Fau	NEW/CHANGE PROG Undergraduate	_	UUPC Approval 10-6-2025 UFS Approval Banner
FLORIDA ATLANTIC UNIVERSITY	Department College		Catalog
Program Name		New Program* Change Program*	Effective Date (TERM & YEAR)
*All new programs a Faculty Contact/	and changes to existing programs must be a	ccompanied by a catalog entry sl	nowing the new or proposed changes. Ints that may be affected by the mentation
Approved by Department Chain College Curriculum College Dean UUPC Chair Undergraduate St UFS President Provost	Mehair Galan Liu Korey Sorge		Pate 9/4/25 9/4/25 9-25-25 10-6-2025

Email this form and attachments to mjenning@fau.edu seven business days before the UUPC meeting.

Biomedical Engineering

Faculty:

Asghar, W.; Assis, R.; DeGiorgio, M.; Du, S.; Engeberg, E.; Ghoraani, B.; Hashemi, J.; Kang, Y.; Kim, M.; Lin, M.; Merk, V.; Pandya, A.; Pashaie, R.; Pavlovic, M.; Ranji, M; Roth, Z.; Tsai, C.Agaarwal, A.; Asghar, W.; Assis, R.; DeGiorgio, M.; Du, S.; Engeberg, E.; Ghoraani, B.; Hashemi, J.; Kang, Y.; Pavlovic, M.Ranji, M; Pashaie, R.; Shankar, R.; Yi., P.; Zhi, H.

The Department of Biomedical Engineering (BME) at Florida Atlantic University (FAU) integrates engineering principles with biological sciences to address critical challenges in healthcare and medicine. Our program is dedicated to advancing human health through cutting-edge research, exceptional education, and impactful clinical applications. We emphasize hands-on experience through innovative research, state-of-the-art facilities, and collaborative projects with industry and clinical partners. Our comprehensive curriculum covers fundamental engineering principles, biological sciences, and specialized topics such as medical devices, smart health, tissue engineering, biorobotics, and biomaterials.

Biomedical Engineering stands at the intersection of the revolution taking place in advanced medical-treatments as a result of applying the principles and practice of the engineering and computer science disciplines to the biological, biomedical and medical sciences. Biomedical Engineering is a broad and emerging field that impacts drug delivery, surgery, diagnosis, prevention and treatment. Students successfully completing the Master of Science with major in Biomedical engineering program will be prepared for professional careers in businesses related to medical diagnostics, prosthetic devices and neural and other implants, the pharmaceutical and biotechnology industries; and consulting in health-related fields, as well as other positions in industry, commerce, education and government. Students will also be prepared to continue their formal education at the Ph.D. level in a variety of science and engineering disciplines and at the M.D. level in certain cases. The Master of Science with major in Biomedical Engineering is available in person and fully online.

Link to Combined Bachelor of Science in Biomedical Engineering (B.S.B.M.E.)

Link to Master of Science in Biomedical Engineering

biomedical engineering

Bachelor of Science

(Minimum of 120 credits required)

The program of study leading to the Bachelor of Science in Biomedical Engineering (B.S.B.M.E.) reflects the breadth of the profession. Students-The curriculum incudes coursework complete coursework in basic science and mathematics, engineering sciences and engineering systems and materials. Students gain a strong interdisciplinary foundation while exploring specialized topics in three areas of focus: The major includes five areas of focus:

- 1. Biomaterials and Tissue Engineering;
- 2. Smart Health Systems;
- 3. Biorobotics

; 4. Bioinformatics; and 5. Nursing Technologist

Graduates of the B.S.B.M.E. program are prepared for careers in medical device design, diagnostics, prosthetics, and biotechnology, as well as roles in healthcare, government, and consulting. The program also serves as an excellent foundation for advanced study in graduate programs, including Master's and Ph.D. degrees in engineering or science disciplines, or for pre-medical tracks leading to medical school.

Formatted: Font: Avenir Book, 14 pt. Bold

Formatted: Font: Avenir Book

Formatted: Font: Avenir Book

Formatted: Justified, Space After: 0 pt, Line spacing:

single

Formatted: Font: Avenir Book

Formatted: Font: Avenir Book

Formatted: Font: Avenir Book

Formatted: Font: Avenir Book
Formatted: Font: Avenir Book, Bold

Formatted: Font: Avenir Book

Formatted: Justified

Formatted: Space Before: 0 pt, After: 8 pt, Line

spacing: Multiple 1.08 li

Formatted: Justified

The Biomedical Engineering program is the first to offer the Nursing Technologist track and an interface with the artificial intelligence center that will add benefits to the Biorobotics and Smart Health Systems focus areas.

Biomedical Engineering Educational Objectives and Student Outcomes

The Biomedical Engineering program strongly supports the educational objectives and learning outcomes of the College of Engineering and Computer Science (see the <u>Educational Objectives</u> and <u>Expected Student Learning Outcomes</u>, subsections previously listed in this section).

Program Educational Objectives are broad statements that describe the expected accomplishments and professional status of Biomedical Engineering graduates a few years beyond the baccalaureate degree.

The Biomedical Engineering program at Florida Atlantic University is dedicated to graduating engineers who, within a few years after graduation will: (how are 1 and 5 PEOs measured?)

- Apply engineering principles to demonstrate proficiency in solving complex biomedical problems, including designing, analyzing, and evaluating biomedical systems and devices.
- Practice biomedical engineering disciplines within the general areas of biomaterials and tissue engineering, bio-robotics and smart health systems in the organizations that employ them;
- Advance their knowledge of biomedical engineering, both formally and informally, by engaging in lifelong learning experiences, including attainment of professional licensure and/or graduate studies:
- Serve as effective professionals based on strong interpersonal and teamwork skills, an
 understanding of professional and ethical responsibility, and a willingness to take the initiative and
 seek progressive responsibilities and
- Participate as leaders in activities that support service to, and/or economic development of, the community.
 - <u>Understand Ethical Implications related to biomedical engineering practices, ensuring that their</u> work adheres to high standards of professional and ethical conduct.
- 1. Practice biomedical engineering within the general areas of biomaterials and tissue engineering, bio-robotics, bioinformatics, nursing technology and smart health systems in the organizations that employ them:
- Advance their knowledge of biomedical engineering, both formally and informally, by
 engaging in lifelong learning experiences including attainment of professional licensure and/or
 graduate studies;
- 3. Serve as effective professionals based on strong interpersonal and teamwork skills, an understanding of professional and ethical responsibility and a willingness to take the initiative and seek progressive responsibilities; and
- 4. Participate as leaders in activities that support service to, and/or economic development of, the community, the region, the state and the nation.

The educational objectives of the Bachelor of Science in Biomedical Engineering program are achieved by ensuring that graduates have the following ABET outcomes:

An ability to identify, formulate and solve complex engineering problems by applying principles
of engineering, science and mathematics;

Formatted: Font: Avenir Book

Formatted: Space After: 0 pt

Formatted: Font: Avenir Book

Formatted: Justified

Formatted: Font: Avenir Book

Formatted: Font: Not Bold

Formatted: Indent: Left: 0.5", No bullets or numbering

- An ability to apply engineering design to produce solutions that meet specified needs with
 consideration of public health, safety and welfare, as well as global, cultural, social, environmental
 and economic factors;
- 3. An ability to communicate effectively with a range of audiences;
- 4. An ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental and societal contexts;
- 5. An ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks and meet objectives;
- 6. An ability to develop and conduct appropriate experimentation, analyze and interpret data and use engineering judgment to draw conclusions; and
- 7. An ability to acquire and apply new knowledge as needed, using appropriate learning strategies.

Admission Requirements

All students must meet the minimum admission requirements of the University. Please refer to the <u>Admissions</u> section of this catalog. All students must meet the preprofessional requirements listed above to be accepted into the B.S.B.M.E. program as <u>discussed under General Requirements for admission to the college.</u>

Prerequisite Coursework for Transfer Students

Students transferring to Florida Atlantic University must complete both lower-division requirements (including the General Education Program, requirements—of the General Education Program) and the college and major requirements—for the college and major. Lower-division requirements may be completed through the A.A. degree from any Florida public college, university or community college or through equivalent coursework at another regionally accredited institution. Before transferring and to ensure timely progress toward the baccalaureate degree, students must also complete the prerequisite courses for their major as outlined in the Transition Guides and below.

All courses not approved by the Florida Statewide Course Numbering System that will be used to satisfy requirements will be evaluated individually on the basis of content and will require a catalog course description and a copy of the syllabus for assessment.

Degree Requirements

The Bachelor of Science in Biomedical Engineering degree will be awarded to students who:

- 1. Meet all general degree requirements of the University.
- 2. Complete the curriculum for the B.S. in Biomedical Engineering degree (see below).

Curriculum

2.

The Bachelor of Science in Biomedical Engineering degree requires 120 credits. For credit toward the degree, a grade of "C" or better must be received in each course listed. In addition, all prerequisites for each mathematics, science or engineering course must be completed with a grade of "C" or better before enrollment is permitted. The degree components are listed below.

Formatted: Font: Avenir Book

Formatted: Font: Avenir Book, Strikethrough

Formatted: Font: Avenir Book

Formatted: Font: Avenir Book

Formatted: Justified

Formatted: Font: Avenir Book

Formatted: Space After: 0 pt

Formatted: Font: Avenir Book

Formatted: Indent: Left: 0.5", Space After: 0 pt, No bullets or numbering

Formatted: Justified

		/(Form
		//(Form
		///(Form
General Education Program	-	4//	Form
College Writing 1 (2,3)	ENC 1101	4/(Form
College Writing 2 (2,3)	ENC 1102	4/	Form
General Education Program: Society and Human Behavior Courses	_	4	Form
			Form
<u>General Education Program.</u> Global Citizenship Courses	<u> </u>	*	Form
General Education Program: Humanities Courses	<u> </u>	•	Form
Foundations of Math and Quantitative Reasoning	-	4	Form
Calculus with Analytic Geometry 1 (1,4)	MAC 2311	4	Form
Calculus with Analytic Geometry 2 (1,4)	MAC 2312	4	Form
			Form
Foundations of Science and the Natural World	<u>-</u>		
General Chemistry 1 (1,5)	CHM 2045	3 and	Form
General Chemistry 1 Lab	CHM 2045L	4	Form
General Physics for Engineers 1 (1,5,7)	PHY 2048	3 and	Form
General Physics 1 Laboratory	PHY 2048L	41	Form
.Total		40	Form
			Form
*Basic Mathematics and Science	_	──↑ \\\\}	Form
Statistics Restricted Elective	_	4///	Form
Engineering Mathematics 1	MAP 3305	e or	Form
Differential Equations 1	MAP 2302	4	Form
Bioprinciples 1 (5)	BSC 1010	- G and	Form
			Form
Bioprinciples Lab	BSC 1010L		Form
Ceneral Chemistry 2 (5)	CHM 2046	g and	Form
General Chemistry 2 Lab	CHM 2046L		Form
"Organic Chemistry 1**	CHM 2210	3 and	Form
	CHM 2210L	1	Form
Arganic Chemistry 1 lab**			Form
Organic Chemistry 2	CHM 2211	3 cind	Form
Organic Chemistry 2Lab	CHM 2211L	4	Form
Biochemistry 1	BCH 3033	-G and	Form
Anatomy and Physiology 1	BSC 2085	Gand	Form
American and this sology i	DUC 2003		Form

Formatted	
Formatted	
Formatted Table	
Formatted	[]
Formatted	
Formatted Formatted	
Formatted	
Formatted	
Formatted	
Formatted	
Formatted	
Formatted	
Formatted	
Formatted	
1 omatted	

Formatted

Formatted Formatted Formatted Formatted Formatted

Anatomy and Physiology 1 Lab	BSC 2085L 4	Formatted: Font: Avenir Book
Genetics	PCB-3063 4	Formatted: Right: 0.28"
Total	- 43	Formatted: Font: Avenir Book
Statistics Restricted Elective: Probability and Statistics for Engineers (STA 4032), Stock		Formatted: Right: 0.28"
Statistics Restricted Elective: Probability and Statistics for Engineers (STA 4032), Stocki Computer Science (STA 4821), Probability and Statistics 1 (STA 4442), Introduction to	Biostatistics (STA	Formatted: Font: Avenir Book
3173) or equivalent.		Formatted: Right: 0.28"
		Formatted: Font: Avenir Book
Total above is 74, leaving 46 credits of Engineering courses to comply with ABET criter	ria.	
Engineering Fundamentals	-	-
Fundamentals of Engineering	ECN 1002	Formatted: Font: Avenir Book
Engineering Graphics Elective		Formatted: Font: Avenir Book
Computer Aided Design	CGN 2327	Formatted: Font: Avenir Book
Engineering Graphics	EGN 1111C	Formatted Table
Total	_	Formatted: Font: Avenir Book
19101		Formatted: Font: Avenir Book
Basic Engineering	_	Formatted: Font: Avenir Book
Introduction to Programming in Python	COP 3035	Formatted: Font: Avenir Book
Statics	EGN 3311	Formatted: Font: Avenir Book
Dynamics	EGN 3321	Formatted: Font: Avenir Book
Circuits 1	EEL 3111	Formatted: Font: Avenir Book
Introduction to Biomedical Engineering	BME 5000	Formatted: Font: Avenir Book
Total	-	Formatted: Font: Avenir Book
For the Bioimaging, Bioinformatics or Smart Health Track, as a prerequisite:	- •	Formatted: Font: Avenir Book
Data Structures and Algorithms Analysis	COP 3410	Formatted Table
For the Biorobotics or Biomaterials and Tissue Engineering Tracks, as a prerequisite:	_	Formatted: Font: Avenir Book
		Formatted: Font: Avenir Book
Engineering Thermodynamics	EGN 3343	Formatted: Font: Avenir Book
Total		Formatted: Font: Avenir Book
Capstone Design Core		Formatted: Font: Avenir Book
RI: Engineering Design 1 (5)	EGN 4950C	Formatted: Font: Avenir Book
RI: Engineering Design 2 (5)	EGN 4952C	Formatted: Font: Avenir Book
Total		Formatted: Font: Avenir Book
Choose two Focus Areas for a total of 12 credits, 6 from each area	•	Formatted: Font: Avenir Book
		\ <u></u>

Biomaterials and Tissue Engineering Focus Area - Choose two courses from the list		Formatted: Font: Avenir Book
Neural Engineering	BME 4361	Formatted: Font: Avenir Book
Nantechnology	BME 4571	Formatted: Font: Avenir Book
ntroduction to Nanotechnology	BME 4574	Formatted: Font: Avenir Book
Fotal		Formatted: Font: Avenir Book
Biorobotics Focus Area - Choose two courses from the list		Formatted: Font: Avenir Book
ntroduction to Microfluidics d BioMEMS	BME 4561	Formatted: Font: Avenir Book
Electro-Mechanical Devices	EGM 4045	Formatted: Font: Avenir Book
ntroduction to Robotics	EML 4800	Formatted: Font: Avenir Book
Fotal	<u>-</u>	Formatted: Font: Avenir Book
Bioimaging / Nursing Technologies Focus Area - Choose two courses from the list		Formatted: Font: Avenir Book
ntroduction to Biosignal Processing	BME 4509	Formatted: Font: Avenir Book
ntroduction to Bioimaging	BME 4536	Formatted: Font: Avenir Book
Signal and Digital Filter Design	EEL 3502	Formatted: Font: Avenir Book
Fotal		Formatted: Font: Avenir Book
Bioinformatics Focus Area - Take the following two courses		Formatted: Font: Avenir Book
Computational Genomics	CAP 4511	Formatted: Font: Avenir Book
Algorithms for Bioinformatics	CAP 4543	Formatted: Font: Avenir Book
Fotal		Formatted: Font: Avenir Book
Smart Health Systems Focus Area - Choose two courses from the list		Formatted: Font: Avenir Book
ntroduction to Deep Learning	CAP 4613	Formatted: Font: Avenir Book
ntroduction to Artificial Intelligence	CAP 4630	Formatted: Font: Avenir Book
ntroduction to Data Mining and Machine Learning	CAP 4770	Formatted: Font: Avenir Book
F otal		Formatted: Font: Avenir Book
Technical Electives - Choose 3 credits from the list		Formatted: Font: Avenir Book
Professional Internship	IDS 3949	Formatted: Font: Avenir Book
Engineering Professional Internship	EGN 3941	Formatted: Font: Avenir Book
Directed Independent Research in Engineering and Computer Science (6)	EGN-4915	Formatted: Font: Avenir Book
For pre-med students, choose biology lab—and organic chemistry lab for 3 credits		Formatted: Font: Avenir Book

Total

Total Program

Requirement	Course Number			
Communications / Humanities / Social			Credits	
Science	ENC 1101		3	
College Writing 1 (2,3)			3	
College Writing 2 (2,3) General Education Program: Social Science	ENC 1102 Options listed in		6	
Courses	Audit		6	
General Education Program: Humanities	Options listed in			
Courses	Audit			
Mathematics			4	
Calculus with Analytic Geometry 1 (1,4)	MAC 2311		4	
Calculus with Analytic Geometry 2 (1,4)	MAC 2312			
Foundations of Science and the Natural			-	
World Natural Science			-	
General Chemistry 1	CHM 2045			
General Chemistry 1 Lab	CHM 2045L		3	
General Physics for Engineers 1	PHY 2048		3	
General Physics 1 Laboratory	PHY 2048L		1 1 2 3	
			3 	
			+	
			1 +	
		D	Biomedical <u>Sma</u>	rt
		Biomaterials	<u>Health</u>	Biorobotics
Additional Mathematics and Science				
Biostatistics	STA 3173	3	3	-
Engineering Mathematics	MAP 3305 or	3	3	3
Differential Equations	MAP 2302	3	3	3
Physics for Engineers General Physics 2	PHY 2049		<u>4</u> 3	4
General Physics 2 Laboratory	PHY 2049L			1
Bioprinciples	BSC 1010	3	3	3
Bioprinciples Lab	BSC 1010L	1	1	1
Biodiversity	BSC 1011	3		
Biodiversity Lab	BSC 1011L	1		
General Chemistry 2	CHM 2046	3	3	
General Chemistry 2 Lab	CHM 2046L	1	1	
Organic Chemistry 1	CHM 2210	3		
Organic Chemistry 2	CHM 2211	3		

+	Formatted: Font: Avenir Book
+	Formatted: Font: Avenir Book
1	Formatted: Font: Avenir Book
Y	Formatted Table
1	Formatted: Font: Avenir Book
-	Formatted Table
X	Formatted: Font: Avenir Book
A	Formatted: Font: Avenir Book
A	Formatted: Font: Avenir Book
Ą	Formatted: Font: Avenir Book
A	Formatted: Font: Avenir Book
Ą	Formatted: Font: Avenir Book
4	Formatted: Font: Avenir Book
4	Formatted: Font: Avenir Book
1	Formatted: Font: Avenir Book

Biochemistry 1	BCH 3033	3			1/,
General Microbiology	MCB 3020	3]/,
General Microbiology Lab	MCB 3020L	1			_/,
Anatomy and Physiology 1	BSC 2085	3	3	3	_/
Anatomy and Physiology 1 Lab	BSC 2085L	1	1	1	
Genetics	PCB 3063	4	4	4	
Quantitative Analysis	CHM 3120		2		/
Quantitative Analysis <u>Lab</u>	CHM 3120L		2		1/
Engineering Graphics					_/
Engineering Graphics	EGN 1111C	3	3	3	7
					7
Engineering Topics					7
Fundamentals of Engineering	EGN 1002	3	3	3	
Introduction to Programming in Python	COP 3035C	3	3	3	1
Statics	EGN 3311	3	3	3	
Dynamics	EGN 3321	3	3	3	7
Circuits	EEL 3111	3	3	3	_/
Signals & Digital Filter Design	EEL 3502		3	3	
Controls	EEL 4652C			3	1
Fluid Mechanics	EML 3701		3	3	1
Strengths of Materials	EGN 3331	3		3	
Biomedical Instrumentation	BME 4503C	3	3	3	
A	1		3		_
Orthopedic Biomechanics	BME 4201	3	3	3	
Biomedical Signal Processing	BME 4509		3	3	
Intro to Bio-Imaging	BME 4536		3		
Microfabrication Technology	BME 4583		3		
Intro to Robotics	EML 4800			3	
N uceu ro-Mechanics	BME 4364			3	
Advanced Robotic LabApplied Biorobotics	BME <u>4241</u> XXXX			3	
Biomaterials	BME 4100	3	3		
Methods in Biomedical Research	BME 4070C	3	3	3	_
Engineering Design					
Engineering Design I (5)	EGN 4950C or	3	3	3	
Engineering Design II (5)	EML4521C EGN 4952C or	3	3	3	
	EML4551				П
Technical Electives		6	6 <u>5</u>	9	_
A					Ţ
A	Total Credits:	120	120	120	

l	Formatted	
λ	Formatted	()
l	Formatted	()
λ	Formatted	()
Ì	Formatted	
h	Formatted	
Ì	Formatted	
Ì	Formatted	
1	Formatted	
A	Formatted	
Ì	Formatted	
A	Formatted	
1	Formatted	
d	Formatted	
1	Formatted	
+	Formatted	
+	Formatted	
-	Formatted	
	Formatted	
1	Formatted	
Y	Formatted	
Y	Formatted	
V	1_	

Formatted

<u>Requirement</u>	Course Number	<u>Credits</u>	
•		=	
Communications / Humanities / Social Science	<u>-</u>		
College Writing 1 (2,3)	ENC 1101	<u>3</u>	/
College Writing 2 (2,3)	ENC-1102	<u>3</u>	
General Education Program: Social Science	Options listed in	<u>6</u>	/
Courses	Audit Options listed in	_	
General Education Program: Humanities Courses	Audit	<u>6</u>	/
_	=	=	/
<u>Mathematics</u>	=	=	/
Calculus with Analytic Geometry 1 (1,4)	MAC 2311	<u>4</u>	/
Calculus with Analytic Geometry 2 (1,4)	MAC 2312	<u>4</u>	/
<u></u>	=	=	
Natural Science	=	=	/
<u>General Chemistry 1</u>	CHM 2045	<u> </u>	/
General Chemistry 1 Lab	CHM 2045L	<u>+</u>	/
<u>Ceneral Physics for Engineers 1 (5)</u>	PHY 2048	<u>3</u>	/
General Physics 1 Laboratory	PHY 2048L	<u>+</u>	

Courses for Focus Areas	=	Biomaterials	Biomedical	Biorobotics
Additional Mathematics and		Credits	Credits	Credits
<u>Science</u>	-			Credits
Biostatistics	STA 3173	<u>3</u>	<u>3</u>	=
Engineering Mathematics	MAP 3305 or	3	2	
<u>Differential Equations</u>	MAP 2302	3	3	₹
Physics for Engineers 2	PHY 2049	=	<u>3</u>	<u>4</u>
General Physics 2 Laboratory	PHY 2049L	=	<u>=</u>	<u>+</u>
<u>Bioprinciples</u>	<u>BSC 1010</u>	<u>3</u>	<u>3</u>	3
<u>Bioprinciples Lab</u>	<u>BSC 1010L</u>	<u>+</u>	<u>+</u>	<u>+</u>
<u>Biodiversity</u>	<u>BSC 1011</u>	<u>3</u>		<u>-</u>
<u>Biodiversity Lab</u>	<u>BSC 1011L</u>	<u>+</u>		<u>=</u>
<u>Ceneral Chemistry 2</u>	CHM 2046	<u>3</u>	<u>3</u>	_
<u>General Chemistry 2 Lab</u>	CHM 2046L	<u>+</u>	<u>1</u>	<u>_</u>
Organic Chemistry 1	CHM 2210	<u>3</u>	<u>-</u>	<u>-</u>
Organic Chemistry 2	CHM 2211	<u>3</u>		
Organic Chemistry 2 Lab	CHM-2211L	2		<u>_</u>
<u>Biochemistry 1</u>	<u>BCH 3033</u>	<u>3</u>		<u>-</u>
<u>Ceneral Microbiology</u>	MCB 3020	<u>3</u>	_	
General Microbiology Lab	MCB-3020L	±	_	_
Anatomy and Physiology 1	<u>BSC 2085</u>	<u>3</u>	<u>3</u>	3
Anatomy and Physiology 1 Lab	<u>BSC 2085L</u>	±	<u>+</u>	<u>+</u>
Genetics	PCB-3063	<u>4</u>	4	4
Quantitative Analysis	CHM 3120	Ξ	2	=

For	matted	()
For	matted	
For	matted	
Foi	matted	()
Foi	matted	()
For	matted	<u></u>
For	matted	
For	matted	<u></u>
For	matted	
For	matted	
For	matted	()
For	matted	<u></u>
For	matted	
For	matted	<u></u>
For	matted	
For	matted	<u></u>
For	matted	<u></u>
For	matted	
Foi	matted	
For	matted	

I	I	I	ſ	ſ
Quantitative Analysis	CHM 3120L	=	2	=
<u> </u>	-	=	<u>=</u>	<u>=</u>
Engineering Graphics	<u>-</u>	=	=	=
Engineering Graphics	<u>EGN 1111C</u>	<u>3</u>	<u>3</u>	<u>3</u>
<u> </u>	=	=	<u>=</u>	=
<u>Engineering</u>	=	=	=	=
Fundamentals of Engineering	EGN 1002	<u>3</u>	<u>3</u>	<u>3</u>
Introduction to Programming in	COP 3035C	3	3	3
<u>Python</u>		_	_	_
<u>Statics</u>	EGN 3311	<u>3</u>	<u>3</u>	<u>3</u>
<u>Dynamics</u>	EGN 3321	<u>3</u>	<u>3</u>	<u>3</u>
<u>Circuits</u>	EEL 3111	<u>3</u>	<u>3</u>	<u>3</u>
<u>Signals & Digital Filter Design</u>	EEL 3502		<u>3</u>	<u>3</u>
<u>Controls</u>	EEL 4652C		=	<u>3</u>
Fluid Mechanics	EML 3701		<u>3</u>	<u>3</u>
<u>Strengths of Materials</u>	EGN 3331	<u>3</u>		<u>3</u>
<u>Biomedical Instrumentation</u>	<u>BME 4503C</u>	<u>3</u>	<u> </u>	<u>3</u>
Orthopodic Biomechanics	BME 4201	<u>3</u>	<u>3</u>	<u>3</u>
Biomedical Signal Processing	BME 4509		3	<u>3</u>
Intro to Bio Imaging	BME 4536		<u>3</u>	=
Microfabrication Technology	BME 4583		<u>3</u>	=
Intro to Robotics	EML 4800		_	<u>3</u> ∢
Nuero Mechanics	BME 4364			<u>3</u>
Advanced Robotic Lab	BME XXXX			3
Biomaterials	BME 4100	3	3	-
Methods in Biomedical Research	BME 4070C	<u>3</u>	<u>\$</u>	<u>3</u>
Methods in biomedical Research			<u> </u>	
F. C. Stee Bester	=	=		<u>-</u>
Engineering Design	= EGN 4950C or	=	=	=
Engineering Design I	EGN 4950C or EML4521C	<u>3</u>	<u>3</u>	<u>3</u>
Engineering Design II	EGN 4952C or	3	<u>3</u>	<u>3</u>
Engineering Design in	EML4551	<u> </u>	ÞI	Þ
<u> </u>	<u>-</u>	=	=	=
<u>Technical Electives</u>	=	<u>6</u>	<u>6</u>	9
<u>F</u>	<u>=</u>	=	Ξ	Ξ
-	Total Credits:	120	120	86

Notes:

- 1. Contributes to the University Core Curriculum.
- 2. Contributes to Writing Across Curriculum (Gordon Rule) writing.
- 3. General Education Program courses, totaling 6 credits, must be selected to satisfy Writing Across Curriculum (Gordon Rule) writing requirements.
- 4. Contributes to Gordon Rule mathematics.

	Formatted: Font: Avenir Book
	Formatted: Font: Avenir Book
	Formatted: Font: Avenir Book
	Formatted: Font: Avenir Book
_	Formatted: Font: Avenir Book
_	Formatted: Font: Avenir Book
	Formatted: Font: Avenir Book
\	Formatted: Font: Avenir Book
\	Formatted: Font: Avenir Book
\	Formatted: Font: Avenir Book
/	Formatted: Font: Avenir Book
/	Formatted: Font: Avenir Book
$^{\prime}$	Formatted: Font: Avenir Book
)	Formatted: Font: Avenir Book
$^{\prime}/^{\prime}$	Formatted Table
$^{\prime}/^{\prime}$	Formatted: Font: Avenir Book
$^{\prime})^{\prime}$	Formatted: Font: Avenir Book
'/'	Formatted: Font: Avenir Book
'/'	Formatted: Font: Avenir Book
' / '	Formatted: Font: Avenir Book
$\langle \cdot \rangle$	Formatted: Font: Avenir Book
$^{\prime}/^{\prime}$	Formatted: Font: Avenir Book
$^{\prime})^{\prime}$	Formatted: Font: Avenir Book
$^{\prime})^{\prime}$	Formatted: Font: Avenir Book
//	Formatted: Font: Avenir Book
//	Formatted: Font: Avenir Book
, \	Formatted: Font: Avenir Book
/	Formatted: Font: Avenir Book
/	Formatted: Space After: 0 pt
\	Formatted: Font: Avenir Book

5. Includes a 1-credit laboratory.

6. Grading: S/U.

PHY 2048, General Physics for Engineers 1 (4 credits) is an acceptable substitute, but only 3 credits will apply toward the degree.

.7.

Internships

Biomedical Engineering students are strongly encouraged to gain practical experience through participation in internship opportunities. However, internships require prior approval from the department and coordinatedion with the Career Center (EGN 3941|DS3949, Engineering Professional Internship). For more information, contact the FAU Career Center at 561-297-3533 or visit www.fau.edu/cdc.

Formatted: Space After: 0 pt, Line spacing: Multiple 1.08 li

Formatted: Font: Avenir Book

Formatted: Indent: Left: 0.5", Space After: 0 pt, Line spacing: single, No bullets or numbering

Formatted: Justified

Formatted: Font: Avenir Book

Biomedical Engineering

Faculty:

Asghar, W.; Assis, R.; DeGiorgio, M.; Du, S.; Engeberg, E.; Ghoraani, B.; Hashemi, J.; Kang, Y.; Kim, M.; Lin, M.; Merk, V.; Pandya, A.; Pashaie, R.; Pavlovic, M.; Ranji, M; Roth, Z.; Tsai, C.

The Department of Biomedical Engineering (BME) at Florida Atlantic University (FAU) integrates engineering principles with biological sciences to address critical challenges in healthcare and medicine. Our program is dedicated to advancing human health through cutting-edge research, exceptional education, and impactful clinical applications. We emphasize hands-on experience through innovative research, state-of-the-art facilities, and collaborative projects with industry and clinical partners. Our comprehensive curriculum covers fundamental engineering principles, biological sciences, and specialized topics such as medical devices, smart health, tissue engineering, biorobotics, and biomaterials.

Link to Combined Bachelor of Science in Biomedical Engineering (B.S.B.M.E.)

Link to Master of Science in Biomedical Engineering

Bachelor of Science

(Minimum of 120 credits required)

The Bachelor of Science in Biomedical Engineering (B.S.B.M.E.) reflects the breadth of the profession. The curriculum incudes coursework in basic science and mathematics, engineering sciences and engineering systems and materials. Students gain a strong interdisciplinary foundation while exploring specialized topics in three areas of focus:

- 1. Biomaterials and Tissue Engineering;
- 2. Smart Health Systems;
- 3. Biorobotics

Graduates of the B.S.B.M.E. program are prepared for careers in medical device design, diagnostics, prosthetics, and biotechnology, as well as roles in healthcare, government, and consulting. The program also serves as an excellent foundation for advanced study in graduate programs, including Master's and Ph.D. degrees in engineering or science disciplines, or for pre-medical tracks leading to medical school.

Biomedical Engineering Educational Objectives and Student Outcomes

The Biomedical Engineering program strongly supports the educational objectives and learning outcomes of the College of Engineering and Computer Science (see the <u>Educational Objectives</u> and <u>Expected Student Learning Outcomes</u> subsections previously listed in this section).

Program Educational Objectives are broad statements that describe the expected accomplishments and professional status of Biomedical Engineering graduates a few years beyond the baccalaureate degree.

The Biomedical Engineering program at Florida Atlantic University is dedicated to graduating engineers who, within a few years after graduation, will:

- 1. **Practice biomedical engineering disciplines** within the general areas of biomaterials and tissue engineering, bio-robotics and smart health systems in the organizations that employ them;
- 2. Advance their knowledge of biomedical engineering, both formally and informally, by engaging in lifelong learning experiences, including attainment of professional licensure and/or graduate studies;
- 3. **Serve as effective professionals** based on strong interpersonal and teamwork skills, an understanding of professional and ethical responsibility, and a willingness to take the initiative and seek progressive responsibilities and
- 4. Participate as leaders in activities that support service to, and/or economic development of, the community.

The educational objectives of the Bachelor of Science in Biomedical Engineering program are achieved by ensuring that graduates have the following ABET outcomes:

- 1. An ability to identify, formulate and solve complex engineering problems by applying principles of engineering, science and mathematics;
- 2. An ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety and welfare, as well as global, cultural, social, environmental and economic factors;
- 3. An ability to communicate effectively with a range of audiences;
- 4. An ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental and societal contexts;
- 5. An ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks and meet objectives;
- 6. An ability to develop and conduct appropriate experimentation, analyze and interpret data and use engineering judgment to draw conclusions; and
- 7. An ability to acquire and apply new knowledge as needed, using appropriate learning strategies.

Admission Requirements

All students must meet the minimum admission requirements of the University. Please refer to the <u>Admissions</u> section of this catalog. All students must meet the preprofessional requirements listed above to be accepted into the B.S.B.M.E. program as discussed under General Requirements for admission to the college.

Prerequisite Coursework for Transfer Students

Students transferring to Florida Atlantic University must complete both lower-division requirements (including the General Education Program requirements) and the college and major requirements. Lower-division requirements may be completed through the A.A. degree from any Florida public college, university or community college or through equivalent coursework at another regionally accredited institution. Before transferring and to ensure timely progress toward the baccalaureate degree, students must also complete the prerequisite courses for their major as outlined in the Transition Guides and below.

All courses not approved by the Florida Statewide Course Numbering System that will be used to satisfy requirements will be evaluated individually on the basis of content and will require a catalog course description and a copy of the syllabus for assessment.

Degree Requirements

The Bachelor of Science in Biomedical Engineering degree will be awarded to students who:

- 1. Meet all general degree requirements of the University.
- 2. Complete the curriculum for the B.S. in Biomedical Engineering degree (see below).

Curriculum

The Bachelor of Science in Biomedical Engineering degree requires 120 credits. For credit toward the degree, a grade of "C" or better must be received in each course listed. In addition, all prerequisites for each mathematics, science, or engineering course must be completed with a grade of "C" or better before enrollment is permitted. The degree components are listed below.

Requirement	Course Number	
Communications / Humanities / Social Science		Credits
College Writing 1 (2,3)	ENC 1101	2
College Writing 2 (2,3)	ENC 1102	3 3
General Education Program: Social Science Courses	Options listed in Audit	6
General Education Program: Humanities Courses	Options listed in Audit	4
Mathematics		8
Calculus with Analytic Geometry 1 (1,4)	MAC 2311	
Calculus with Analytic Geometry 2 (1,4)	MAC 2312	4 4
		7
Natural Science		

General Chemistry 1	CHM 2045				
General Chemistry 1 Lab	CHM 2045L				
General Physics for Engineers 1	PHY 2048				
			3		
			1		
General Physics 1 Laboratory	PHY 2048L		1		
		Biomaterials	Smart Health	Biorobotics	
Additional Mathematics and Science					
Biostatistics	STA 3173	3	3	-	
Engineering Mathematics	MAP 3305 or	3	3	3	
Differential Equations	MAP 2302		Ĭ		
General Physics 2	PHY 2049		4	4	
General Physics 2 Laboratory	PHY 2049L			1	
Bioprinciples	BSC 1010	3	3	3	
Bioprinciples Lab	BSC 1010L	1	1	1	
Biodiversity	BSC 1011	3			
Biodiversity Lab	BSC 1011L	1			
General Chemistry 2	CHM 2046	3	3		
General Chemistry 2 Lab	CHM 2046L	1	1		
Organic Chemistry 1	CHM 2210	3			
Organic Chemistry 2	CHM 2211	3			
Organic Chemistry 2 Lab	CHM 2211L	2			
Biochemistry 1	BCH 3033	3			
General Microbiology	MCB 3020	3			
General Microbiology Lab	MCB 3020L	1			

Anatomy and Physiology 1	BSC 2085	3	3	3
Anatomy and Physiology 1 Lab	BSC 2085L	1	1	1
Genetics	PCB 3063	4	4	4
Quantitative Analysis	CHM 3120		2	
Quantitative Analysis Lab	CHM 3120L		2	
Engineering Graphics				
Engineering Graphics	EGN 1111C	3	3	3
Engineering Topics				
Fundamentals of Engineering	EGN 1002	3	3	3
Introduction to Programming in Python	COP 3035C	3	3	3
Statics	EGN 3311	3	3	3
Dynamics	EGN 3321	3	3	3
Circuits	EEL 3111	3	3	3
Signals & Digital Filter Design	EEL 3502		3	3
Controls	EEL 4652C			3
Fluid Mechanics	EML 3701		3	3
Strengths of Materials	EGN 3331	3		3
Biomedical Instrumentation	BME 4503C	3	3	3
Orthopedic Biomechanics	BME 4201	3	3	3
Biomedical Signal Processing	BME 4509		3	3
Intro to Bio-Imaging	BME 4536		3	
Microfabrication Technology	BME 4583		3	
Intro to Robotics	EML 4800			3
Neuro-Mechanics	BME 4364			3
Applied Biorobotics	BME 4241			3
Biomaterials	BME 4100	3	3	
Methods in Biomedical Research	BME 4070C	3	3	3

Engineering Design				
Engineering Design I (5)	EGN 4950C or EML4521C	3	3	3
Engineering Design II (5)	EGN 4952C or EML4551	3	3	3
Technical Electives		6	5	9
	Total Credits:	120	120	120

Notes:

- 1. Contributes to the University Core Curriculum.
- 2. Contributes to Writing Across Curriculum (Gordon Rule) writing.
- 3. General Education Program courses, totaling 6 credits, must be selected to satisfy Writing Across Curriculum (Gordon Rule) writing requirements.
- 4. Contributes to Gordon Rule mathematics.
- 5. PHY 2048, General Physics for Engineers 1 (4 credits) is an acceptable substitute, but only 3 credits will apply toward the degree.

Internships

Biomedical Engineering students are strongly encouraged to gain practical experience through participation in internship opportunities. However, internships require prior approval from the department and coordination with the Career Center (IDS3949, Engineering Professional Internship). For more information, contact the FAU Career Center at 561-297-3533 or visit www.fau.edu/cdc.