Department		Catalog
UNIVERSITY	College Science		
Program Name		New Program*	Effective Date (TERM & YEAR)
		Change Program*	Spring 2026
Please explain	the requested change(s) and offe	r rationale below or on ar	i attacnment.
*All new programs : Faculty Contact/	and changes to existing programs must be a Email/Phone		its that may be affected by the
Approved by	shianung		Date
Department Chair	Show I		8/20/2025
College Curriculu			8/28/25
	Evonne Rezler		Aug 28, 2025
UUPC Chair —	Korey Sorge		9/8/25
Undergraduate St	Korsy Sorge Tudies Dean Dan Meeroff	<u>/</u>	9/8/25
UFS President	<u> </u>		
Provost			

Email this form and attachments to mjenning@fau.edu seven business days before the UUPC meeting.

Catalogue Change

Mathematics

Bachelor of Science (B.S.)

(Minimum of 120 credits required)

The B.S. degree program in Mathematics consists of four concentrations:

- 1. Mathematical Biology
- 2. Mathematical Cryptology
- 3. Pure Mathematics
- 4. Statistics and Data Science

To complete the B.S. degree program, students will take the specific courses for one of the four concentrations. All students will take two courses in Calculus, at least one statistics course, Discrete Mathematics and at least one programming course.

Mathematical Biology Concentration

Course Title	Couse Number	Credits
Methods of Calculus	MAC 2233	3 or
Life Science Calculus 1	MAC 2241	3 or
Calculus with Analytic Geometry 1	MAC 2311	4 or
Mathematics for Biological Sciences 1	MAP 2491	3
Biological Principles	BSC 1010	3
Biodiversity	BSC 1011	3
Applied Machine Learning and Data Mining	CAP 4612	3
General Chemistry 1	CHM 2045	3
General Chemistry 2	CHM 2046	3
Artificial Intelligence Applications in Biology	IDS 4139	3
Discrete Mathematics	MAD 2104	3
Introduction to Computational Mathematics	MAD 2502	3
Mathematics for Biological Sciences 2	MAP 2492	4
Applied Mathematical Modeling	MAP 4103	3
Genetics	PCB 3063	3 or
Principles of Ecology	PCB 4043	3
Introductory Statistics	STA 2023	3
Introduction to Biostatistics	STA 3173	3

Choose two upper-division math electives	6
Choose two upper-division science electives with BCH, BOT, BSC, CHM,	6
IDS, MCB, OCB, PCB, PHY, PHZ, ZOO prefixes	0

Choose one Research-Intensive elective

Course Title	Course Number	Credits
RI: Introduction to Data Science	CAP 3786	3
RI: Industrial Problems in Applied Math	MAP 4913	3
RI: Neurophysiology	PCB 4832C	3
RI: Neurobiology of Learning and Memory	PSB 4810	3
RI: Statistical Learning	STA 4241	3

Concentration Total (including Science): 59-60

Note: For this concentration, MAP 2492 can be replaced by the combination of the three courses MAC 2312 and MAP 2302 and MAS 2103.

Mathematical Cryptology Concentration

Course Title	Course Number	Credits
Calculus and Analytic Geometry 1	MAC 2311	4
Calculus and Analytic Geometry 2	MAC 2312	4
Calculus and Analytic Geometry 3	MAC 2313	4
General Chemistry 1 and Lab or	CHM 2045/2045L	or
General Physics 1 and Lab	PHY 2048, 2048L	4-5
Cryptography and Information Security	CIS 4362	3
Programming 1	COP 2220C	3
Introduction to Programming with Python	COP 3035C	3
Programming 2	COP 3014	3
Introduction to Software Design	CEN 3062C	3
Data Structures and Algorithm Analysis	COP 3530	3
Data Structures with Python	COP 3410C	3
Discrete Mathematics	MAD 2104	3
Matrix Theory	MAS 2103	3

Introductory Number Theory	MAS 3203	3
Modern Algebra	MAS 4301	3
Introduction to Advanced Mathematics	MHF 3202	3
Probability and Statistics 1	STA 4442	3

Choose two, not limited to the following courses, from the approved list of upper-division math electives.

^{*} Courses apply to the undergraduate Cybersecurity Certificate program.

Course Title	Course Number	Credits
Numerical Methods	MAD 3400	3
Graph Theory	MAD 4301	3
Numerical Analysis 1	MAD 4401	3
Post-Quantum Cryptography	MAD 4475	3
Cryptography of Blockchain	MAD 4476	3
Introduction to Coding Theory *	MAD 4605	3
Engineering Mathematics 1	MAP 3305	3
Introduction to Methods in Complex Systems	MAP 4112	3
Mathematics of Cybersecurity *	MAP 4190	3
Vector Calculus	MAS 3156	3
Linear Algebra 2	MAS 4107	3
Mathematics for Cryptography *	MAS 4206	3
Topology for Data Science	MTG 4325	3
Computational Statistics	STA 3100	3

Choose three, not limited to the following courses, from the approved list of upper-division EECS electives in the Cybersecurity Certificate program.

Course Title	Course Number	Credits
Applied Machine Learning and Data Mining	CAP 4612	3
Introduction to Deep Learning	CAP 4613	3
Introduction to Artificial Intelligence	CAP 4630	3
Introduction to Data Mining and Machine Learning	CAP 4770	3
Introduction to Cryptographic Engineering	CDA 4321	3
Applied Cryptography and Security	CIS 4634	3

Concentration Total (excluding Science)		57
Theory of Computation	COT 4420	3
Design and Analysis of Algorithms	COT 4400	3
Computer Operating Systems	COP 4610	3
Python Programming	COP 4045	3
Introduction to Database Structure	COP 3540	3
Network and Data Security	CNT 4411	3

Pure Mathematics Concentration

Course Title	Course Number	Credits
Calculus with Analytic Geometry 1	MAC 2311	4
Calculus with Analytic Geometry 2	MAC 2312	4
Calculus with Analytic Geometry 3	MAC 2313	4
General Chemistry 1 and Lab or	CHM 2045, CHM 2045L	or
General Physics 1 and Lab	PHY 2048, PHY 2048L	4-5
Introductory Analysis 1	MAA 4226	3
Introductory Complex Analysis	MAA 4402	3
Discrete Mathematics	MAD 2104	3
Introduction to Computational Mathematics	MAD 2502	3
Differential Equations 1	MAP 2302	3
Matrix Theory	MAS 2103	3
Vector Calculus	MAS 3156	3
Linear Algebra 2	MAS 4107	3
Modern Algebra	MAS 4301	3
Introductory Abstract Algebra 1	MAS 4304	3
Introduction to Advanced Mathematics	MHF 3202	3
Probability and Statistics 1	STA 4442	3
Upper-division math electives		9
Concentration total (excluding Science)		57

Statistics and Data Science Concentration

Course Title	Course Number	Credits
Calculus with Analytic Geometry 1	MAC 2311	4
Calculus with Analytic Geometry 2	MAC 2312	4
Calculus with Analytic Geometry 3	MAC 2313	4
General Chemistry 1 and Lab or	CHM 2045, CHM 2045L	or
General Physics 1 and Lab	PHY 2048, PHY 2048L	4-5
Programming 1	COP 2220C	3
Introduction to Programming with Python	COP 3035C	3
Programming 2	COP 3014	3
Introduction to Software Design	CEN 3062C	3
Data Structures and Algorithm Analysis	COP 3530	3
Data Structures with Python	COP 3410C	3
Introduction to Complex Analysis	MAA 4402	3
Discrete Mathematics	MAD 2104	3
Introduction to Computational Mathematics	MAD 2502	3
Matrix Theory	MAS 2103	3
Modern Algebra	MAS 4301	3
Introduction to Advanced Mathematics	MHF 3202	3
Applied Statistics 1	STA 4234	2 and
Applied Statistics 1 Lab	STA 4202L	1
Probability and Statistics 1	STA 4442	3
Choose two of the Approved Math Electives, at least one upper-division	n course	6
Choose two of the Concentration Electives		6
Course Title	Course Number	Credits
RI: Introduction to Data Science	CAP 3786	3
Introduction to Deep Learning	CAP 4613	3
Introduction to Data Mining and Machine Learning	CAP 4770	3
Introduction to Data Science and Analytics	CAP 4773	3
Theory of Computation	COT 4420	3
Applied Mathematical Modeling	MAP 4103	3

Concentration Total (excluding Science)		57
Applied Time Series and Forecasting	STA 4853	3
RI: Statistical Learning	STA 4241	3
Computational Statistics	STA 3100	3
Topology for Data Science	MTG 4325	3
RI: Industrial Problems in Applied Math	MAP 4913	3
Introduction to Methods in Complex Systems	MAP 4112	3

Required Minimum GPA 2.5

Notes:

- 1. Upper-division mathematics electives: These electives must be chosen from courses offered by the Department of Mathematics and Statistics and numbered 3000 or higher. The following courses may not be used as upper-division mathematics electives: STA 3163, STA 3949, MAT 3949, MAP 4945, or STA 4821.
- 2. In calculation of the departmental GPA, where relevant, the highest grade in the course will be used.
- 3. Because of overlap in course content, Mathematics majors may receive credit for at most one course in each of the following pairs: (MAP 2302, MAP 3305) and (STA 4443, STA 4032).
- 4. The upper-division mathematics courses required for these programs that are completed at FAU must be completed with at least a 2.2 GPA (B.A. program) or 2.5 GPA (B.S. program).
- 5. Any mathematics course taken at another institution must be completed with a grade of at least "C" to be considered part of either baccalaureate program.
- 6. Mathematics majors are required to consult with their advisors at least once a year.

Math - Course Req Updates in Programs

Final Audit Report 2025-08-28

Created: 2025-08-28

By: Korey Sorge (ksorge@fau.edu)

Status: Signed

Transaction ID: CBJCHBCAABAAGvYsSx_0VGobhlkgjJZsg0YBpMhxlhau

"Math - Course Req Updates in Programs" History

Document created by Korey Sorge (ksorge@fau.edu) 2025-08-28 - 12:32:13 PM GMT

Document emailed to Evonne Rezler (erezler@fau.edu) for signature 2025-08-28 - 12:33:49 PM GMT

Email viewed by Evonne Rezler (erezler@fau.edu) 2025-08-28 - 7:04:23 PM GMT

Document e-signed by Evonne Rezler (erezler@fau.edu)
Signature Date: 2025-08-28 - 7:04:50 PM GMT - Time Source: server

Agreement completed. 2025-08-28 - 7:04:50 PM GMT