

BIOCHEMISTRY REVIEW

Overview of Biomolecules

<u>Chapter 8</u> <u>Lipids</u>

FATTY ACIDS

- 4-36 CARBONS
- ONE CARBOXYLIC ACID GROUP
- EVEN NUMBER OF CARBONS (USUALLY)
- LINEAR (USUALLY)
- SATURATED OR UNSATURATED
- CIS DOUBLE BONDS (USUALLY)
- UNCONJUGATED DOUBLE BONDS (USUALLY) (- $CH = CH - CH_2 - CH = CH -$)

Number of carbons	Number of double bonds	Common name	Systematic name	Formula
12	0	Laurate	n-Dodecanoate	$CH_3(CH_2)_{10}COO^-$
14	0	Myristate	n-Tetradecanoate	$CH_3(CH_2)_{12}COO^-$
16	0	Palmitate	n-Hexadecanoate	$CH_3(CH_2)_{14}COO^-$
18	0	Stearate	n-Octadecanoate	$CH_3(CH_2)_{16}COO^-$
20	0	Arachidate	n-Eicosanoate	$CH_3(CH_2)_{18}COO^-$
22	0	Behenate	n-Docosanoate	$CH_3(CH_2)_{20}COO^-$
24	0	Lignocerate	n-Tetracosanoate	$CH_3(CH_2)_{22}COO^-$
16	1	Palmitoleate	cis - Δ^9 -Hexadecenoate	CH ₃ (CH ₂) ₅ CH=CH(CH ₂) ₇ COO ⁻
18	1	Oleate	cis - Δ^9 -Octadecenoate	CH ₃ (CH ₂) ₇ CH=CH(CH ₂) ₇ COO ⁻
18	2	Linoleate	cis, cis- Δ^9 , Δ^{12} - Octadecadienoate	$CH_3(CH_2)_4(CH=CHCH_2)_2(CH_2)_6COO^{-1}$
18	3	Linolenate	all-cis- Δ^9 , Δ^{12} , Δ^{15} - Octadecatrienoate	CH ₃ CH ₂ (CH=CHCH ₂) ₃ (CH ₂) ₆ COO ⁻
20	4	Arachidonate	all-cis- Δ^5 , Δ^8 , Δ^{11} , Δ^{14} - Eicosatetraenoate	$CH_3(CH_2)_4(CH=CHCH_2)_4(CH_2)_2COO^{-1}$

- c) $(CH_3)_2CH(CH_2)_{13}COOH$
- b) HOOC(CH_2)₁₄COOH
- a) CH₃(CH₂)₁₅COOH

Which is the most likely structure for a common fatty acid?

Which is the most likely structure for a common fatty acid?

- a) $CH_3(CH_2)_{15}COOH$

c) $(CH_3)_2CH(CH_2)_{13}COOH$

d) $CH_3(CH_2)_{\circ}CH=CH(CH_2)_3COOH$

e) $CH_3(CH_2)_6CH=CH-CH=CH(CH_2)_4COOH$

FATTY ACID SALT (SOAP)

$CH_3(CH_2)_{16}COOH + NaOH \rightarrow$

$CH_3(CH_2)_{16}COO^-Na^+ + H_2O$

Glycerol H A "free" Fatty Acid H—с—он о-

o

H-C-OH

-OH

H-¢-

11

ACID HYDROLYSIS OF A TRIGLYCERIDE

Saponification

• Base catalyzed hydrolysis is called "saponification"

Which properties are characteristic of triglycerides? *(multiple answers)*

- a) They contain one glycerol molecule.
- b) They contain three -COOH groups.
- c) They contain three ester bonds.
- d) They can be saponified in acid.
- e) They can be hydrolyzed in base.
- f) They are amphipathic.

Which properties are characteristic of triglycerides?

- a) They contain one glycerol molecule.
- b) They contain three -COOH groups.
- c) They contain three ester bonds.
- d) They can be saponified in acid.
- e) They can be hydrolyzed in base.
- f) They are amphipathic.

1-hexadecanoyl, 2-(9Z,12Z-octadecadienoyl)-*sn*-glycero-3-phosphate (phosphatidic acid)

Name of glycerophospholipid	Name of X	Formula of X	Net charge (at pH 7)
Phosphatidic acid	-	— Н	- 1
Phosphatidylethanolamine	Ethanolamine	- CH2-CH2-NH3	0
Phosphatidylcholine	Choline	- CH ₂ -CH ₂ -N(CH ₃) ₃	0
Phosphatidylserine	Serine	-CH2-CH-NH3	- 1
Phosphatidylglycerol	Glycerol	- CH2-CH-CH2-OH	- 1
Phosphatidylinositol 4,5-bisphosphate	myo-Inositol 4,5- bisphosphate	H O (P) H O H H H H H H H H H H H H H H H H H H	- 4
Cardiolipin	Phosphatidyl- glycerol		- 2
		ĊH—O—Ċ—R ¹ 0 CH ₂ —O—C—R ²	

Which properties are characteristic of glycerophospholipids? *(multiple answers)*

- a) They can contain two different fatty acids.
- b) They contain a polar group such as serine.
- c) They can be positively charged.
- d) They are saponifiable.
- e) They are amphipathic.

Which properties are characteristic of glycerophospholipids?

- a) They can contain two different fatty acids.
- b) They contain a polar group such as serine.
- c) They can be positively charged.
- d) They are saponifiable.
- e) They are amphipathic.

structure)

Name of sphingolipid	Name of X	Formula of X
Ceramide		— н
Sphingomyelin	Phosphocholine	
Neutral glycolipids Glucosylcerebroside	Glucose	
Lactosylceramide (a globoside)	Di-, tri-, or tetrasaccharide	- Glc - Gal
Ganglioside GM2	Complex oligosaccharide	Glc Gal GalNAc

Which properties are characteristic of sphingolipids? *(multiple answers)*

- a) All sphingolipids contain an amino alcohol.
- b) All sphingolipids contain phosphate.
- c) All sphingolipids contain a fatty acid.
- d) All sphingolipids contain a carbohydrate.
- e) All sphingolipids are amphipathic.
- f) All sphingolipids are saponifiable.

Which properties are characteristic of sphingolipids?

- a) All sphingolipids contain an amino alcohol.
- b) All sphingolipids contain phosphate.
- c) All sphingolipids contain a fatty acid.
- d) All sphingolipids contain a carbohydrate.
- e) All sphingolipids are amphipathic.
- f) All sphingolipids are saponifiable.

CH_3 | $CH_2 = C - CH = CH_2$

(**a**) Vitamin E: an antioxidant

(b) Vitamin K₁: a blood-clotting cofactor (phylloquinone)

Which characteristics <u>can</u> be found in <u>steroids</u>, terpenes, or <u>eicosanoids</u>?

- a) They contain ring structures.
- b) They contain a carboxyl group.
- c) They contain isoprene.
- d) They are entirely hydrocarbon.
- e) They are formed from a fatty acid.
- f) They contain a hydroxyl group.

Answer

Which characteristics <u>can</u> be found in <u>steroids</u>, terpenes, or <u>eicosanoids</u>?

- a) They contain ring structures. *all*
- b) They contain a carboxyl group. eicosanoids
- c) They contain isoprene. terpenes, steroids
- d) They are entirely hydrocarbon. *terpenes*
- e) They are formed from a fatty acid. *eicosanoids*
- f) They contain a hydroxyl group. all

TABLE 11-1 Major Components of Plasma Membranes in Various Organisms

	Protein	Phospholipid	Sterol	Sterol type	Other lipids	
Human myelin sheath	30	30	19	Cholesterol	Galactolipids, plasmalogens	
Mouse liver	45	27	25	Cholesterol		
Maize leaf	47	26	7	Sitosterol	Galactolipids	
Yeast	52	7	4	Ergosterol	Triacylglycerols, steryl esters	
Paramecium (ciliated protist)	56	40	4	Stigmasterol	-	
E. coli	75	25	0			

Components (% by weight)

Note: Values do not add up to 100% in every case, because there are components other than protein, phospholipids, and sterol; plants, for example, have high levels of glycolipids.

(b) Bilayer

Individual units are cylindrical (cross section of head equals that of side chain)

Pe Membrane me phospholipid pho	Distribution in membrane		
	100	Inner Outer monolayer monolayer 0 100	
Phosphatidyl- ethanolamine	30		
Phosphatidylcholine	27		
Sphingomyelin	23		
Phosphatidylserine	15		
Phosphatidylinositol]		
Phosphatidylinositol 4-phosphate	5		
Phosphatidylinositol 4,5-bisphosphate			
Phosphatidic acid	J		

Which properties are characteristic of membrane lipids? *(multiple answers)*

- a) The polar heads are on the membrane surfaces.
- b) Types of lipids include triglycerides and sterols.
- c) The two sides of the membrane are identical.
- d) A lipid molecule can diffuse laterally.
- e) A lipid molecule can flip from one side to the other.

Answer

Which properties are characteristic of membrane lipids?

- a) The polar heads are on the membrane surfaces.
- b) Types of lipids include triglycerides and sterols.
- c) The two sides of the membrane are identical.
- d) A lipid molecule can diffuse laterally.
- e) A lipid molecule can flip from one side to the other.

Glycosyl phosphatidyl inositol (GPI) anchor

Which properties are characteristic of integral membrane proteins? *(multiple answers)*

- a) They contain a large number of hydrophobic R-groups.
- b) They are bound loosely to the membrane surface.
- c) They are covalently linked to fatty acids.
- d) They contain α -helices that cross the membrane.
- e) They are symmetrically oriented in the membrane.

Answer

Which properties are characteristic of integral membrane proteins?

- a) They contain a large number of hydrophobic R-groups.
- b) They are bound loosely to the membrane surface.
- c) They are covalently linked to fatty acids.
- d) They contain α -helices that cross the membrane.
- e) They are symmetrically oriented in the membrane.

Unesterified cholesterol
Phospholipid
Cholesteryl ester
Apoprotein B-100

Garrett/Grisham, Biochemistry with a Human Focus Table 12.2

Lipoprotein Class	Density (g/mL)	Diameter (nm)	Composition (% dry weight)			
			Protein	Cholesterol	Phospho- lipid	Triacyl- glycerol
HDL	1.063-1.21	5-15	33	30	29	8
LDL	1.019-1.063	18-28	25	50	21	4
IDL	1.006-1.019	25-50	18	29	22	31
VLDL	0.95-1.006	30-80	10	22	18	50
Chylomicrons	< 0.95	100-500	1-2	8	7	84

Table 12.2 Composition and Properties of Human Lipoprotein

Adapted from Brown, M., and Goldstein, J., 1987. Chapter 315: The hyperlipoproteinemias and other disorders of lipid metabolism. In Braunwald, E., et al., eds., *Harrison's Principles of Internal Medicine*, 11th ed. New York: McGraw-Hill; and Vance, D., and Vance, J., eds., 1985. *Biochemistry of Lipids and Membranes*. Menlo Park, Calif.: Benjamin Cummings.

Harcourt, Inc. items and derived items copyright @ 2002 by Harcourt, Inc.

Chylomicrons (50-200 nm diameter)

VLDL (28-70 nm diameter)

LDL (20-25 nm diameter)

HDL (8-11 nm diameter)