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EXCUTIVE SUMMARY 

The project starts from a literature review of the topics from these aspects:  the studies of emission 
models, the eco-driving applications for heavy-duty vehicles (Trucks), Eco-driving and signal 
control, the benefits from CAVs and Simulation using MOVES and VISSIM. The research on 
Multiclass/heterogeneous traffic modeling is also reviewed. To define the problem, the research 
starts with the analysis of the influence the truck percentage has on the individual signalized 
intersection and on a coordinated signal corridor. The simulation results show the high percentage 
of heavy-duty vehicles in traffic may significantly degrade the signal control based on the concept 
of delay optimization mainly considering passenger cars. To solve the problem, an eco-driving 
strategy for freight mobility control at signalized intersections is introduced. It is by optimizing 
the travel time while maintaining optimal fuel consumptions and emissions. A two-level dynamic 
optimization is formulated. An emission weighted optimization is used to simulate vehicles 
passing the intersection with balanced travel time and emissions savings and compared to a 
baseline simulation without eco-driving consideration. A jerk penalty is added to ensure safety and 
comfort. Heavy-Duty Vehicles (HDVs) are the focus of this modeling effort. The emission term 
in the optimization used an instantaneous speed-acceleration based microscopic fuel consumption 
models and the results were validated by EPA's MOtor Vehicle Emission Simulator (MOVES) 
model. The results from this study showed that the weighting factor of the emission term in the 
objective function reaches an optimal at 0.5. Generally, the proposed method provided dynamic 
trajectories with slightly longer travel time than the baseline but reduce the emission at about 4% 
for Nitrogen oxide (NOx) and 7% for carbon dioxide (CO2) for different initial conditions 
(different distance approaching intersection). Based on the results, an optimal weighting factor of 
emission term and the range of distances to apply the eco-driving strategy are recommended. A 
case study is performed to simulate the recommended model, with varying HDV percentages.  The 
test results showed an overall emission reduction of 6% for NOx and 6% for CO2 according to 
MOVES. To show the relationship between truck percentage and discharge rate, a multiply linear 
regression is conducted, and the results are shown in the appendix. The data in MOVES and the 
emission models used are also presented in the appendix. 
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1.0 INTRODUCTION  

1.1 OVERVIEW 

The transportation sector accounts for 70 percent of the total petroleum consumption and ranks 
second among atmospheric carbon emitters in the United States where on-road traffic emissions 
are responsible for more than 80 percent (Zlatar and Shinn, 2009) (Davis, 2002). Among all 
types of on-road traffic, freight traffic takes a significant share and grows fast, which is mainly 
composed of HDVs (heavy-duty vehicles) and produces large unit emissions. Improving the fuel 
efficiency and reducing the emissions of these freight traffic will lead to significant 
environmental and economic benefits. Options such as alternative fuels, better emit systems, 
vehicle platooning or alternative powertrain (electronic vehicles) have been applied towards this 
goal(Baker et al., 2009). Among all the solutions, eco-driving is a concept to reduce fuel 
consumption and greenhouse gas emissions by changing driving behaviors.  
 
Eco-driving can reduce fuel consumption and greenhouse gas emissions by about 10% on 
average (Ala et al., 2016). Eco-driving can act as a policy or driving assistant equipment on 
existing vehicles. This literature review focuses on the technology aspect. Major causes of high 
emission include frequent accelerations, complete stops, excessing speeds over 60 mph and slow 
movements on a congested road. Therefore, some major real-time driving advice on speed limits, 
acceleration or deceleration, and speed alerts is necessary to reduce traffic oscillations and 
avoiding idling. Geometric properties, vehicle type (car or truck), signal control, and the 
connection of infrastructure are considered in the problem according to specific situations. 
Generally, an Eco-driving strategy can be developed to form freight mobility control by 
maintaining the travel time and optimal fuel consumptions and emissions.  
 
Testing and modeling are two approaches to measure the benefits of fuel consumption and 
emissions. When considering a hypothetical experiment, an emission model is a better choice.  
The emission models are generally divided into inventory and instantaneous models. An 
inventory model concerns the emissions on a macroscopic scale while an instantaneous model 
measures the emission rate on a microscopic level. Some inventory emission models are 
MOBILE, EMFAC, COPERT, DMRB, HBEFA, VERSIT and MOVES. Some instantaneous 
models are CMEM, EMIT, VT-micro, PHEM, VeTESS, EMPA, and P∆P (Park et al., 2016).  
 
The connected and autonomous vehicle (CAV) is one significant and systematic way to achieve 
the goal. Automation itself is an approach to reduce energy use and emissions. Therefore, to 
apply connected vehicle technology is a way to achieve the eco-driving purpose. Although it is 
not the first-stage benefit from connected vehicles, the control strategies of the connected vehicle 
can help to provide an environmentally friendly approach for eco-driving. What is more, with the 
development of connected vehicle technology, the vehicle-to-infrastructure (V-to-I, or V2I) 
communication enables the trucks to get real-time information such as Signal Phase & Timing 
(SPaT) and queuing information, which is important to assist the vehicles to make real-time 
driving decisions, paving ways for effective eco-driving of trucks (Kamalanathsharma and 
Rakha, 2014). All these technology developments show that the eco-driving control strategies 
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specific to assist the heavy-duty vehicles (trucks) are close to reality and the related research 
efforts are necessary.  
 
The goal of the study is to estimate the eco-driving benefits on emissions, specifically for HDVs, 
in a connected vehicle environment at intersections. The research effort starts with the literature 
research of the related topics in this Chapter 1. Then it is followed by analysis and evaluation of 
the influence the significant freight traffic has on signalized intersections (both for individual 
intersection and coordinated corridor) (Chapter 2). Then we develop strategies for eco-driving at 
a single intersection (Chapter 3) and test its performance (Chapter 4). For the methodology, a 
baseline case where the travel time is minimized by using the largest deceleration to arrive to and 
the largest acceleration to leave an intersection. Then a two-level dynamic optimization 
algorithm is introduced to balance the emissions and travel time. APmonitor for nonlinear 
optimization is used as the tool to solve the optimization problems (Hedengren et al., 2014). Not 
only individual optimal trajectories under different situations of emission types are obtained, but 
also their performances to the input parameters are analyzed. Recommendations for the 
parameters and suitable implementation conditions are proposed according to the results, with 
the assumptions of truck penetration rate, and spacing distributions, to produce aggregated level 
results. In the final summary part (Chapter 5), the findings will be concluded and 
recommendations are given accordingly. In the appendix, the relationship between the truck 
percentage and the discharge rate drop over a corridor is shown by multiple linear regression. 

1.2 LITERATURE REVIEW 

1.2.1 Some relative studies 

The benefit of eco-driving, as a driving assistant, has been studied via dynamic programming, 
optimal control, or learning methods. Barth and Kari introduced a dynamic eco-driving by 
adjusting its velocity using a dynamic eco-driving velocity planning algorithm(Barth and 
Boriboonsomsin, 2009; Barth et al., 2011; Kari et al., 2014). The simulation showed a 12% 
improvement in initial fuel economy and CO2 reduction. Speed was considered to make 
dynamical advice using intelligent speed adaptation (ISA). Li tested traffic energy and emission 
reductions at signalized intersections using an alert to decelerate gently(Li et al., 2009). Rakha 
developed a framework to improve the vehicle fuel consumption efficiency by incorporating the 
microscopic fuel consumption models in the optimization function(Rakha and 
Kamalanathsharma, 2011). Mensing found that high acceleration rates with low and constant 
average speeds are important in optimal vehicle operation when doing eco-driving using 
numerical optimization, and fuel efficiency is tested to have an improvement of 34% (Mensing et 
al., 2013). Chen developed an optimization model to determine the optimal speed profile by 
minimizing a linear combination of emissions and travel time. The Motor Vehicle Emissions 
Simulator (MOVES) was used to estimate the emissions (nitrogen oxide)(Chen et al., 2014). 
Jiang developed an optimal control problem to speed profiles to improve fuel efficiency and 
maintaining mobility of traffic flow has been designed for isolated intersection under CAVs 
environment by solving it using Pontryagin’s Minimum Principle(Jiang et al., 2017). The driving 
decisions of heavy-duty vehicles not only have major impacts on the emission but on the 
mobility to a large extent. Since heavy-duty vehicles need extra distance and time for 
deceleration and acceleration, taking twice or even longer compared to conventional vehicles for 
the same distance. This situation is further compounded on signalized arterials where 
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deceleration, stopping, and acceleration is frequent because of traffic signals. However, few 
pieces of research focus specifically on the eco-driving strategies for heavy-duty vehicles on 
signalized corridors.  
 

1.2.2 The studies of emission models 

Some studies were conducted to find the emission given vehicle conditions and status. For 
example, Ahn developed a hybrid regression models to model fuel consumption and emission rates 
for light-duty vehicles and light-duty trucks (Ahn et al., 2002). Panis developed an instantaneous 
traffic emission model considering the acceleration and speed based on empirical measurements 
(Panis et al., 2006). The model is also selected in this project to obtain the instantaneous emission 
rates for heavy-duty vehicles while MOVES is selected to present its macroscopic comparison.  

A comprehensive overview of fuel consumption and emission models are presented in the Figure 
1 from (Wang, 2014). In the table, the fuel consumption and emission models can be categorized 
into a few groups, which include aggregated emission factors, average speed models, traffic 
situation models, traffic variable models, cycle variable models, simple modal models, statistical 
modal models and physical modal models. 

The aggregated emission factors calculate the total emissions based on the total distance, road 
types (e.g. urban, rural and motorway) and vehicle classes (truck or car). The average speed models 
consider the average speed at different traffic conditions. Traffic situation models use traffic states 
such as free flow and congestion to model the emissions. The traffic variable models consider 
quantifiable traffic variables describing traffic conditions instead of traffic states. Cycle variable 
models consider cycle variables to make a calculation, such as average speed, idle time, positive 
kinetic energy, and number of stops. In simple modal models, emission rates are related to specific 
operational modes of vehicles. Statistical modal models calculate instantaneous emission rates 
based on the instantaneous acceleration and speed, and then the modal class is usually divided by 
using regression. Finally, physical modal models apply a physical model calculating the required 
engine load instantaneously (Cappiello et al., 2002; Smit et al., 2010; Wang, 2014). 
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Figure 1: a collection of emission models from Wang, 2014. 
 
1.2.3 Eco-driving for heavy-duty vehicles (Trucks) 

In some research, eco-driving study is one aspect of the impact studies of ADAS (Advanced Driver 
Assistance Systems). in addition to the impact on emission and fuel consumption, the impact on 
traffic flow can also be considered. Several indicators are used to evaluate macroscopic traffic 
operations. The performance indicators for traffic operations can be categorized into three groups: 
efficiency, predictability and smoothness, safety. Capacity, total travel time and delay are the most 
important indicators for the efficiency. Predictability and smoothness are indicated by string and 
flow stability, speed and travel time variations. Safety is usually indicated by the risk of collisions.  

For trucks, infrastructure and terrain variables have more effects than driving behavior variables 
(Walnum and Simonsen, 2015). Driving behavior becomes a more important influencing factor 
under challenging infrastructure conditions. Multivariate regression model is used for analysis and 
independent variables are selected from infrastructure conditions (engine load, use of highest gear, 
average speed), driving behavior (cruise control,), vehicle properties((horsepower), control 
variables (weight load). A predictive eco-driving assistance system (EDAS) is developed to 
simulate driving behavior for heavy vehicles. 6.6 % reduction of fuel consumption is observed by 
using EDAS. (Daun et al., 2013) 

Anticipation distance of trucks determines anticipation of driver behaviors, and there is a potential 
improvement of anticipation without exceeding driver’s acceptance (Thijssen et al., 2014). The 
effects of information of intermittent and continuous visual eco-driving (glance behavior) are 
analyzed for truck eco-drivers, from an aspect of safety (Kircher et al., 2014). 
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Acceleration and hybrid powertrain operation are used in an optimization problem on rolling 
terrain. As a result, 5.0–16.9% fuel consumptions are saved given constant speed with rule-based 
powertrain controller (Hu et al., 2016). An optimal controller is designed to improve fuel efficiency 
for vehicles equipped on rolling terrain without a preceding vehicle. Real-time optimization for 
vehicle dynamics and powertrain operation are obtained on fuel saving. The method can be utilized 
for connected vehicles (Hu et al., 2017). 

Heavy-duty diesel vehicles usually refer to those who are greater than 8500 lb gross and emissions 
of particulate matter (PM) can include oxides of nitrogen (NOx), carbon monoxide (CO), and 
hydrocarbon (HC) (Yanowitz et al., 2000). Heavy-duty diesel (HDD) vehicles have a large portion 
in the contribution to the emissions. In the CMEM framework, there are several HDD truck sub-
models, in which models correspond to different vehicle technology categories. Data are collected 
to calibrate HDD models. The emissions of Carbonyl group from Light-Duty and Heavy-Duty 
Vehicles are compared. (Grosjean et al., 2001) 

EMFAC2014 is a mobile source emission used for the emission perdition. The emissions on major 
freight corridors in California are analyzed and it shows measured values are consist with the 
prediction (Quiros et al., 2016). 

Emission models specific for freight transportation are reviewed and compared (Demir et al., 
2011).These include: 
• An instantaneous fuel consumption model. In the model, vehicle characteristics such as 

mass, energy, efficiency parameters, drags force and some fuel consumption components 
to link with aerodynamic drag and rolling resistance, so as to estimate fuel consumption 
per second.  

• A four-mode elemental fuel consumption model. The model estimates fuel consumption in 
idle, cruise, acceleration and deceleration. Some factors such as initial speed, final speed 
and energy-related parameters are added. 

• A running speed fuel consumption model. The model provides fuel consumption during a 
period when a vehicle is running and is in an idle mode. The model is an extension of the 
instantaneous model and can be viewed as an aggregation of the elemental model. 

• A comprehensive modal emission mode (CMEM). The model has three modules: engine 
power, engine speed and fuel rate. (Barth et al., 2000) 

• Methodology for calculating transportation emissions and energy consumption (MEET). 
The methodology includes estimating functions that are primarily dependent on speed and 
some fixed and parameters for vehicles of weights ranging from 3.5 to 32 tones. Gradient 
is available in the model. 

• Computer programme to calculate emissions from road transportation (COPERT) model. 
The model differentiates between two speed ranges for each vehicle class. Gradient is not 
available in the model. 
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1.2.4 Eco-driving and signal control 

An Eco-Friendly Freight Signal Priority algorithm is proposed to improve traditional traffic signal 
priority by considering the reduction of fuel consumption and travel time at the same time for both 
freight and non-freight traffic. In the algorithm, a multi-agent systems (MAS) based freight signal 
priority algorithm is developed, in which the measures of effectiveness (MOEs) are selected as 
energy, emissions, travel delay, or any combination. The method can decrease the travel time of 
freight vehicles by 26% and improve systemwide fuel economy by 5%-10% (Kari et al., 2014).  

For a single intersection, the traffic state is predicted by mathematical models such as model 
predictive control, and the optimal signal is derived from minimizing a cost index that is function 
of the predicted traffic states. For multiple intersections with traffic delay and emissions, model 
predictive control does not work. Therefore, a co-simulation optimization control approach is used 
to generate the traffic light sequence for priority of trucks (Zhao and Ioannou, 2016). 

The actuated coordination and multi-modal priority control are coordinated by a method fulfilling 
multiple priority requests from different vehicles modes and pedestrians considering the vehicle 
actuation (He et al., 2014). The efficiency of vehicle fuel consumption at a signalized intersection 
has been studied according to signal phase and timing plan to form the most fuel-optimal speed 
profile. The research shows that the formation of the objective function and the utilization of the 
fuel consumption model have great effects on the final results (Rakha and Kamalanathsharma, 
2011). An eco-cruise control (ECC) method is combined with a state-of-the-art car-following 
model to form an eco-drive system. The system has input variables such as topographic 
information, the distances, and desired speeds (Ahn et al., 2013). 

Human-driven vehicles and autonomous vehicles are coordinated to increase traffic throughput by 
considering drivers and intersections as autonomous agents in a multi-agent system (Dresner and 
Stone, 2008). A predictive fuel efficiency driver assistance system environment is developed by 
using signal timing and the vehicle’s power-train. The first step uses dynamic programming to 
compute an optimal time progression within a certain horizon of interest. The intermediate result 
is used in a second step to compute optimal velocity and gear shift guidance for the driver (Guan 
and Frey, 2013). A multi-objective driving profile optimization can optimize the speed profile and 
the selection of gears for heavy-duty vehicles (HDVs) considering elevation, headwind, desired 
terminal time, and traffic information. A parameter region is calibrated for the balance of the fuel 
consumption and travel time (He et al., 2016). A bi-objective optimization model is used to 
determine timing plans coordinating delay and the traffic emissions. A modal emission method is 
combined with the cell transmission model for the analysis of emission rates at different steps. A 
simulation-based generic algorithm is used to provide a solution (Zhang et al., 2013). A model is 
proposed to enhance traffic signal coordination of at intersections during the transition phase 
considering social costs. An ant colony algorithm was utilized (Peñabaena-Niebles et al., 2017). 

 

1.2.5 Benefits from CAVs 

Connected and Automated Vehicles (CAVs) can impact the transportation in three levels. Traffic 
and time cost is in the first stage while energy consumption, pollution, safety, social equity, 
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economy, and public health are thought to be on the second and third-order stage. Market 
penetration rate is a main influence factor when considering the benefits from the increase of 
automation and cooperation (Milakis et al., 2017). Literatures are done on the approaches to 
coordinate CAVs with objectives of congestion mitigation and eco-driving. (Rios-Torres and 
Malikopoulos, 2017) 

Optimizing speed profiles to improve fuel efficiency and maintaining mobility of traffic flow has 
been designed for isolated intersection under CAVs environment. The optimal control problem is 
solved using Pontryagin’s Minimum Principle. Simulation shows that the market penetration rate 
of connected and automated vehicles and v/c ratio benefit the fuel efficiency, CO2 emission and 
throughput ranging from 2% to 58%, 2% to 33% and 10%. The benefit has positive relation with 
the market penetration of CAV until 40% (Jiang et al., 2017).  

For those CAVs equipped with CACC (Cooperative Adaptive Cruise Control), on a single lane, 
energy saving is 19% when the penetration rate of CAVs reaches 100%. On multilane, the saving 
is negative when the rate is less than 30%. Other factors are proved to affect the performance, such 
as length of control segments, the signal phasing and timing plan, and the traffic demand levels. 
(Ala et al., 2016).  

A longitudinal control concept is raised based on the distance between trucks. The concept contains 
a two-layered control structure: A nonlinear acceleration controller in the inner control loop that 
linearizes the nonlinearities while an outer control loop includes a robust platoon controller 
(Gehring and Fritz, 1997). A comprehensive literature review is conducted for truck platooning. 
The fuel consumption will be reduced with the increase of trucks in the platoon, but the throughput 
does not benefit from the increasing of numbers of truck, and too many trucks in a platoon will 
cause congestion. (Bhoopalam et al., 2017). The ACC-equipped vehicles are modelled and 
simulated by Aimsun. Results show that desired time-gap has a negative effect on capacity while 
MPR can improve the capacity when time-gap is smaller than normal vehicles. (Ntousakis et al., 
2015). 

Connected vehicle techniques can smooth the intensity and frequency of stop-and-go waves so as 
to increase the stability of traffic and reduce the emissions and fuel computations. There are ways 
to design a controller for connected vehicles. Take ACC (Autonomous cruise control) system as 
an example, they are: Car-following models, including state feedback algorithms such as Optimal 
Velocity Model (OVM) and Intelligent Driver Model (IDM), Artificial intelligence (AI) 
techniques, rule-based controllers and other methods such as fuzzy logic or self-learning systems. 
Model predictive control (MPC) method can be applied for an ACC or a CACC controller. It is 
called a receding horizon control and it minimizes the deviation from desired gaps. The deviations 
of predecessor speed, accelerations, jerk, and the desired acceleration calculated by Helly model 
are used. (Wang et al., 2016b). Based on MPC, an enhanced string stability strategy is proposed, 
considering the sensor delay and actuator lag (Wang et al., 2016c). 

A rolling horizon control framework for driver assistance systems is developed. In the framework, 
accelerations of equipped vehicles are controlled to optimize a cost function with multiple control 
objectives, based on the predicted behavior of other vehicles. Among the framework, a non-linear 
model predictive ACC controller is developed. It presents a way of solution based on Pontryagins 
Minimum Principle and compare it with solutions using CARE and SQP to a linear quadratic 
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control problem. An iterative algorithm (iPMP) is applied to find the optimal control. An 
application to eco-driving systems controller design is proposed by changing the objective 
function. Since in this context, a microscopic fuel consumption and emission models is favorable. 
The modal fuel consumption model from Akcelik is employed as an example in the experiment. 
The simulation shows that it results in similar fuel consumption in decelerating phase, but 
substantially less fuel consumed in the accelerating phase compared to the ACC controller. (Wang 
et al., 2014a). 

Vehicles with driver assistance systems can share information using V2V communication to 
enhance the reactions to surroundings by employ a multi-anticipative controller by cooperative 
sensing and to achieve a coordinated control by designing a cooperative controller. The controllers 
are then simulated and they are compared with non-cooperative controllers. In the results, 
smoother behaviors are observed in accelerating and decelerating. (Wang et al., 2014b) 

An optimal control using rolling horizon stochastic strategy is proposed. It is based on the constant 
time gap policy, the ACC and CACC are tested in the control strategy under uncertainty. The 
uncertainty here refers to disturbances that can happen in vehicle control systems. Sensor 
measurements are modeled as normal distribution in a state-space formulation. In the process of 
the optimization, the objective function includes terms of control efficiency and of driving comfort, 
in which both are over a predictive horizon to determine the acceleration. In the constrains, 
acceleration or deceleration collision protection is considered (Zhou et al., 2017b). A multi-
objective evolutionary algorithm is developed to achieve a Cooperative Adaptive Cruise Control, 
which is based on evolving neural networks. In the research, a Pareto Strength approach from 
SPEA2 is incorporated into NEAT. The algorithm provides a set of solutions that each embody 
their own priorities of requirements such as speed, comfort or fuel economy (van Willigen et al., 
2013). A multi-objective optimization (MOOP) for CACC is used for automated longitudinal 
control. It considers objectives including mobility, safety, driver comfort, and fuel consumption. 
(Zhong et al., 2017). 

Connected cruise control (CCC) is an acceleration-based system that utilizes acceleration signals 
from multiple vehicles ahead via a vehicle-to-vehicle (V2V) communication. It considers various 
structures that includes both human-driven and CCC vehicles (Jin and Orosz, 2014). A general 
framework of connected cruise control (CCC) is established to allow modular and scalable design 
of heterogenous CV. The process is independent of the external disturbances, applied control 
gains, connectivity structure, and communication delays (Orosz, 2016). The issue about the 
stochastic delays of connected vehicles were studied by considering both the mean and covariance 
dynamics based on a CCC.(Qin et al., 2017) 

A numerical sub-gradient-based algorithm with SH as a subroutine (NG-SH) is used to optimize 
the travel time, a safety measure, and the fuel consumption for traffic on a signalized highway. 
Parsimonious shooting heuristic (SH) method is used to solve classic kinematic wave theory under 
finite accelerations after separating vehicle trajectories into solvable part. In the optimization 
problem, traffic, environment and safety are considered. (Ma et al., 2017; Zhou et al., 2017a). 
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1.2.6 Simulation using MOVES and VISSIM 

VISSIM is a microscopic traffic simulation model while MOVES can estimate second-by-second 
emissions. A software program VIMIS is developed to link VISSIM and MOVES to convert 
VISSIM files into MOVES files and to do analysis on the effect of major parameters on emissions. 
The second-by-second average speeds and volumes, link drive schedules, and operating mode 
distributions are concerned. The results show that speed has a large impact on CO2 emissions. 
(Abou-Senna et al., 2013) (Abou-Senna and Radwan, 2013) 

CMEM, VISSIM, and VISGAOST are once linked to optimize fuel consumption signal timings. 
(Stevanovic et al., 2009). An integration is made to link VISSIM and CMEM by defining technical 
characteristics in VISSIM according to categories in CMEM (Kun and Lei, 2007). Vehicle-specific 
power (VSP) distribution is analyzed for its impact on the estimation of emissions in microscopic 
simulation (Song et al., 2012). Speed profiles are modeled for eco-driving strategy and models in 
MOVES are utilized for evaluation of emissions. A weighting factor is linearly used for balancing 
travel time and emission. Solutions such as enumeration method, simplex optimization, and a 
genetic algorithm are used to solve the optimization problem (Chen et al., 2014). 

1.2.7 Multiclass/heterogeneous traffic modeling 

Serge Hoogendoorn did a comprehensive literature review of traffic models from mico to macro 
level. The issues such as the accuracy, ability in application and generalization, and model 
calibration and validation are discussed (Hoogendoorn and Bovy, 2001). A multiple user-class 
macroscopic traffic model is presented. Velocity variance, vehicle interactions, acceleration time, 
reaction time, desired velocity, and vehicle lengths with regard to different vehicle class are 
considered (Hoogendoorn and Bovy, 2000). 

Heterogeneous traffic model is conducted via a simulation way. Field data is collected in the 
southern part of Chennai City, India, which show some basic characteristics of different traffic 
mode under highly heterogenous situation. (Arasan and Koshy, 2005). An extension of LWR 
model considering heterogeneous drivers are developed. (Wong and Wong, 2002) A new car-
following model is developed considering i-class involving both car and bus. (Tang et al., 2009) 
Multi-class kinematic wave modelling is done by considering class-specific densities, vehicle 
length, ect. The property of hyperbolicity and anisotropy is discussed. The framework to analyze 
the hyperbolicity and anisotropy for multi-class kinematic wave traffic flow models are developed. 
(van Wageningen-Kessels et al., 2013) 

1.2.8 Other related work 

A dynamic eco-driving algorithm with respect to real-time traffic condition is developed near 
traffic signals. Theoretically, maintaining a stable middle range speed can save energy. A Velocity 
Planning Algorithm is used to make the decision on acceleration and deceleration. Then a speed 
profile for acceleration or deceleration is optimized by choosing the best parameter satisfying 
minimal cumulative tractive power among a trigonometric family of curves. Riding comfort is also 
considered in the method. 12% benefits are observed in simulation for both fuel consumption and 
CO2 emission (Barth et al., 2011). 
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Vehicle Infrastructure Integration (VII) technologies provides information such as traffic signal 
status (TSS) to alert drivers to prevent unnecessary acceleration. The time to red (TTR) 
information can be calculated based on an estimation of the speed, which is combined by current 
speed and a normal distributed additional possible speed. When the probability of passing before 
red exceed a threshold, an alert will be released to drivers. The microscopic emissions model 
Comprehensive Modal Emissions Model (CMEM) is integrated with the traffic simulation model 
in PARAMICS through the use of an Application Programming Interface (API). Scenarios under 
different traffic conditions (v/c) are considered. Results show that the savings on fuel consumption 
is 8% and CO2 emissions is 7% when the traffic is in medium congestion. (Li et al., 2009).  

Key variables in Eco-driving for trucks has been investigated (Díaz-Ramirez et al., 2017) 
according to literatures reviewed. They are: VP: vehicle parameters. VE: vehicle or engine models. 
Em: emissions. RC: road/route infrastructure & traffic conditions. LE: load and weight effects. 
DC: driving cycles/route. DP: driver profile. The scopes concerned are: DS: chassis dynamometers 
tests or simulations. Urb: urban or suburban. LD: long distances. The methods for analysis and 
results features are: LS: feedback logging systems effects. SM: statistical models/hypothesis tests. 
ER: empirical results. MR: managerial recommendations. Frg: freight transport. RT: real time data. 

Three level of decisions are considered in eco-driving, they are: strategic (vehicle selection and 
maintenance), tactical (route selection and vehicle load) and operational (driving behavior) 
decisions (Sivak and Schoettle, 2012). Tactical decisions consider traffic and road. In the traffic 
part, signal control, as well as road performance, are important factors. For operational decisions, 
speed, idling, and acceleration(deceleration) are manipulated to make driving smooth.  

Driving effectiveness are concerned though index ODE (Overall drive effectiveness) and a data 
mining fuel consumption prediction method regarding vehicle speed, speed and load of engine is 
used. (Hsu et al., 2017). In the model, the improvement of the driving effectiveness is represented 
by attributes and the real-time fuel consumption is predicted given driving behaviors linking to 
these attributes. A piecewise linear model is built as a model tree, minimizing variability in each 
terminal node. The model tree makes fuel consumption as a function of other vehicle attributes, in 
multi-regions with independent linear regression models. 

Scaled tractive power (STP) as a function of speed, accretion and vehicle mass is used in MOVES 
for analysis for the transit bus (Xu et al., 2017). Tractive power requirements is given by : Speed 
is considered to make dynamical advice using intelligent speed adaptation (ISA) (Barth and 
Boriboonsomsin, 2009).The optimal speed profile of a real route is developed for Electric Bus, 
with constraints of speed and time, including driver feedback and scoring. Energy consumption is 
modeled from a Vehicle Dynamic equation and an optimization problem is solved for the problem. 
(Rios-Torres et al., 2015) 

1.3 SUMMARY OF LITERATURES 

The measures of effectiveness (MOEs) used for evaluating eco-driving are: energy consumption, 
emissions, travel delay, or any combination of them. 

The main methods used to achieve an eco-driving goal are as follows: 
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• Speed adviser: in this kind of methods, a system will provide suggested speed to drivers. 
For example, driving decisions will be made from different level: tactical- signal 
control(priority), operational- cruise control, and then speed profile control is conducted to 
fulfill the decisions. 

• Trajectory control: mathematic methods are utilized to design a proper trajectory for a 
certain type of vehicle using a certain emission model. For example, Index=f (v, acc, mass 
etc.). Machine learning can be utilized find value of efficient attributes.  

• Optimal control: design connected vehicle controllers and solve them, incorporating object 
functions related to emission and fuel consumption.  

For the majority of the literature, the results show that the energy saving and emission reduction 
is positive to PR (penetration rate) of the eco-driving vehicles. Some other concerns are in the 
literature, for example, geometric property and traffic conditions. VISSIM is usually applied to 
simulate the truck corridor and MOVES can be utilized to evaluate emissions.  
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2.0 ANALYSIS AND EVALUATION 

2.1 INTRODUCTION  

This chapter provides some simulation results to show the problems exist for signal intersections 
with significant freight traffic. Then based on these results, the problem our project focus is 
defined and positioned so as to form a structure. One aspect is chosen and then Chapter 3 gives 
the solution to that aspect. The influences of truck percentage have on an individual signalized 
intersection and on the signalized corridor are tested by simulation using VISSIM. Simulations 
are conducted to show how the percentage of heavy-duty vehicles or trucks fails the signal 
control for both cases. Besides, the speed difference between the trucks and conventional 
vehicles also worsen the performances. 

2.2 INDIVIDUAL SIGNALIZED INTERSECTION  

2.2.1 Experiment setting  

In this experiment, the penetration rate of trucks on a corridor is tested, by varying the 
percentage of trucks and traffic (input volume from small to large).  

Table 1 : experiment setting of truck percentage at an individual signalized intersection 
 

Average speed Car speed: 60 km/h Truck speed: 40 km/h 
Lane assignment 
 

Three-lane arterials evaluated at a 10 m segment Gradient: 0% 
Lane width: 3.5 m 

Input volume Eastbound , other zero volume1800-3600 veh/h 
MPR  Truck 5%-50% 
Simulation duration 3600s 
Multi run  3 runs per scenario 
g/c 70/120 
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Figure 2: layout of truck percentage at an individual signalized intersection 
 
2.2.2 Results 

In this analysis, the performance of the corridor is analyzed under different levels of volume for 
different truck PR. For each scenario (a level of volume, a truck PR), the multi-run is conducted 
to provide a generalized result. The generalized results are in the form of figures. 
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Figure 3 average delay and average speed on the corridor with low volume (from top to 

down 1800, 2700 and 3600 veh/h)  
The results show that the average delay per vehicle increases with the increase in truck 
percentage, generally. Besides, the average speed decreases with the increase in truck 
percentage. The slope is not obvious when the volumes on the corridor are low while the slope 
becomes steeper at high volume levels. The relationship between average delay and truck PR 
shows a fluctuation when the volume is on a high level. 

2.3 SIGNALIZED CORRIDOR 

2.3.1 Experiment setting  

In this experiment, the penetration rate of trucks on a coordinated signalized corridor is tested, by 
varying the percentage of trucks and traffic (input volume from small to large). Firstly, the 
influence on an isolated intersection is tested; secondly, a coordinated signalized arterial is 
tested. The aggregated influence of truck speed and its penetration rate (PR) on the performance 
of signalized arterial are tested for an isolated intersection and a coordinated signalized corridor. 
For an isolated intersection, the speed and delay are tested when trucks with PR ranges from 5%-
50%. For three coordinated signalized intersections, PR ranges from 2%-60% while the speed of 
trucks and conventional cars are set to be either same and different. The figure 4 shows the 
layout of the corridor in PASSER V and corresponding signal setting. 
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Figure 4 simulation setting using PASSER V 

 
2.3.2 Results for average delay 

 

   

  

  
Figure 5 average delay on the corridor with low volume (800 1200 2400 veh/h) when trucks 

and cars are with the same speed(left) and different speeds (right)  
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The average delay increases with the increase of shares of trucks when the total volume is fixed. 
The slope is not obvious when the volumes are low. For the low volume case (800veh/h), it 
shows a fluctuation when the volume is at a lower level. For the case when trucks and cars are 
with different speeds, the average delay increases sharply with the increase of PR. The slope also 
becomes steeper when the total input volume has increased. Comparing the delay changes for 
each PR level, the increase in delay is sensitive to the amount of volume.  
 
2.3.3 Results for average speed  

 

  

  
Figure 6 average delay on the corridor with volume (800 , 1200 and 2400 veh/h) when 

trucks and cars are with the same speed(left) and different speeds (right)  
 
In summary, the average speed decreases with the increase of shares of trucks. For the 
homogeneous speed case, the average delay only changes when the volume is at 2400 veh/h – it 
changes from 45 km/h to 35 km/h. For varied speed case, the decreasing slope becomes steeper. 
Though the increasing percentage of the trucks means more share of low speed vehicles, 
excluding this influence, the performance of the arterial is still decreasing. Comparing the values 
under different volumes for a level of PR, the sensitivity of the average speed of the arterial to 
the volume is not as large as the average delay, in percentage. 
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2.4 CONCLUSIONS AND PROBLEM POSITION 

For both individual and coordinated signals, the more percentage of the heavy-duty vehicles 
(trucks) are in a traffic, the worse the performance is (more delay and less average speed). The 
situation is worse when there is a different average speed between the different vehicle classes. 
Some solutions are necessary to handle the problem. A comprehensive structure to solve the 
problem is formulated as in the following figure (Figure 7). In this structure, the problem is 
solved by optimization while adjusting controller in proper ways, while inputs should be real 
data, microscopic traffic model should be utilized and simulations are assistants. However, we 
cannot cover all of them in this project. Thus, one of the possible directions is to start with 
looking at the relationship between individual vehicles and individual signal intersections. This 
research then starts from the microscopic level by looking at an individual signal intersection and 
tries to find optimal trajectories for heavy-duty vehicles to pass with good mobility and low 
emissions.  The algorithms are presented in Chapter 3. Besides, to reveal some relationships 
needed for modelling from a macroscopic aspect, some statistical works are shown in the 
appendix.  
 

 
Figure 7 A structure that shows how to solve the problem 
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3.0 METHODOLOGY 

3.1 INTRODUCTION 

The experiment uses an algorithm by formulating a two-level dynamic optimization model for 
individual vehicles. Firstly, basic assumptions in terms of the early arrival and late arrival 
conditions are defined given a signal timing and initial vehicle conditions. Given the conditions, a 
baseline case is developed with the shortest travel time. Secondly, a two-level dynamic 
optimization model is developed for individual vehicles. At the first level, a minimal possible 
emission is calculated. Then on the second level, a weighted cost is set for time and emissions. All 
optimizations are based on given initial conditions, whose information is assumed to be known via 
V2I communications. Such information includes Signal Phase & Timing (SPaT), the initial 
distance, queue discharge time. The results from the two-level dynamic optimization model is 
compared to the results from baseline.  The following figure 8 shows the structure of the method 

 

Figure 8  the flow chart of trajectory optimization strategy. 

3.2 BASIC ASSUMPTIONS 

This section covers the basic assumptions in this study, including arrival conditions, parameters 
in baseline scenarios and eco-driving scenarios. 
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3.2.1 Arrival Conditions 

If a vehicle can maintain its speed at the speed limit and pass the signalized intersection before 
the signal turns red, or the vehicle cannot stop behind the intersection stop-bar with maximum 
deceleration, this situation is denoted as an early arrival. This vehicle is excluded from Eco-
driving consideration. Conditions for a vehicle that is not early arrival is: 
 𝑻𝑻𝒆𝒆 ≤

𝑺𝑺−𝑺𝑺𝒅𝒅
𝒗𝒗(𝟎𝟎) 

   (1) 

𝑺𝑺𝒅𝒅 > 𝒗𝒗𝟐𝟐(𝟎𝟎)
𝟐𝟐|𝒂𝒂|

 (𝒂𝒂 < 𝟎𝟎)                    (2) 

Where,  
𝑇𝑇𝑒𝑒 is the green left at the last cycle, 
𝑆𝑆 stands for distance to an intersection when starting eco-driving,  
𝑆𝑆𝑑𝑑 is the distance for deceleration, 
𝑣𝑣(0) is the initial speed, and 
𝑎𝑎 is the deceleration of the vehicle. 
 
Conversely, if a vehicle drives at the speed limit and decelerate at the maximum deceleration, it 
still enters the intersection when the signal has turned green in the next signal cycle, then this 
situation is denoted as a late arrival. This vehicle is also excluded from Eco-driving 
consideration. The conditions between the early arrival and later arrival are considered in this 
experiment for eco-driving optimization. Conditions for a vehicle that is not late arrival is: 
 

𝑇𝑇𝑛𝑛 + 𝑇𝑇𝑑𝑑 = 𝑆𝑆−𝑆𝑆𝑑𝑑
𝑣𝑣(0)

+ 𝑣𝑣(0)
𝑎𝑎
≤ 𝑇𝑇𝑒𝑒 + 𝑅𝑅               (3) 

 𝑆𝑆𝑑𝑑 > 𝑣𝑣2(0)
2|𝑎𝑎|

 (𝑎𝑎 < 0)                                   (4) 
   

Where,  
𝑇𝑇𝑛𝑛 is the duration when the vehicle is driving at a normal speed (speed limit). 
𝑇𝑇𝑑𝑑 is the duration of deceleration, and  
𝑅𝑅 is the duration of red signal. 

3.3 STRATEGIES  

3.3.1 Baseline Scenario  

When vehicles pass through an intersection, the travel time is the key index to measure the 
mobility performance. The baseline scenario is developed based on an algorithm with the 
shortest time. In the baseline case, a truck will decelerate at the max deceleration 𝑢𝑢𝑚𝑚𝑚𝑚𝑛𝑛, and stop 
before queue or at the stop line, pass the intersection and then accelerate back to the original 
speed at its max acceleration 𝑢𝑢𝑚𝑚𝑎𝑎𝑚𝑚. Queue length is assumed as physical constraints, and for 
safety concerns, the moving speed of the queue is assumed to be no smaller than the vehicles’. 
The acceleration of truck should be smaller than conventional vehicles. The average max 
acceleration is around 1m/s2. Therefore, in this experiment, the range of acceleration is chosen 
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as [-1,1] m/s2. The basic parameters in this scenario are following the rules from equation 5 to 
equation 7.  

𝑇𝑇𝑟𝑟 = 𝑇𝑇𝑒𝑒 + 𝑚𝑚𝑎𝑎𝑚𝑚(𝑅𝑅,𝑇𝑇𝑞𝑞) − 𝑇𝑇𝑛𝑛 − 𝑇𝑇𝑑𝑑                  (5) 

𝑎𝑎 = �
𝑢𝑢𝑚𝑚𝑚𝑚𝑛𝑛, 𝑎𝑎 < 0
 𝑢𝑢𝑚𝑚𝑎𝑎𝑚𝑚,𝑎𝑎 > 0                                                          (6) 

𝑆𝑆𝑒𝑒 + 𝑆𝑆𝑞𝑞 = 𝑣𝑣2(0)
2𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚

                                                            (7) 
 
Where, 
𝑇𝑇𝑟𝑟 is time stopped by red or queue, 
𝑎𝑎 is the acceleration, and 
𝑆𝑆𝑒𝑒 is The distance after passing the intersection to accelerate back to the original speed. 
𝑆𝑆𝑞𝑞 is The queue length where the vehicles stop if there is a queue. 
 
3.3.2 Eco-driving Scenario 

An eco-driving scenario is formulated by a two-level dynamic optimization based on a minimal 
final time problem. The objective function of the eco-driving is to optimize the travel time while 
maintaining the minimal emissions: 

𝑚𝑚𝑚𝑚𝑚𝑚
𝑢𝑢(𝑡𝑡),𝑡𝑡𝑓𝑓

𝐽𝐽 =  (𝑤𝑤 (𝑡𝑡𝑓𝑓−𝑡𝑡𝑔𝑔𝑠𝑠)
𝑡𝑡𝑔𝑔𝑠𝑠

+ (1 − 𝑤𝑤)
(∫ �̇�𝐸
𝑡𝑡𝑓𝑓
0 𝑑𝑑𝑡𝑡−𝐸𝐸0)

𝐸𝐸0
+ (�̇�𝑢(𝑡𝑡)−�̇�𝑢𝑚𝑚𝑚𝑚𝑚𝑚

�̇�𝑢𝑚𝑚𝑚𝑚𝑚𝑚
)2)                  (8) 

 
Where, 
 𝑢𝑢(𝑡𝑡) and 𝑡𝑡𝑓𝑓 are the control variable acceleration and the final time. 
 𝑡𝑡𝑔𝑔𝑠𝑠 is the time point when the next green start, which is also the minimal possible travel time, 
 �̇�𝐸 is an instantaneous emission rate, 
 𝐸𝐸0 is the total emission when only considers emission, it is used as a base reference to evaluate 
how low the emission can possibly be along the distance, 
 𝑤𝑤 is a weighting factor that balances the travel time to sacrifice and the relative emissions to 
save, 
�̇�𝑢(𝑡𝑡) is instantaneous jerk term, and  
𝐽𝐽 is the total cost. 
 
In the first level optimization, the objective function shown as equation 9, which is subjective to 
spacing constraints (equation 10) and speed constraints (equation 12).  The total travel time 𝑡𝑡𝑓𝑓0 is 
bounded by starting time 𝑡𝑡𝑔𝑔𝑠𝑠 and ending time 𝑡𝑡𝑔𝑔𝑒𝑒 of the next green or the estimated time of 
queuing discharge 𝑡𝑡𝑞𝑞𝑒𝑒. Besides, extra time should be spent after the intersection and it is larger 
than the time to reach final speed using the max acceleration as equation 11 shows. 

𝐸𝐸0 = 𝑚𝑚𝑚𝑚𝑚𝑚
𝑢𝑢0(𝑡𝑡), 𝑡𝑡𝑓𝑓0

(∫ �̇�𝐸𝑡𝑡𝑓𝑓0
0 𝑑𝑑𝑡𝑡)                                                (9) 

∫ 𝑣𝑣𝑡𝑡𝑓𝑓0
0 𝑑𝑑𝑡𝑡 = 𝑆𝑆 + 𝑆𝑆𝑒𝑒                                                      (10) 

𝑚𝑚𝑎𝑎𝑚𝑚 (𝑡𝑡𝑔𝑔𝑠𝑠 , 𝑡𝑡𝑞𝑞𝑒𝑒) ≤ 𝑡𝑡𝑓𝑓 −
𝑣𝑣2�𝑡𝑡𝑓𝑓0�

2𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚
≤ 𝑡𝑡𝑔𝑔𝑒𝑒                                (11) 
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𝑣𝑣(𝑡𝑡𝑓𝑓0) = 𝑣𝑣(0)                                                         (12) 
 

Then the second level optimization is carried out using results from the first level and  
subjective to the constraints from equation 13 to equation 18. Spacing constraints in equation 13 
determine the vehicles to pass the intersection reaching the same distance as the baseline case. 
The range of speed, acceleration, and jerk is considered for trucks for comfort and safety reasons 
in equation 14 15 and 16. Since a too sharp change of acceleration of a truck is dangerous. The 
jerk scaling in the objective function references to the maximal change of acceleration. In the 
experiment speed limit is 20 𝑚𝑚/𝑠𝑠2,the range of acceleration is chosen as [-1,1] m/s2 and jerk is 
chosen as [-1,1] m/s3. Travel time constraints in equation 17 is similar to travel time constraint 
in equation 11 and final speed constraints in equation 18 are similar to that in 12. 

∫ 𝑣𝑣𝑡𝑡𝑓𝑓
0 𝑑𝑑𝑡𝑡 = 𝑆𝑆 + 𝑆𝑆𝑒𝑒                                                      (13) 

 
0 ≤ 𝑣𝑣 ≤ 𝑣𝑣𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡                                                        (14) 

 
𝑢𝑢𝑚𝑚𝑚𝑚𝑛𝑛 ≤ 𝑢𝑢(𝑡𝑡),𝑢𝑢0(𝑡𝑡) ≤ 𝑢𝑢𝑚𝑚𝑎𝑎𝑚𝑚                 (15) 

 
�̇�𝑢𝑚𝑚𝑚𝑚𝑛𝑛 ≤ �̇�𝑢(𝑡𝑡) ≤ �̇�𝑢𝑚𝑚𝑎𝑎𝑚𝑚                          (16) 

 
𝑚𝑚𝑎𝑎𝑚𝑚 (𝑡𝑡𝑔𝑔𝑠𝑠 , 𝑡𝑡𝑞𝑞𝑒𝑒) ≤ 𝑡𝑡𝑓𝑓 −

𝑣𝑣2(𝑡𝑡𝑓𝑓)
2𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚

≤ 𝑡𝑡𝑔𝑔𝑒𝑒                              (17) 
 

𝑣𝑣(𝑡𝑡𝑓𝑓) = 𝑣𝑣(0)                                                      (18) 
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4.0 EXPERIMENTS AND RESULTS 

4.1 EXPERIMENT DEVELOPMENT  

Case studies are conducted to evaluate the difference between eco-driving model and baseline 
model in emission quantities. The results are then validated by the emission outputs from MOVES. 
In this section, the results are presented as follows. 

• Individual trajectories of all cases with different initial distance S and weighting factor w 
values.  

• Emission results of each individual trajectory and the comparison with the outputs from 
MOVES.  

• Aggregated emission benefit by comparison between the baseline algorithm and eco-
driving algorithm at low volume traffic condition with different HDV (truck) penetration 
rates. 

Emission model  
Based on the arrival assumption, two different simulation cases are developed. The baseline 
scenario is developed with a shortest time algorithm. The eco-driving scenario is developed with 
an eco-driving algorithm. In this study, the instantaneous emission rate is assumed as equation 19 
(Panis et al). The parameters for CO2 and NOX are listed in Table 1. 

�̇�𝐸 = 𝑚𝑚𝑎𝑎𝑚𝑚 (𝐸𝐸0,𝑓𝑓1 + 𝑓𝑓2𝑣𝑣(𝑡𝑡) + 𝑓𝑓3𝑣𝑣2(𝑡𝑡) + 𝑓𝑓4𝑣𝑣(𝑡𝑡) + 𝑓𝑓5𝑢𝑢2(𝑡𝑡) + 𝑓𝑓6𝑣𝑣(𝑡𝑡)𝑢𝑢(𝑡𝑡))  
 
Table 2 : emission model parameters (from Panis, L. I. et al.). 
 

pollutant type 𝑬𝑬𝟎𝟎 𝒇𝒇𝟏𝟏 𝒇𝒇𝟐𝟐 𝒇𝒇𝟑𝟑 𝒇𝒇𝟒𝟒 𝒇𝒇𝟓𝟓 𝒇𝒇𝟔𝟔 
CO2 HDV 0 1.52e+00  1.88e+00  −6.95e−

02  

4.71e+00  5.88e+00  2.09e+00 

Car 
(Petrol) 

0 5.53e−01 1.61e−01 −2.89e−03 2.66e−01 5.11e−01 1.83e−01 

NOx HDV 0 3.56e−02 9.71e−03 −2.40e−04 3.26e−02 1.33e−02 1.15e−02 
Car 
(Petrol) 

0 6.19e−04 8.00e−05 −4.03e−06 −4.13e−04 3.80e−04 1.77e−04 

 
Intersection Setup 
The signal timing plan of the intersection is set as Table 2. Red and Green show a normal timing 
plan and time left of last green 𝑇𝑇𝑒𝑒 can make the vehicles starting from a distance S ranging from 
250 m to 700 m can all satisfy the conditions in basic assumptions. Initial speed is selected as a 
normal speed limit, while initial acceleration is 0, the queue discharge time is assumed to be 20 
secs after the vehicle starts, this information should be derived from V2I communications. 
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Table 3 Experiment setting  

# distance S (m) Initial speed v(0) 
(m/s) 

Initial acc u(0) Estimated queue 
discharge time 
point (t_(q_e ) ) 

0-9 250-700 in 50 
intervals  

20 0 20 

 

4.2 ACTIVITY RESULTS OF INDIVIDUAL VEHICLE TRAJECTORIES 

One case (S=400m) is presented to show how trajectories of travel distance (black), 
instantaneous speed(blue), instantaneous acceleration (red) and incremental emission (green) 
change under baseline scenario (dashed lines) and eco-driving scenario (solid line) for individual 
vehicles. Weighting factor w =0.1 0.5 and 0.9 are applied respectively. 
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Figure 9 Case (S=400m) The eco-driving trajectories for NOx (left) and CO2 (right); w= 
0.1, 0.5, 0.9 (from up to down)  

For the trajectories that concern NOx, their travel time values are almost the same as that of the 
baseline cases, while their emissions are largely reduced. For trajectories that concern CO2, their 
travel time values decrease when the weighting factor increases, but when weighting factor is 
larger than 0.5, the travel time values become almost the same as that of baseline cases. The 
acceleration trajectories (solid red line) represent the control laws for acceleration variables in 
the objective function. Compared to baseline cases, they are smoother, which is reasonable. 
Since an aggressive driving strategy with the largest acceleration may lead to large emissions, 
and an incremental acceleration may save fuel and emissions, which makes sense theoretically 
and empirically.  

4.3 EMISSION RESULTS OF INDIVIDUAL VEHICLE TRAJECTORIES 

To validate the results, the trajectories are inputted to MOVES. Table 3 and Table 4 show the 
average performances of individual vehicles. Average travel time and emissions from the 
proposed model, and average emissions from MOVES are listed. Their relative benefits 
compared to baseline case are presented. 

Table 4 average travel time and emission NOx saving and their corresponding MOVES 
results  

 Baseline W=0.1 W= 0.5 W=0.9 
Ave Travel time (sec) 67 68.83 68.83 68.83 
Travel time scarification (%) / 2.73% 2.73% 2.73% 
Average emission (g) 16.77  7.33 7.37 7.33 
Average emission saving (%) / 56.29% 56.05% 56.29% 
Average emission from MOVES (g) 11.47 11.46 11.01 11.09 
Average emission saving (%) from MOVES / 0.09% 4.01% 3.31% 
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Table 5 average travel time and emission CO2 saving and their corresponding MOVES 
results  

 Baseline W=0.1 W= 0.5 W=0.9 
Ave Travel time (sec) 67 76.49  74.56 76.67 
Travel time scarification (%) / 14.16% 11.28% 14.43% 
Average emission (g) 2674.20 1064.79 1076.00 1044.76 
Average emission saving (%) / 60.18% 59.76% 60.93% 
Average emission from MOVES (g) 1210.531 1124.231 1140.486 1114.318 
Average emission saving (%) from MOVES / 7.13% 5.79% 7.95% 

 
The average results show that the model reduces emissions while sacrifices travel time no matter 
applying which weighting factor. However, the saving of emissions is not necessarily decreasing 
with the increasing of the weighting factor w and the time scarification is not necessarily 
decreasing with the increase of the weighting factor w. This is because of the two-level structure 
of the model, which starts with a final value problem, and the final time is a variable as well as a 
part of the objective function. Therefore, the weighting factor can vary to help to find the optimal 
cases but not necessarily dominate the results in shaping their travel time or emissions. What is 
more, the proposed model exaggerated the effect of emission reductions compared to MOVES 
results. This is because that the proposed model uses an instantaneous emission model that only 
considers acceleration and speeds and is calibrated from other data. Therefore, it may provide a 
trend rather than specific accurate values. To make it more convincing, only the emissions from 
MOVES are used for validation in the following contents.  
 
When comparing the results for NOx and CO2, the results using indicator NOx consume less 
travel time (3%) but reduce fewer emissions (3%); while the results concerning CO2 shows less 
time saving (11%) but more emission reduction (6%). For some trajectories, the method can 
maintain almost the same travel time while decreasing the total emission. The conditions for 
these trajectories are concerned. A weight of about 0.5 can perform well when considering both 
travel time and emission. 
 
The MOVES emissions of trajectories from are listed in Figure 2 (NOx) and Figure 3(CO2) 
according to their starting distances to the intersection, from 250 m to 700 m in an interval of 50 
m. For each distance, input trajectories are the baseline case, and the proposed methods using 
weighting factor w=0.1,0.5,0.9. 
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Figure 10 NOx emissions: The MOVES emission results  

 
Figure 11 CO2 emissions: The MOVES emission results  

For both indicators, the shorter the distance S is towards the intersection, the smaller the 
difference between results of the baseline and the proposed method. For some trajectories with 
distance S less than 400 m, baseline trajectories even produce fewer emissions. The outputs show 
that heavy-duty vehicles require a long distance to take actions ahead of the intersection. If 
vehicles start eco-driving earlier using the proposed method, the emission can be saved to a 
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larger portion (see the performance when distance S=700m). The results give a hint that the eco-
driving should start at least 400 m away from the intersection to maintain a good performance. 
 

4.4 AGGREGATED LEVEL RESULTS 

The results with a weighting factor of 0.5 have stable performances for different individual 
trajectories. Therefore, w=0.5 is chosen as an optimal parameter to produce aggregated level 
results. A traffic condition with low-density is assumed (with a flow rate of 800 veh/h) to 
decrease the possible interactions among trajectories of vehicles. The number of heavy-duty 
vehicles starting eco-driving is assumed to be uniformed distribution along its range. The 
portions of heavy-duty vehicles that satisfy the base assumptions calculated according to these 
assumptions and simulation a run based on the portions. 
 
In the first case, the distance vehicles approaching intersections ranges from 250 m to 700 m. 
Their aggregated simulation results are as follows in Table 5 and Table 6. Based on the results 
that the further distance has better performance from individual vehicle trajectories, the second 
simulation case choose distance ranging from 500 to 700 m, Their aggregated simulation results 
are as follows in Table 7 and Table 8. 

Table 6 Aggregated results case 1: S range is 250m-700m NOx unit: g, 800 vph, 1 hour 

HDV % 5% 10% 15% 20% 30% 40% 
baseline 635.5 1085.0 1534.4 1983.9 2882.9 3781.9 

eco-driving 619.5 1052.9 1486.4 1919.8 2786.8 3653.7 
saving 2.52% 2.95% 3.13% 3.23% 3.33% 3.39% 

Table 7 Aggregated results case 1: S range is 250m-700m CO2 unit: g, 800 vph, 1 hour 

HDV % 5% 10% 15% 20% 30% 40% 
baseline 181426.3 222847.2 264268.2 305689.2 388531.2 471373.1 

eco-driving 178664.3 217323.3 255982.3 294641.4 371959.4 449277.4 
saving 1.52% 2.48% 3.14% 3.61% 4.27% 4.69% 

Table 8 Aggregated results case 2: S range is 500m-700m NOx unit: g, 800 vph, 1 hour 

HDV % 5% 10% 15% 20% 30% 40% 
baseline 685.3 1174.1 1662.9 2151.7 3129.4 4107.0 

eco-driving 652.5 1108.5 1564.6 2020.6 2932.7 3844.8 
saving 4.78% 5.58% 5.91% 6.09% 6.29% 6.39% 

Table 9 Aggregated results case 2: S range is 500m-700m CO2: unit: g, 800 vph, 1 hour 

HDV % 5% 10% 15% 20% 30% 40% 
baseline 193547.4 238563.4 283579.4 328595.5 418627.5 508659.5 

eco-driving 189246.3 229961.1 270676.0 311390.9 392820.7 474250.5 
saving 2.22% 3.61% 4.55% 5.24% 6.16% 6.76% 
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For case 1, the results show that the emission reductions range from 2.5% (truck penetration rate 
5%) to 3.4% (truck penetration rate 40%) for NOx, and from 1.5% (truck penetration rate 5%) to 
4.7% (truck penetration rate 40%) for CO2. For case 2, the emission saving has doubled. Since 
an optimal range of distances is selected in the simulation. The emission reductions range from 
4.8% (truck penetration rate 5%) to 6.3% (truck penetration rate 40%) for NOx and from 2.2% 
(truck penetration rate 5%) to 6.3% (truck penetration rate 40%) for CO2. For both cases, with 
the increase in truck penetration rate, more emissions are saved but the increasing rate is not 
sensitive to the increase of the truck penetration rate. This is because the portions of the heavy 
vehicle that satisfy the base conditions are certain. 
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5.0 SUMMARY  

5.1 GENERAL SUMMARY  

The literature review is presented in Chapter 1 by covering the topics of:  the studies of emission 
model, the eco-driving applications for heavy-duty vehicles (Trucks), Eco-driving and signal 
control, the benefits from CAVs and Simulation works using MOVES and VISSIM, and 
multiclass/ heterogeneous traffic modeling. Next, a simulation platform is established to define 
the problem in Chapter 2. It starts with the analysis of the influence truck percentage has on the 
individual signalized intersection and a coordinated signal corridor. The simulation results show 
the high percentage of heavy-duty vehicles in traffic may degrade the signal control by causing 
large delays. To solve the problem, an eco-driving strategy for freight mobility control at 
signalized intersections is introduced in Chapter 3. It is by optimizing the travel time while 
maintaining optimal fuel consumptions and emissions. A two-level dynamic optimization is 
formulated. An emission weighted optimization is used to simulate vehicles passing the 
intersection with balanced travel time and emissions savings and compared to a baseline 
simulation without eco-driving consideration. The emission term in the optimization used an 
instantaneous speed-acceleration based microscopic fuel consumption models and the results 
were validated by EPA's MOtor Vehicle Emission Simulator (MOVES) model. Some other 
candidate emission models tested are shown in appendix A3. In Chapter 4, the results using the 
eco-driving strategy is shown. To show the relationship between truck percentage and discharge 
rate, a multiple linear regression is conducted, and the results are shown in the appendix. The 
data in MOVES and the emission models used are also presented in appendix part A3. The 
performances of the proposed strategy are summarized in the next part.  

5.2 SUMMARY OF PERFORMANCE OF ECO-APPROACHING 
STRATEGY AT INTERSECTION 

The experiment introduced an eco-driving strategy to optimize the driving behaviors of heavy-
duty vehicles (trucks) at a signalized corridor. The results show that the model reduces emissions 
while slightly sacrifices travel time but the saving of emissions or time is not necessarily 
decreasing with the increase of the weighting factor w. This is due to that the two-level 
optimization model has considered the final time as a variable and a part of the objective function 
at the same time. The weighting factor can vary to help to find the optimal results. The activity 
behavior of individual vehicles shows that heavy-duty vehicles require a longer distance to take 
actions ahead of the intersection. For NOx, the average reduction ranges from 0.1% to 4%, and for 
CO2, the reduction ranges from 5% to 7%. The average travel time increases 3% and 11% 
respectively in the experiments. Based on analytical results from the individual trajectories, the 
weighting factor of 0.5 is chosen. Some trajectories can maintain almost the same travel time as 
the baseline and save more than 5% in emissions. The distance ranging from 500 m to 700 m can 
provide better performance using the method. These are considered an optimal solution and these 
optimal parameters are used in the model to produce aggregated level results on different truck 
percentage levels. The emission reductions range from 4.8% (truck penetration rate 5%) to 6.3% 
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(truck penetration rate 40%) for NOx and from 2.2% (truck penetration rate 5%) to 6.3% (truck 
penetration rate 40%) for CO2. 

Some limitations are listed: concerning the results, the proposed model has somehow exaggerated 
the emission saving compared to MOVES outputs. Besides, with regard to assumptions, although 
the experiment considers the queue information via a V2I communication, the queue discharge 
time is hard to obtain sometimes. Although the aggregated simulation in the experiment assumes 
a low-density traffic condition to avoid the possible interactions between vehicles, in the reality, 
the interactions still exist.  

For future work, an iterative process of the weighting factor will be developed to calibrate the best 
weighting factor. Besides, other calibrated emission models are being tested to make a comparison. 
The interactions between vehicles can be considered to produce performance under both low 
density and high-density situations. The average computation time is around 1 sec for one 
individual truck. The computation time can be shortened to within one second, in which case the 
method can be implemented in a real-time case. The authors are currently developing an iterative 
optimization process. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

35 
 

6.0 APPENDIX 

6.1 A1 RELATION BETWEEN PERCENTAGE OF HEAVY-DUTY 
VEHICLES AND DISCHARGE RATE DROP OF COORDINATED 
SIGNAL CORRIDOR 

Assumptions are made that the equivalent volumes along the coordinated intersections are 
related to heavy vehicles ratios, average speed, and speed variations. A regression tool is used to 
confirm the second assumption. According to the definition of the heavy factor, the PCE values 
can be represented by the heavy factor: 

𝑃𝑃𝑃𝑃𝐸𝐸 = 1 + �1−𝑓𝑓ℎ𝑣𝑣
𝑓𝑓ℎ𝑣𝑣

� ∗ 1
𝑃𝑃ℎ𝑣𝑣

                                                 (19) 
 
where the heavy vehicle factor is the ratio of saturation flow rate over base saturation flow with 
0% heavy vehicles. The baseline saturation flow is defined as 𝑠𝑠𝑏𝑏 and the actual saturation flow 
rate 𝑠𝑠 is assumed to be related to not only truck penetration rate 𝑃𝑃𝑅𝑅, but also the average speed 𝑉𝑉 
and the average speed difference between trucks and conventional cars 𝐷𝐷𝑉𝑉. 
 

𝑓𝑓ℎ𝑣𝑣 =  𝑐𝑐(𝑃𝑃𝑃𝑃,𝑉𝑉,𝐷𝐷𝑉𝑉)
𝑐𝑐𝑏𝑏

= 𝑠𝑠(𝑃𝑃𝑃𝑃,𝑉𝑉,𝐷𝐷𝑉𝑉)
𝑠𝑠𝑏𝑏

                                            (20) 
Since the saturation rate 𝒔𝒔 is divide by  

𝑠𝑠 = 𝑐𝑐
(𝑔𝑔𝐶𝐶)

                                                                       (21) 

 
Where c is the discharge rate given a green time share in a cycle length. Under the condition of a 
truck penetration rate and with an average different speed between trucks and conventional cars. 
It can be obtained by simulation, and the decrease rate 𝑑𝑑𝑑𝑑 between the base discharge rate and 
the actual discharge rate is obtained.  

𝑑𝑑𝑠𝑠(𝑃𝑃𝑅𝑅,𝑉𝑉,𝐷𝐷𝑉𝑉)      = 1 − 𝑠𝑠(𝑃𝑃𝑃𝑃,𝑉𝑉,𝐷𝐷𝑉𝑉)
𝑠𝑠(𝑃𝑃𝑃𝑃=0%,𝑉𝑉=𝑣𝑣𝑙𝑙𝑙𝑙𝑚𝑚𝑙𝑙𝑡𝑡,𝐷𝐷𝑉𝑉=0)

                                 (22) 
𝑑𝑑𝑠𝑠(𝑃𝑃𝑅𝑅,𝑉𝑉,𝐷𝐷𝑉𝑉) = 𝛽𝛽0 + 𝛽𝛽1 ∗ ∆𝑃𝑃𝑅𝑅 + 𝛽𝛽2∆𝑉𝑉 + 𝛽𝛽3 ∗ ∆𝐷𝐷𝑉𝑉                         (23) 

 
The calibrated model then is used to predict the discharge rate under different conditions. A 
significant relation is found. Therefore, the assumption 2 can be confirmed. Then the saturation 
flow rates are calculated to get different PCEs. 
 
A linear regression is firstly conducted for each parameter to visualize the relationship between 
the discharge difference and each variable individually. 
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Figure 12 The relations between the discharge rate and truck penetration rate, speed, and 
speed difference of trucks and cars respectively. 
 
10 runs are made by different random seeds and an average value is chosen. Then the results the 
calibrated regression model is: 

𝑑𝑑𝑠𝑠(𝑀𝑀𝑃𝑃𝑅𝑅,𝑉𝑉,𝐷𝐷𝑉𝑉) = −0.0679 + 0.2715 ∗ ∆𝑀𝑀𝑃𝑃𝑅𝑅 − 0.3573 ∗ ∆𝑉𝑉 + 0.091 ∗ 𝐷𝐷𝑉𝑉 
A prediction is conducted using the parameters calibrated to compare with 300 data points and 
the results are as the following figure. The R-square is 0.74 and the RMSE is 0.13. 

 
Figure 13 The prediction of discharge rate difference along a coordinated signal. 
 
The results show that, from a macroscopic perspective, the discharge rate of coordinated 
signalized intersections have a negative relation with: percentage of the trucks and the speed 
difference between trucks and cars.  
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6.2 A2 MOVES MODEL USED IN THE RESEARCH  

The data used in MOVES for calculation VSP and emissions are presented as following table 
and figures. 

Table 10 the mode setting in MOVES 

opModeID opModeName 
0 Braking 
1 Idling 
11 Low Speed Coasting; VSP< 0; 1<=Speed<25 
12 Cruise/Acceleration; 0<=VSP< 3; 1<= Speed<25 
13 Cruise/Acceleration; 3<=VSP< 6; 1<=Speed<25 
14 Cruise/Acceleration; 6<=VSP< 9; 1<=Speed<25 
15 Cruise/Acceleration; 9<=VSP<12; 1<=Speed<25 
16 Cruise/Acceleration; 12<=VSP; 1<=Speed<25 
21 Moderate Speed Coasting; VSP< 0; 25<=Speed<50 
22 Cruise/Acceleration; 0<=VSP< 3; 25<=Speed<50 
23 Cruise/Acceleration; 3<=VSP< 6; 25<=Speed<50 
24 Cruise/Acceleration; 6<=VSP< 9; 25<=Speed<50 
25 Cruise/Acceleration; 9<=VSP<12; 25<=Speed<50 
33 Cruise/Acceleration; VSP< 6; 50<=Speed 
35 Cruise/Acceleration; 6<=VSP<12; 50<=Speed 
27 Cruise/Acceleration; 12<=VSP<18; 25<=Speed<50 
28 Cruise/Acceleration; 18<=VSP<24; 25<=Speed<50 
29 Cruise/Acceleration; 24<=VSP<30; 25<=Speed<50 
30 Cruise/Acceleration; 30<=VSP; 25<=Speed<50 
37 Cruise/Acceleration; 12<=VSP<18; 50<=Speed 
38 Cruise/Acceleration; 18<=VSP<24; 50<=Speed 
39 Cruise/Acceleration; 24<=VSP<30; 50<=Speed 
40 Cruise/Acceleration; 30<=VSP; 50<=Speed 
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Figure 14 The emission rate of LDV and HDV with regarding to mode type for different 
emissions 

In our report, only the emission CO2 and NOx are used for calibration and validation cases. 
 

6.3 A3 ATTEMPTS USING OTHER EMISSION MODELS 

During the research process, some other emission models are selected and tested, although they 
are not selected to be involved into the model at last, some intermediate results are presented 
here. 
 
VT-Micro model 
VT-micro is an instantaneous emission rate model. Although it is not specific for heavy-duty 
vehicles, the parameters are assumed and tested: 
P=1, acceleration mode, 

𝑀𝑀𝑀𝑀𝐸𝐸𝑒𝑒 = 𝑒𝑒∑ ∑ �𝐿𝐿𝑒𝑒𝑙𝑙,𝑗𝑗𝑣𝑣𝑙𝑙𝑎𝑎𝑙𝑙� 3
𝑗𝑗=0

3
𝑙𝑙=0                                                        (24) 

P=0, deceleration mode, 
𝑀𝑀𝑀𝑀𝐸𝐸𝑒𝑒 = 𝑒𝑒∑ ∑ (𝑀𝑀𝑒𝑒

𝑙𝑙,𝑗𝑗𝑣𝑣𝑙𝑙𝑎𝑎𝑙𝑙)3
𝑗𝑗=0

3
𝑙𝑙=0                                                        (25) 

 
𝐿𝐿𝑒𝑒𝑚𝑚,𝑗𝑗: model regression coefficient for 𝑀𝑀𝑀𝑀𝐸𝐸𝑒𝑒 at speed power i and acceleration power j for  
deceleration 
𝑀𝑀𝑒𝑒

𝑚𝑚,𝑗𝑗: model regression coefficient for 𝑀𝑀𝑀𝑀𝐸𝐸𝑒𝑒 at speed power i and acceleration power j for  
Deceleration 
𝑣𝑣: instantaneous vehicle speed 
𝑎𝑎: instantaneous vehicle acceleration 
 
Since they should reach the minimal and maximal value at the same time while the log can be 
expressed as polynomials. Thus, we have the polynomial 

𝐼𝐼𝑚𝑚(𝑀𝑀𝑀𝑀𝐸𝐸𝑒𝑒) = ∑ ∑ �𝐿𝐿𝑒𝑒𝑚𝑚,𝑗𝑗𝑣𝑣𝑚𝑚𝑎𝑎𝑚𝑚� 3
𝑗𝑗=0

3
𝑚𝑚=0                                      (26) 

A sample relation according to the VT-micro mode is as follows: (a log-transferred) 
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Figure 15 a sample VT-micro model (a log-transferred) accerlation: blue,green, yellow,red: 
2 m/𝒔𝒔𝟐𝟐, 1 m/𝒔𝒔𝟐𝟐, 0.5 m/𝒔𝒔𝟐𝟐, 0.1 m/𝒔𝒔𝟐𝟐 for speed from 0 to 30 m/s 

 

Figure 16 a sample VT-micro model (a log-transferred) speed: blue,green, yellow,red: 30 
m/s , 20 m/s, 10 m/s, 5 m/s for acc from 0 to 2 m/𝒔𝒔𝟐𝟐 

 

 
A proposed emission model 
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A proposed emission model is developed so that it can describe the acceleration and deceleration 
mode in one model: 

𝐸𝐸 = 𝑃𝑃1𝑣𝑣2𝑒𝑒𝑎𝑎 + 𝑃𝑃2                                                         (27) 
𝑀𝑀𝑀𝑀𝐸𝐸𝑒𝑒 = �̇�𝐸 = 2𝑃𝑃1𝑒𝑒𝑎𝑎𝑣𝑣                                            (28) 

 
Figure 17 a sample proposed model (a log-transferred) with a=2 m/𝒔𝒔𝟐𝟐 v=0-30m/s 

 
Figure 18 a sample proposed model (a log-transferred) with v=20 m/s a from -2 m/𝒔𝒔𝟐𝟐 to 2 
m/𝒔𝒔𝟐𝟐 
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It can be seen that, when fixing acceleration, the total emission increase with the increase of 
speed. On the other hand, for a certain speed, acceleration will cause shaper increase of emission 
while there will be no emission (or basic emission) when decelerating (with zero or negative 
acceleration).  
 
The reason why VT-micro model is not chosen is that the parameters can found in papers are not 
specific for heavy-duty vehicles. the reason why the proposed model is not chosen is that the 
calibration requires a lot of heavy vehicle data, which are not available. Therefore, the calibrated 
emission model specific for heavy-duty vehicles in the method we used is a reasonable choice. 
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