

BIOCHEMISTRY REVIEW

Overview of Biomolecules

Chapter 12

Transcription

101999 Addison Wesley Longman, Inc.

Formation of messenger RNA from a DNA template strand. The strand in blue, the 3'-5' strand is the template strand. The RNA polymerase transcribes the information in this strand. During this transcription, A becomes U, T becomes A, G becomes C and C becomes G.

Which are general characteristics of transcription? *(multiple answers)*

- a) An entire DNA molecule is transcribed at one time.
- b) A DNA double-helix is denatured to create a template.
- c) Base-pairs that can form include $G \equiv C$ and A = U.
- d) The RNA strand made is complementary to a DNA strand.
- e) Monocistronic mRNA consists entirely of coding regions.
- f) Polycistronic mRNA contains non-coding spacers.

Which are general characteristics of transcription?

- a) An entire DNA molecule is transcribed at one time.
- b) A DNA double-helix is denatured to create a template.
- c) Base-pairs that can form include G≡C and A=U.
- d) The RNA strand made is complementary to a DNA strand.
- e) Monocistronic mRNA consists entirely of coding regions.
- f) Polycistronic mRNA contains non-coding spacers.

Copyright 1999 John Wiley and Sons, Inc. All rights reserved.

6.1 TRANSCRIPTION: THE PRINCIPLE

Subunit	Gene	Number	Mass (kd)
α	rpoA	2	37
β	rpoB	1	151
β′	rpoC	1	155
σ^{70}	rpoD	1	70

β

Core enzyme

Subunit

THE CELL, Fourth Edition, Figure 7.1 © 2000 ASM Press and Sinauer Associates, Inc.

σ

Which are characteristics of <u>E. coli</u> RNA polymerase? (multiple answers)

- a) It is a multimeric protein that forms a holoenzyme.
- b) It uses ribonucleoside triphosphates as substrates.
- c) It can copy either DNA strand in a gene.
- d) It polymerizes in the $3' \rightarrow 5'$ direction.
- e) It has helicase activity.
- f) It has proof-reading activity.

Which are characteristics of <u>E. coli</u> RNA polymerase?

- a) It is a multimeric protein that forms a holoenzyme.
- b) It uses ribonucleoside triphosphates as substrates.
- c) It can copy either DNA strand in a gene.
- d) It polymerizes in the $3' \rightarrow 5'$ direction.
- e) It has helicase activity.
- f) It has proof-reading activity.

Transcription starts here -105' 3' CGTATGTTGTGTGGA (A) **(B)** GCTATGGTTATTCA (C) G T T A A C T A G T A C G C A G T G A T A C T G A G C A C A (D) GTTTTCATGCCTCCA **(E)** ТАТААТ 15

(a) Strong E.coli promoters

(b) Consensus sequences of a⁷⁰ promoters

Which are properties of <u>E. coli</u> promoters? *(multiple answers)*

- a) All promoters have the same base sequence.
- b) The -10 sequence is A=T rich.
- c) The -35 sequence is where transcription starts.
- d) Promoters are recognized by the σ subunit.
- e) Promoters are located downstream of the gene.

Which are properties of <u>E. coli</u> promoters?

- a) All promoters have the same base sequence.
- b) The -10 sequence is A=T rich.
- c) The -35 sequence is where transcription starts.
- d) Promoters are recognized by the σ subunit.
- e) Promoters are located downstream of the gene.

$$-U-A-A-U-C-C-C-A-C-A$$

6.10 TERMINATION OF TRANSCRIPTION

(a) Rho binds to transcript at rho loading site and pursues polymerase.

(b) Hairpin forms; polymerase pauses; rho catches up.

Which events occur during transcription in <u>E. coli</u>? *(multiple answers)*

- a) RNA polymerase denatures a small area of DNA.
- b) RNA polymerase makes phosphodiester bonds.
- c) The mRNA forms hydrogen bonds with the DNA.
- d) Termination of transcription uses a hairpin structure.
- e) The rho protein is a type of RNA polymerase.

Which events occur during transcription in E. coli?

- a) RNA polymerase denatures a small area of DNA.
- b) RNA polymerase makes phosphodiester bonds.
- c) The mRNA forms hydrogen bonds with the DNA.
- d) Termination of transcription uses a hairpin structure.
- e) The rho protein is a type of RNA polymerase.

Type	Location	Cellular transcripts	Effects of α-amanitin
Ι	Nucleolus	18S, 5.8S, and 28S rRNA	Insensitive
II	Nucleoplasm	mRNA precursors and snRNA	Strongly inhibited
III	Nucleoplasm	tRNA and 5S rRNA	Inhibited by high concentrations

5' T_{82} A_{97} T_{93} A_{85} A_{63} A_{88} A_{50} 3' **TATA box**

5' G G N C A A T C T 3' CAAT box

5' G G G C G G 3' GC box

	Promo	ter 🔸	Initiator	·	odons	
DNA codin	a strand			1 2	3 4	5
5′	ССААТ	ТА ТААТ		ATG CGA	CTT A	ST TTC -
scale DNA transc	-75 ribed strand	-25	0	+30		+45
3'	<i>G</i> GTTA	AT A TTA		TAC GCI	GAA U	CA AAG -
m-RNA]	5'		AUG CG	A CUU A	
Protein				met- arc	a- leu- se	r – phe-

Fig. 4.4 The promoter sequence is the site of attachment of RNA polymerase to start transcribing the gene. The **CAT** box and **TATA** box are situated approximately -75 bases and -25 bases respectively upstream of the initiator region. Transcription begins at the initiator sequence AUG. Translation begins at the first codon AUG.

Processing of rRNA and tRNA

In eucaryotes and procaryotes, rRNAs are synthesized as a long precursor, and further cleaved to generate mature transcripts.

Which are characteristics of RNA processing in <u>E. coli</u>? *(multiple answers)*

- a) mRNAs are extensively modified.
- b) rRNAs do not require processing.
- c) tRNAs undergo modification of bases.
- d) RNA transcripts are cut by specific nucleases.
- e) RNA processing is carried out by transcription factors.

Which are characteristics of RNA processing in <u>E. coli</u>?

- a) mRNAs are extensively modified.
- b) rRNAs do not require processing.
- c) tRNAs undergo modification of bases.
- d) RNA transcripts are cut by specific nucleases.
- e) RNA processing is carried out by transcription factors.

Which are characteristics of mRNA processing in eukaryotes? *(multiple answers)*

- a) mRNA is processed to produce hnRNA.
- b) The 5'- end is modified with a methylguanosine nucleotide.
- c) The 3'- end is modified with a sequence of adenosine nucleotides.
- d) Introns are cut out of the gene and joined together.
- e) Exons from adjacent genes are spliced together.

Which are characteristics of mRNA processing in eukaryotes?

- a) mRNA is processed to produce hnRNA.
- b) The 5'- end is modified with a methylguanosine nucleotide.
- c) The 3'- end is modified with a sequence of adenosine nucleotides.
- d) Introns are cut out of the gene and joined together.
- e) Exons from adjacent genes are spliced together.

	Size of snRNA	1210
snRNP	(nucleotides)	Role
U1	165	Binds the 5' splice site and then the 3' splice site
U2	185	Binds the branch site and forms part of the catalytic center
U5	116	Binds the 5' splice site
U4	145	Masks the catalytic activity of U6
U6	106	Catalyzes splicing

Introns

Туре	Mechanism	Occurence
Pre-mRNA	spliceosome	eukaryotic nucleus-mRNA
Group I	Self-splicing G-cofactor	lower eukaryotic rRNA, a few rRNA and tRNAs in fungi and plant mitochondria and chloroplasts
Group II	Self-splicing	a few structral, tRNA and rRNA in fungi and plant mitochondria and chloroplasts

Group I self-splicing intron sequences

Group II self-splicing intron sequences

Which are characteristics of RNA splicing? *(multiple answers)*

- a) All introns are removed by the same mechanism.
- b) All genes have the same number of introns.
- c) Each pre-mRNA can be processed in only one way.
- d) snRNAs can bind to splice sites and branch sites.
- e) Lariat structures can form during splicing.
- f) RNA can act as an enzyme during splicing.

Which are characteristics of RNA splicing?

- a) All introns are removed by the same mechanism.
- b) All genes have the same number of introns.
- c) Each pre-mRNA can be processed in only one way.
- d) snRNAs can bind to splice sites and branch sites.
- e) Lariat structures can form during splicing.
- f) RNA can act as an enzyme during splicing.

