	NEW/CHANGE PROGRAM REQUEST Undergraduate Programs		UUPC Approval \qquad UFS Approval \qquad Banner
FLORIDA ATLANTIC UNIVERSITY	Department Mathematical Science College Science		Catalog
Program Name Bachelor of Science degree in Mathematics		New Program* Change Program*	Effective Date (TERM \& YEAR) Spring 2024
Please explain the requested change(s) and offer rationale below or on an attachment. The Department of Mathematical Sciences at Florida Atlantic University (FAU) proposes to revise the BS program in Mathematics. The primary goal is to increase enrollment in mathematics degree programs at FAU. This program revise will update our curriculum offerings to improve student preparedness for the demands of the current labor market, and better align the programs with the expertise of the core faculty groups within the department. We propose to have four concentrations in the BS program: (1) Pure Mathematics (2) Mathematical Cryptology (3) Mathematical Biology (4) Statistics and Data Science (for more details, please see the attached note.)			
*All new programs and changes to existing programs must be accompanied by a catalog entry showing the new or proposed changes Faculty Contact/Email/PhoneConsult and list departments that may be affected by the change(s) and attach documentation			
Approved by Department Chair College Curriculum Chair College Dean UUPC Chair Undergraduate Studies Dean \qquad UFS President \qquad Provost \qquad			Date \qquad \qquad

Email this form and attachments to mjenning@fau.edu seven business days before the UUPC meeting.

Catalog Change (texts in green are newly added)

Mathematics

Bachelor of Science (B.S.)

The B.S. program in Mathematics consists of four concentrations:
(1) Pure Mathematics
(2) Mathematical Cryptology
(3) Mathematical Biology
(4) Statistics \& Data Science

To complete the B.S. program, students will complete the specific courses for one of the concentrations. All students will take two courses in calculus; at least one statistics course; Discrete Mathematics, and at least one programming course.
(1) Pure Mathematics Concentration

Galculus 1 Calculus with Analytic Geometry 1	MAC 2311	4
Galculus 2 Calculus with Analytic Geometry 2	MAC 2312	4
Galculus 3 Calculus with Analytic Geometry 3	MAC 2313	4
General Chemistry 1 and Lab or	CHM 2045\&L	or
General Physics 1 and Lab	PHY2048\&L	$4-5$
Discrete Mathematics	MAD 2104	3
Introduction to Computational Math	MAD 2502	3
Differential Equations 1	MAP 2302	3
Matrix Theory	MAS 2103	3
Introduction to Advanced Mathematics	MHF 3202	3
Mathematical Problem Solving	MAT 4937	3
Linear Algebra 2	MAS 4107	3
Modern Analysis	MAA 4200	3
Vector Calculus	MAS 3156	3
Modern Algebra	MAS 4301	3
Introductory Complex Analysis	MAA 4402	3
Probability and Statistics 1	STA 4442	3
Introductory Analysis 1	MAA 4226	3

Introductory Algebra 1	MAS 4304	3
Upper-division math electives		12
		9
Mathematics Total (excluding science)		57
(2) Mathematical Cryptology Concentration		
Calculus and Analytic Geometry 1	MAC 2311	4
Calculus and Analytic Geometry 2	MAC 2312	4
Calculus and Analytic Geometry 3	MAC 2313	4
General Chemistry 1 and Lab or	CHM 2045\&L	or
General Physics 1 and Lab	PHY2048\&L	4-5
Discrete Mathematics	MAD 2104	3
Matrix Theory	MAS 2103	3
Programming 1	Cop 2220	3
Introductory Number Theory	MAS 3203	3
Introduction to Advanced Math	MHF 3202	3
Probability and Statistics 1	STA 4442	3
Cryptography and Information Security	CIS 4362	3
Modern Algebra	MAS 4301	3
Programming 2	COP 3014	3
Data Structures and Algorithm Analysis	COP 3530	3
Approved upper-division math electives, choose 2. For example, but not limited to the following (courses marked with * apply to the undergraduate Cybersecurity Certificate program)		
Computational Statistics	STA 3100	
Vector Calculus	MAS 3156	
Engineering Mathematics 1	MAP3305	
Numerical Methods	MAD 3400	
Linear Algebra 2	MAS 4107	
Introduction to Methods in Complex Systems	MAP 4112	
Mathematics of Cybersecurity*	MAP 4190	
Mathematics for Cryptography*	MAS 4206	
Graph Theory	MAD 4301	
Topology for Data Science	MTG 4325	
Numerical Analysis 1	MAD 4401	
Introduction to Coding Theory*	MAD 4605	
Post-quantum Cryptography (New course, in the approval cycle)	MAD 4475	

Cryptography of Blockchain (New course, in the approval cycle)

Approved upper-division EECS Electives in	
the Cybersecurity Certification program,	
choose 3. For example, but NOT limited to	
the following:	COP 3540
Introduction to Database Structure	COP 4045
Python Programming	COT 4400
Design and Analysis of Algorithms	COT 4402
Theory of Computation	CDA 4321
Introduction to Cryptographic Engineering	CIS 4634
Applied Cryptography and Security	CNT 4411
Network and Data Security	CAP 4612
Applied Machine Learning and Data Mining	CAP 4613
Introduction to Deep Learning	CAP 4630
Introduction to Artificial Intelligence	COP 4610
Computer Operating Systems	CAP 4770
Introduction to Data Mining and Machine	

Approved upper-division EECS Electives in the Cybersecurity Certification program, choose 3. For example, but NOT limited to the following:

Concentration Total (excluding science)

(3) Mathematical Biology Concentration

Mathematics for Biological Sciences 1 (New	MAP 2483	or
Course)	MAC 2233	or
Methods of Calculus	MAC 2241	or
Life Sciences Calculus 1	MAC 2311	$3-4$
Calculus with Analytic Geometry 1	(New	MAP 2484
Mathematics for Biological Sciences	4	
Course)	STA 2023	3
Introductory Statistics	MAD 2502	3
Introduction to Computational Math	MAD 2104	3
Discrete Math	BSC 1010	3
Biological Principles	BSC 1011	3
Biodiversity	CHM 2045	3
General Chemistry 1	CHM 2046	3
General Chemistry 2	MAP 4103	3
Applied Mathematical Modeling	STA 3173	3
Introduction to Biostatistics	PCB 3063	or
Genetics	PCV 4043	4
Principles of Ecology	IDS 4139	3
Artificial Intelligence Applications in Biology	CAP 4612	3
Applied Machine Learning and Data Mining		6

Upper-division science electives (choose 2) with Prefix BOT, BSC, MCB, OCB, PCB, ZOO,

RI: Statistical learning
RI: Introduction to Data Science
RI: Industrial Problems in Applied Math
RI: Neurobiology of Learning and Memory
RI: Neurophysiclogy

STA 4241
CAP 3786
MAP 4913
PSB 4810
PCB 4832C

Concentration Total (including science) 59-60
Note: For this concentration, MAP 2484 can be replaced by MAC 2312, MAP 2302, and MAS 2103.

(4) Statistics \& Data Science Concentration

Calculus and Analytic Geometry 1	MAC 2311	4
Calculus and Analytic Geometry 2	MAC 2312	4
Calculus and Analytic Geometry 3	MAC 2313	4
General Chemistry 1 and Lab or	CHM 2045\&L	or
General Physics 1 and Lab	PHY2048\&L	$4-5$
Discrete Mathematics	MAD 2104	3
Matrix Theory	MAS 2103	3
Introduction to Computational Math	MAD 2502	3
Programming 1	COP 2220	3
Introduction to Advanced Math	MHF3202	3
Modern Algebra	MAS4301	3
Introduction to Complex Analysis	MAA4402	3
Probability and Statistics 1	STA4442	3
Applied Statistics 1 and Applied Statistics Lab	STA4234 and	3
Programming 2	STA 4202L	3
Data Structures and Algorithm Analysis	COP 3014	3
Approved Math Electives, choose 2, at least	COP 3530	3
one upper-division		6
Concentration Electives, choose 2:		6

RI: Introduction to Data Science CAP 3786
RI: Statistical Learning
STA 4241
Topology for Data Science
MTG 4325
Applied Mathematical Modeling
MAP 4103
Industrial Problems in Applied Math
MAP 4913
Introduction to Deep Learning
CAP 4613
Introduction to Data Mining and Machine
Learning

Introduction to Data Science and Analytics
Time series
Computational Statistics
Introduction to Methods in Complex Systems
Theory of Computation
Concentration Total (excluding science)

CAP 4773
STA 4853
STA 3100
MAP 4112
COT4420

Required Minimum GPA 2.5

Notes:

1. Upper-division mathematics electives: These electives must be chosen from courses offered by the Department of Mathematical Sciences and numbered 3000 or higher. The following courses may not be used as upper-division mathematics electives: STA 3163, STA 3173, STA 3949, MAT 3949, MAP 4945, or STA 4821.
2. In calculation of the departmental GPA, where relevant, the highest grade in the course will be used.
3. Because of overlap in course content, Mathematics majors may receive credit for at most one course in each of the following pairs: (MAP 2302, MAP 3305), (MAP 4303, MAP 4306), (STA 4443, STA 4032).
4. The upper-division mathematics courses required for these programs that are completed at FAU must be completed with at least a 2.2 GPA (B.A. program) or 2.5 GPA (B.S. program).
5. Any mathematics course taken at another institution must be completed with a grade of at least "C-" "C" to be considered part of either baccalaureate program.
6. Mathematical Sciences majors are required to consult with their advisors at least once a year.
