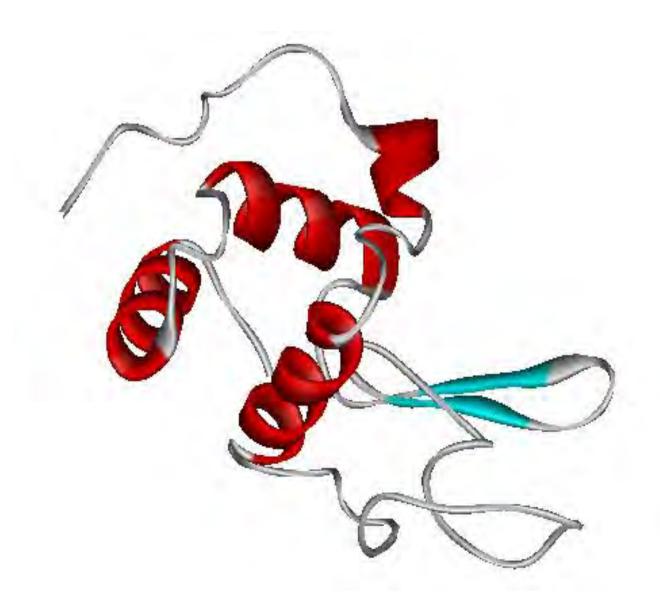


BIOCHEMISTRY REVIEW

Overview of Biomolecules


Chapter 4
Protein Sequence

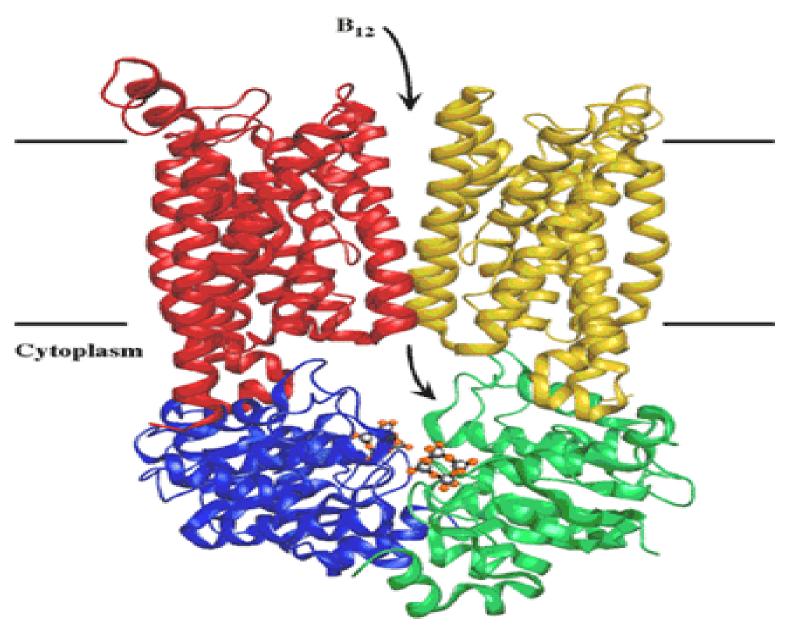


TABLE 3–2 Molecular Data on Some Proteins

	Molecular weight	Number of residues	Number of polypeptide chains
Cytochrome c (human)	13,000	104	1
Ribonuclease A (bovine pancreas)	13,700	124	1
Lysozyme (chicken egg white)	13,930	129	1
Myoglobin (equine heart)	16,890	153	1
Chymotrypsin (bovine pancreas)	21,600	241	3
Chymotrypsinogen (bovine)	22,000	245	1
Hemoglobin (human)	64,500	574	4
Serum albumin (human)	68,500	609	1
Hexokinase (yeast)	102,000	972	2
RNA polymerase (E. coli)	450,000	4,158	5
Apolipoprotein B (human)	513,000	4,536	1
Glutamine synthetase (E. coli)	619,000	5,628	12
Titin (human)	2,993,000	26,926	1

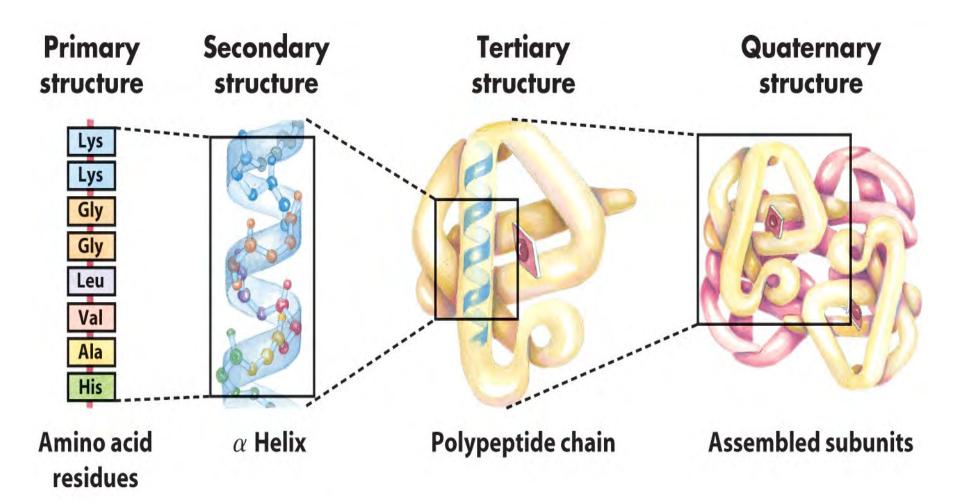
A molecule of hemoglobin is compared with a molecule of lysozyme. Which characteristics do they share? (multiple answers)

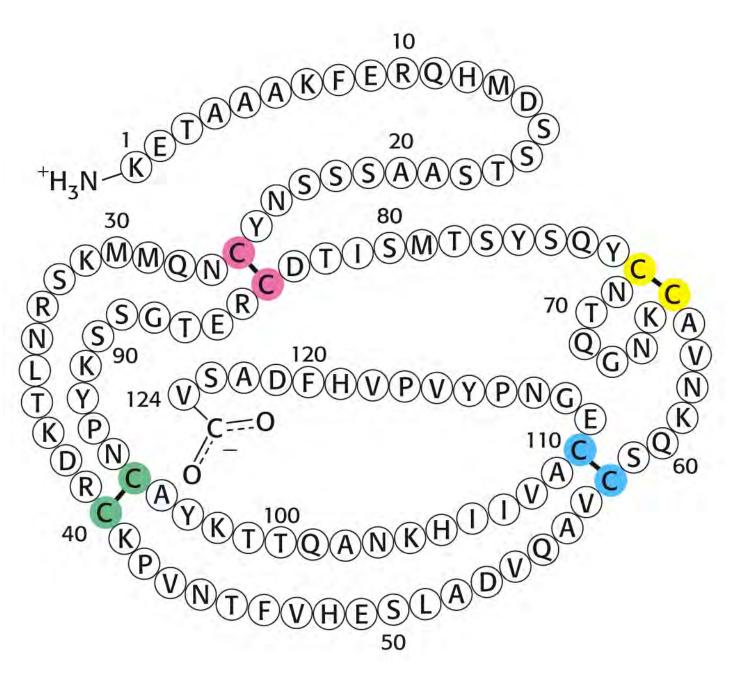
- a) Both contain the same number of subunits.
- b) Both contain the common amino acids.
- c) Both have the same molecular weight.
- d) Both contain the same type of peptide bonds.
- e) Both have the same number of pKa values.

Answer

A molecule of hemoglobin is compared with a molecule of lysozyme. Which characteristics do they share?

- a) Both contain the same number of subunits.
- b) Both contain the common amino acids.
- c) Both have the same molecular weight.
- d) Both contain the same type of peptide bonds.
- e) Both have the same number of pKa values.




TABLE 3-4 Conjugated Proteins

Class	Prosthetic group	Example
Lipoproteins	Lipids	eta_1 -Lipoprotein of blood
Glycoproteins	Carbohydrates	Immunoglobulin G
Phosphoproteins	Phosphate groups	Casein of milk
Hemoproteins	Heme (iron porphyrin)	Hemoglobin
Flavoproteins	Flavin nucleotides	Succinate dehydrogenase
Metalloproteins	Iron	Ferritin
	Zinc	Alcohol dehydrogenase
	Calcium	Calmodulin
	Molybdenum	Dinitrogenase
	Copper	Plastocyanin

PROTEIN FUNCTIONS

- ENZYMES/CATALYSIS
- TRANSPORT
- STORAGE
- MOTILITY
- STRUCTURE
- DEFENSE
- REGULATION

Peptide A and Peptide B are two different peptides, and molecules of both peptides are compared. Which characteristics can they share? (multiple answers)

- a) Both peptides could have Thr as the N terminal.
- b) Both peptides could contain a total of 18 amino acids.
- c) Both peptides could contain 3 Gly and 2 Asn.
- d) Both peptides could have the sequence ACDGMFPTHLS.

Answer

Peptide A and Peptide B are two different peptides, and molecules of both peptides are compared. Which characteristics can they share?

- a) Both peptides could have Thr as the N terminal.
- b) Both peptides could contain a total of 18 amino acids.
- c) Both peptides could contain 3 Gly and 2 Asn.
- d) Both peptides could have the sequence ACDGMFPTHLS.

TABLE 3-3 Amino Acid Composition of Two Proteins

Number of residues per molecule of protein*

Amino acid	Bovine cytochrome c	Bovine chymotrypsinogen
Ala	6	22
Arg	2	4
Asn	2 5	15
Asp	3	8
Cys	2	10
Gln	3	10
Glu	9	5
Gly	14	23
His	3	2
lle	6	10
Leu	6	19
Lys	18	14
Met	2	2
Phe	4	6
Pro	4	9
Ser	1	28
Thr	8	23
Trp	1	8
Tyr	4	4
Val	3	23
Total	104	245

*In some common analyses, such as acid hydrolysis, Asp and Asn are not readily distinguished from each other and are together designated Asx (or B). Similarly, when Glu and Gln cannot be distinguished, they are together designated Glx (or Z). In addition, Trp is destroyed. Additional procedures must be employed to obtain an accurate assessment of complete amino acid content.

AMINO ACID COMPOSITION

ACID HYDROLYSIS – Trp, Ser, Thr, Tyr?

• BASE HYDROLYSIS – Cys, Ser, Thr, Arg?

• ENZYMATIC HYDROLYSIS – Complete?

N-TERMINAL ANALYSIS

SANGER REAGENT

• DANSYL CHLORIDE

C-TERMINAL ANALYSIS

• LITHIUM BOROHYDRIDE

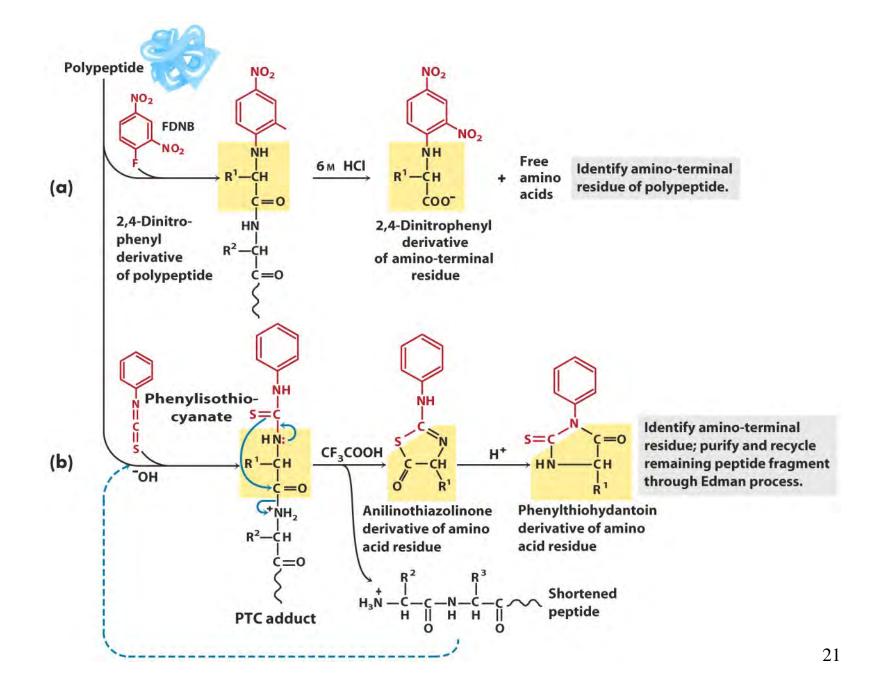
HYDRAZINE

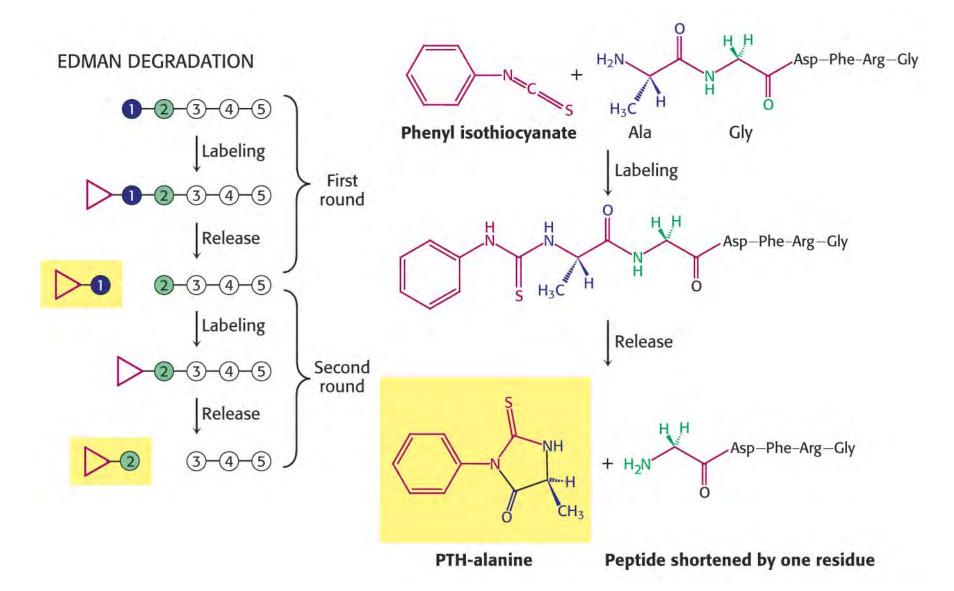
CARBOXYPEPTIDASE

Carboxypeptidase A Method

Which of the following reagents would react only with Ala in the peptide Gly – Met – Phe – Ala?

- a) carboxypeptidase
- b) strong acid
- c) ninhydrin
- d) lithium borohydride
- e) fluorodinitrobenzene





Answer

Which of the following reagents would react only with Ala in the peptide Gly – Met – Phe – Ala?

- a) carboxypeptidase
- b) strong acid
- c) ninhydrin
- d) lithium borohydride
- e) fluorodinitrobenzene

Compare dansyl chloride and phenylisothiocyanate. Which properties do they share? (multiple answers)

- a) Both react with the N terminal amino acid.
- b) Both need strong acid to release the modified amino acid.
- c) Both form products containing the amino acid R group.
- d) Both produce a weakened peptide bond.
- e) Both can be used to identify the second amino acid in a protein.

Answer

Compare dansyl chloride and phenylisothiocyanate. Which properties do they share?

- a) Both react with the N terminal amino acid.
- b) Both need strong acid to release the modified amino acid.
- c) Both form products containing the amino acid R group.
- d) Both produce a weakened peptide bond.
- e) Both can be used to identify the second amino acid in a protein.

SPECIFIC VS. RANDOM CLEAVAGE

SPECIFIC CLEAVAGE:	S	PE	CIF	TC	CI	EA	VA	GE:
---------------------------	---	----	-----	----	----	----	----	-----

	/	
/	/	

RANDOM CLEAVAGE:

/	
/	/
/	/

TABLE 3–7 The Specificity of Some Common Methods for Fragmenting Polypeptide Chains

Reagent (biological source)*	Cleavage points†	
Trypsin (bovine pancreas)	Lys, Arg (C)	
Submaxillarus protease (mouse submaxillary gland)	Arg (C)	
Chymotrypsin (bovine pancreas)	Phe, Trp, Tyr (C)	
Staphylococcus aureus V8 protease (bacterium S. aureus)	Asp, Glu (C)	
Asp-N-protease (bacterium Pseudomonas fragi)	Asp, Glu (N)	
Pepsin (porcine stomach)	Phe, Trp, Tyr (N)	
Endoproteinase Lys C (bacterium <i>Lysobacter</i> <i>enzymogenes</i>)	Lys (C)	
Cyanogen bromide	Met (C)	

^{*}All reagents except cyanogen bromide are proteases. All are available from commercial sources.

[†]Residues furnishing the primary recognition point for the protease or reagent; peptide bond cleavage occurs on either the carbonyl (C) or the amino (N) side of the indicated amino acid residues.

TABLE 4.3 Specific cleavage of polypeptides

Reagent	Cleavage site	
Chemical cleavage		
Cyanogen bromide	Carboxyl side of methionine residues	
O-Iodosobenzoate	Carboxyl side of tryptophan residues	
Hydroxylamine	Asparagine-glycine bonds	
2-Nitro-5-thiocyanobenzoate	Amino side of cysteine residues	
Enzymatic cleavage		
Trypsin	Carboxyl side of lysine and arginine residues	
Clostripain	Carboxyl side of arginine residues	
Staphylococcal protease Carboxyl side of aspartate and glutamate residues (glutamate under certain conditions)		
Thrombin	Carboxyl side of arginine	
Chymotrypsin	Carboxyl side of tyrosine, tryptoph phenylalanine, leucine, and methionine	
Carboxypeptidase A	Amino side of C-terminal amino acid (not arginine, lysine, or proline)	

Which of the following reagents will cleave this peptide into two fragments?

Ser - Trp - Met - Trp - Leu - Thr - Ile- Gln - Ala

- a) trypsin
- b) chymotrypsin
- c) cyanogen bromide
- d) V8 protease

Answer

Which of the following reagents will cleave this peptide into two fragments?

Ser - Trp - Met - Trp - Leu - Thr - Ile- Gln - Ala

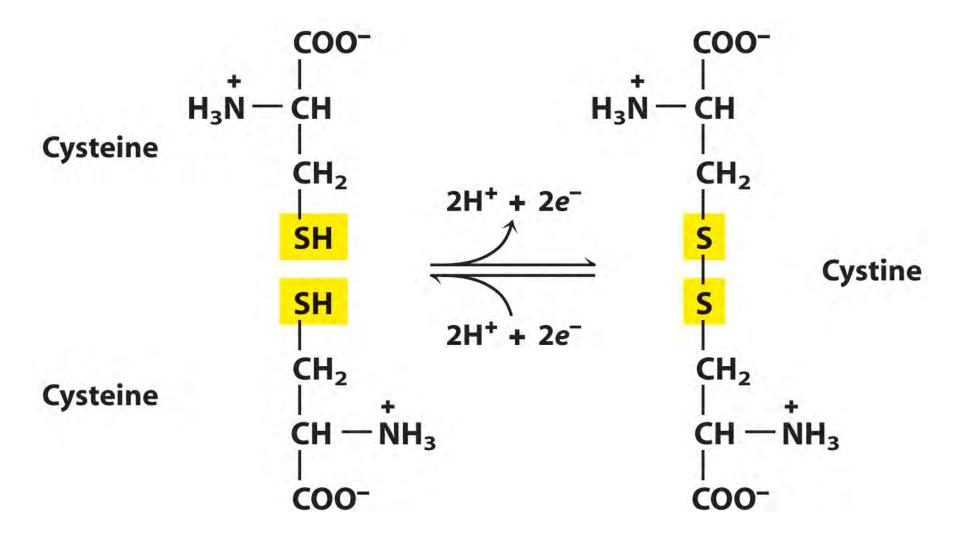
- a) trypsin
- b) chymotrypsin
- c) cyanogen bromide
- d) V8 protease

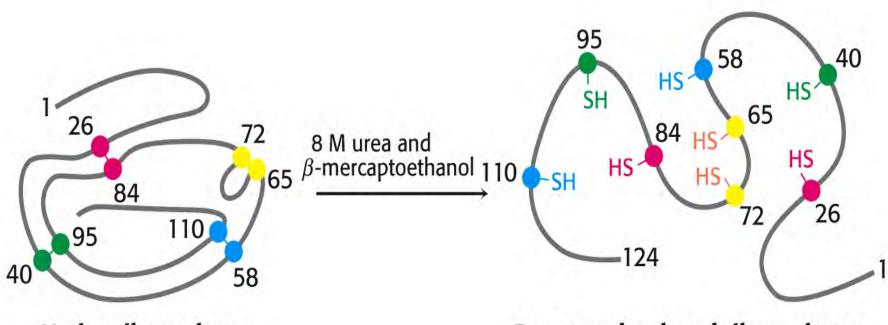
Which of the following reagents will cleave this peptide into two fragments?

Gly - Met - Asp - Phe - Lys - Tyr - Met - Glu - Arg

- a) trypsin
- b) chymotrypsin
- c) cyanogen bromide
- d) V8 protease

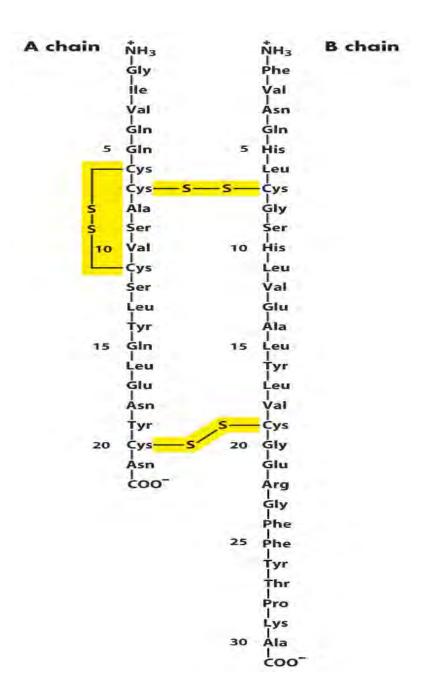



Answer


Which of the following reagents will cleave this peptide into two fragments?

Gly - Met - Asp - Phe - Lys - Tyr - Met - Glu - Arg

- a) trypsin
- b) chymotrypsin
- c) cyanogen bromide
- d) V8 protease



Native ribonuclease

Denatured reduced ribonuclease

Which is a property of this peptide?

- a) It contains two disulfide bonds.
- b) Chymotrypsin will cleave it into two fragments.
- c) Trypsin will cleave it into two fragments.
- d) Mercaptoethanol will cleave it into two fragments.

Answer

Which is a property of this peptide?

- a) It contains two disulfide bonds.
- b) Chymotrypsin will cleave it into two fragments.
- c) Trypsin will cleave it into two fragments.
- d) Mercaptoethanol will cleave it into two fragments.