TATI	NEW/CHANGE PROGRAM REQUEST				Approval
	Graduate Programs			_	proval
FLORIDA	dradate i rograms			Banner	· Posted
FLORIDA ATLANTIC	Department			Catalog	5
UNIVERSITY	College Engineering and Computer Science				
Program Name		New Prog	ram		ive Date
				(TERM 8	& YEAR)
		Change Pi	rogram		Summer 2025
Please explain	the requested change(s) and offer ra	tionale below	or on an	attach	ment
Faculty Contact/	Fmail/Phone	Consult and li	st danartm	onts the	nt may be affected by
	andar Lashaki, Graduate Program Dire	the change(s)			at may be affected by entation
Approved by	14 . 1/4			Date	1/15/2025
Department Chair	Haikdva				1/15/2025
College Curriculum Chair Francisco Presuel-Moreno					1/21/2025
College Dean Raquel Assis					1/21/2025
UGPC Chair Safer					03/14/2025
UGC Chair Lafter					03/14/2025
Graduate College Dean About Without					03/15/2025
UFS President					
Provost					

Email this form and attachments to UGPC@fau.edu one week before the UGPC meeting so that materials may be viewed on the UGPC website prior to the meeting.

ARTIFICIAL INTELLIGENCE

MASTER OF SCIENCE (M.S.)

The Master of Science (M.S.) with Major in Artificial Intelligence provides a comprehensive curriculum, consisting of foundation and theory of artificial intelligence and elements of computer vision, data analytics and algorithms, knowledge management and reasoning, machine learning and applications. Both thesis and non-thesis options of the M.S. in Artificial Intelligence require a minimum of 30 credits. The thesis option consists of a minimum of 24 coursework credits and 6 thesis credits.

With approval of the advisor, substitution can sometimes be made among similar courses. See the Department of Electrical and Computer Science website for updates.

Admission Requirements

Applicants for admission to the master's program are approved by the University upon the recommendation of the department. All applicants must submit with their applications the official transcripts from previous institutions attended. Applications for admission are evaluated on an individual basis. At a minimum, applicants are expected to meet the following requirements.

- 1. Have obtained a bachelor's degree from an accredited institution. Students are expected to have taken Calculus 1 or Methods of Calculus and a statistics course, to be proficient in programming, and to be knowledgeable in data structures and algorithm analysis. Students can gain this knowledge through undergraduate classes or learn it through work experience. The admissions committee will evaluate the application holistically to determine applicant suitability using several factors, such as academic performance, GPA, background and experience. The admission committee may assign remedial courses on a case-by-case basis. In some cases, prerequisite courses may be taken after admission to the graduate program.
- 2. At least a 3.0 (of a 4.0 maximum) GPA in the last 60 credits attempted prior to graduation; and
- 3. International students from non-English-speaking countries must be proficient in written and spoken English as evidenced by a score of at least 500 (paper-based test) or 213 (computer-based test) or 79 (Internet-based test) on the Test of English as a Foreign Language (TOEFL) or a score of at least 6.0 on the International English Language Testing System (IELTS).

Submission of Plan of Study

Students are required to submit a Plan of Study when they have completed between 9 and 15 credits of coursework with a minimum cumulative GPA of 3.0. All courses must be approved by the student's advisor. A student may not register for thesis credits prior to submitting a Plan of Study.

Degree Requirements

The M.S. in Artificial Intelligence program offers both thesis and non-thesis options. Both options require a minimum of 30 credits, as specified in the table.

Students must satisfy all of the University graduate requirements. In addition, the following requirements must be met. The coursework credits must satisfy the following constraints:

- 1. No more than 3 credits of directed independent study may be taken.
- 2. No course can be counted toward the degree that is more than 10 years old at the time the degree is awarded.
- 3. At least one-half of the credits must be at the 6000 level or above.
- 4. The student must have a GPA of 3.0 (out of 4.0) or better.
- 5. All courses in the degree program must be completed with a grade of "C" or better.

Transfer Credits

Any transfer credits toward the requirements for an M.S. in Artificial Intelligence must be approved by the department Department, the College and the University. The transfer credits must correspond to equivalent requirements and performance levels expected for the degree. Normally no more than 6 credits of coursework (that have not been applied to a degree) can be transferred from another institution.

the following three courses.	he <u>five</u> c ore <u>c</u> Courses.	
Computational Foundations of Artificial Intelligence	CAP 5625	3
Artificial Intelligence	CAP 6635	3
Data Mining and Machine Learning	CAP 6673	
Deep Learning	CAP 6619	3
Reinforcement Learning	CAP 6649	3
One of the following courses:		
Computer Vision	CAP 6415	3 or
Machine Learning for Computer Vision	CAP 6618	3 or
Natural Language Processing	CAP 6640	3

In addition to the <u>c</u>Core <u>c</u>Courses and the <u>t</u>Thesis credits, students complete <u>six three Electrical Engineering</u> <u>and Computer Science</u> elective courses (<u>189</u> credits) with the following constraints: <u>Two Al</u> <u>electives. Mm</u>inimum of 3 credits of 6000-level courses and maximum of 3 credits of Directed Independent Study, COT 6900 or COT 6905.

CAP 6974

6

Non-Thesis Option (30 credits)

multiple terms)

Master's Thesis - Artificial Intelligence (may be taken over

In addition to the <u>c</u>Core <u>c</u>Courses, students complete <u>eightfive Electrical Engineering and Computer</u> <u>Science</u> elective courses (<u>1524</u> credits) with the following constraints: <u>Four AI electives. Mm</u>inimum of <u>69</u> credits of 6000-level courses and maximum of 3 credits of Directed Independent Study, COT 6900 or COT 6905.

Al Electives	
Select 12 credits for Non Thesis option and 6 credits for Thes	sis option.
Computer Vision	
Foundations of Vision	CAP 6411
Computer Vision	CAP 6415
Machine Learning for Computer Vision	CAP 6618
Visual Information Retrieval	COP 6728
Data Analytics and Algorithms	
Computational Foundations of Artificial Intelligence	CAP 5625
Introduction to Data Science	CAP 5768
Social Networks and Big Data Analytics	CAP 6315
Data Mining for Bioinformatics	CAP 6546
Artificial Intelligence	CAP 6635
Computer Performance Modeling	CEN 6405
Analysis of Algorithms	COT 6405
Randomized Algorithms	COT 6446 -
Knowledge Management and Reasoning	
Natural Language Processing	CAP 6640
Information Retrieval	CAP 6776
Web Mining	CAP 6777
Semantic Web Programming	COP 5859
Machine Learning	
Introduction to Neural Networks	CAP 5615
Evolutionary Computing	CAP 6512
Sparse Learning	CAP 6617
Deep Learning	CAP 6619
Reinforcement Learning	CAP 6629
Data Mining and Machine Learning	CAP 6673
Advanced Data Mining and Machine Learning	CAP 6778
Applications	
Artificial Intelligence in Medicine and Healthcare	CAP 6683
Computational Advertising and Real Time Data Analytics	CAP 6807
Robotic Applications	EEL 5661

EECS Electives: Select four courses from the graduate courses offered by the EECS department. Course substitution is allowed with the prior approval of the advisor.