

Improving Freight Investment Decisionmaking with Big Data and Effective Communication Techniques

Bill Eisele, Ph.D., P.E., PMP Senior Research Engineer & Mobility Division Head Texas A&M Transportation Institute

May 5, 2022
Freight Mobility Research Institute (FMRI)
Boca Raton, Florida

Our Conversation Today

- A brief TTI Introduction
- The typical freight data
- Selected projects and visualizations
- Freight challenges (and opportunities)
- Some final thoughts
- Discussion

Vision

TTI leads in the creation of knowledge that transforms transportation for the benefit of society.

Mission

TTI delivers practical, innovative and sustainable solutions to improve the movement of people, data, and goods through research, education, and technology transfer.

Legacy

Established 1950

State Agency

Early Focus: roadside safety,

pavements, bridges

Current Research Emphases

Technology

CAV

Mobility

Human Behavior

5

Key Messages

I want you to...

- ...keep in mind why informed system performance is important decision-making, accountability, transparency, and "it's the right thing to do."
- ...understand that data are available (and constantly improving) to help tell the story of person and goods movement (and related investment needs) across modes.
- ...understand that supply chain data are the "Holy Grail" of freight data to inform modal data integration.
- ...know that there are many on-going successful national, state and local mobility analyses
 activities and visualizations (several examples are provided) from which we can build for
 improved decision-making.

Why Care about Freight Transportation?

- It's only important if you eat....
-or buy anything
- The backbone of our economy (supply chains, logistics systems)
- All modes are critical to freight transportation
 - Trucks (big and small), rail, air, ports (ships), bikes, robots, etc.
- Explosion in e-commerce
- And so much more....

Fixing the Problem Starts with Understanding It Understanding System Performance to Improve Planning and Investment Decisions

With improved understanding, we can...

- ...identify when, where, and how people and goods are moving
- ...identify congested locations & bottlenecks in the system
- …inform policy, program, and project prioritization/selection
- ...identify impacts of situations & solutions
- …inform performance management (system monitoring)
- ...and because it's the right thing to do!
 - Accountability and transparency

The (Freight) Data

- Travel Time & Travel Time Reliability ("Easiest")
 - Highway monitoring systems; National Performance Management Research Dataset; company/vendor probe datasets; Automatic Identification System (AIS)
- Cost (using value of time, cost of unreliability) ("Moderately Easy")
 Business-to-business information; survey input; industry input/trends;
 Consumer Price Index
- Volume of goods ("More Difficult")
 - Commodity Flow Survey; Freight Analysis Framework; Economic Census; Highway Performance Monitoring System; Lloyd's Register; industry input

The (Freight) Data (cont.)

Origin-Destination Data ("Getting Easier")

Travel surveys; vendor datasets (QA/QC); Electronic Logging Devices (ELDs)

Supply Chain End-to-End Data (across modes) ("Difficult")

The "Holy Grail"; business-to-business information; supply chain survey input; industry input

Evolving technologies (AV/CV, robots, drones, etc.) will provide future data sources...

2021 Urban Mobility Report

- Evaluates mobility conditions in urban areas
- Freeway and principal arterial street networks
- 101 urban areas from 1982 to 2020
- 393 <mostly smaller> urban areas from 2014 to 2020
- Uses a suite of performance measures

National Congestion Statistics

 Annual 2020 congestion costs and travel delays were half the 2019 levels

Measure	2019	2020
Annual Delay Per Auto Commuter (hours)	54	27
Wasted Fuel Per Auto Commuter (Gallons)	22	11
Congestion Cost Per Auto Commuter (in 2020\$)	\$1,170	\$605

https://mobility.tamu.edu/umr

National Congestion Statistics

Measure	2019	2020
Hours of Extra Travel Time (Billions)	8.7	4.3
Gallons of Fuel Wasted (Billions)	3.5	1.7
Cost to Society (Billions)	\$190	\$101
Truck Congestion Cost (Billions)	\$20	\$11
Tons of Extra CO2 Due to Congestion (Million)	36	18

Total congestion delay was similar to 1997

https://mobility.tamu.edu/umr

Selected Florida Congestion Statistics

Urban Area	Delay per Auto Commuter 2020, 2019	Cost per Auto Commuter 2020, 2019
Miami, FL	27 (42), 74 (10)	\$608 (35), \$1,606 (11)
Orlando, FL	22, 61	\$471, \$1,261
Jacksonville, FL	21, 53	\$448, \$1,089
Tampa-St. Petersburg, FL	18, 53	\$401, \$1,125
Cape Coral, FL	15, 45	\$337, \$938
Sarasota-Bradenton, FL	12, 35	\$247, \$695

Bold = 2020 values

https://mobility.tamu.edu/umr

Miami Visualization

Truck-Based Environmental

Annual Truck Delay:	3,956K Truck Hours	Wasted Truck Fuel:	6,429K Gallons
Truck Delay Rank:	11	Wasted Truck Fuel Rank:	11
Annual Congestion Cost	\$209M	Excess CO2 from Trucks:	70K Tons
Congestion Cost (Trucks) Rank:	11	Excess CO2 from Trucks Rank:*	12

^{*}Rank based on 101 legacy urban areas rather than all 494 urban areas.

Congested Weekday

s	Excess Fuel Consumed:	44,167K Gallons
1	Excess Fuel Consumed Rank:	1
s	Wasted Fuel/Commuter:	13 Gallon
2	Wasted Fuel/Commuter Rank:	29
	Excess CO2 from Congestion:	440K Tons
	Excess CO2 from Congestion	1

https://ops.fhwa.dot.gov/freight/freight_analysis/mobility_trends/index.htm

0

Top 336 Freight Bottlenecks around Port Areas based on Delay/Mile

Rank	Urban Area	Road	(Miles)	(Trucks)	(Hours)	Mile	(95th %)	ВІ	TTI	TRI	Mile	Cost	Value
1	Cincinnati, OH	I-71/I-75	1.3	10,612	144,090	109,555	5.44	130.6%	2.25	1.30	48 mt	\$8.0M	\$29.6B
2	New York, NY	I-278	8.0	7,417	857,443	106,846	6.29	162.0%	2.35	1.47	52 mt	\$47.4M	\$43.0B
3	Baton Rouge, LA	I-10	2.2	11,189	193,737	90,002	6.43	257.5%	1.80	2.54	53 mt	\$10.7M	\$17.8B
4	Houston, TX	1-45	1.6	7,917	119,867	73,569	4.73	131.5%	2.02	1.63	45 mt	\$6.6M	\$23.3B
5	New York, NY	I-278	7.7	7,503	550,785	71,310	4.36	120.2%	1.90	1.78	48 mt	\$30.4M	\$43.3B

Texas Department of Transportation 100 Most Congested Roads

Paul	Rank		-	F	T-	→	Annual Hrs	Annual Hrs of Truck Delay per	T/	PTI	CSI	Annual Congestion Cost	Cost
Rank		ľ	Roadway	From	То	County	per Mile	Mile			_	(M)	(M)
1	2		610	IH 10 / US 90	US 59 / IH 69	Harris	1,112,917	68,80	2.45	3.89	3.25	\$90.63	\$20.99
2	1	П	35	US 290 N	SH71	Travis	1,085,136	108,645	2.71	4.73	3.54	\$215.22	\$72.33
3	3	U	59	IH 610	SH 288	Harris	870,291	51,604	2.12	3.36	2.17	\$105.83	\$23.64
4	44	W R F	odall dgers y	US 75	N Beckley Ave	Dallas	748,546	14,976	2.03	3.06	2.31	\$21.31	\$1.81
5	5	I⊦ 90	10 / US	N Eldridge Pkwy	Sam Houston Tollway W	Harris	659,959	48,855	1.95	3.33	2.30	\$50.23	\$13.43
6	9		45	Sam Houston Tollway N	IH 610	Harris	656,582	39,713	1.69	2.33	2.01	\$135.37	\$31.08
7	4	H	635	IH 35E / US 77	US 75	Dallas	584,661	49,538	1.86	2.58	2.34	\$112.58	\$33.59
8	14	77	35E / US	SH 183	IH 30	Dallas	555,861	32,302	1.72	2.62	2.14	\$67.3	\$14.81

https://mobility.tamu.edu/texas-most-congested-roadways/

The	Most Congested Roadw	ays in Texas		Truck				Annual
Rank	Road Name	From	То	Rank	Delay/Mile	TCI	PTI (95th %)	Congestion Cost
1	IH 35	US 290 N / SS 69	Ben White Blvd / SH 71	1	1,647,353	2.88	5.14	\$288,349,730
2	W Loop Fwy / IH 610	Katy Fwy / IH 10 / US 90	Southwest Fwy / US 59 / IH 69	3	1,628,226	2.48	3.74	\$124,306,026
3	Southwest Fwy / IH 69 / US 59	W Loop Fwy / IH 610	South Fwy / SH 288	10	1,212,072	2.13	3.32	\$138,668,566
4	Woodall Rodgers Fwy / SS 366	US 75	N Beckley Ave	51	1,101,570	2.17	3.02	\$32,244,105
5	Eastex Fwy / IH 69 / US 59	SH 288	IH 10	2	1,003,970	2.54	3.99	\$67,464,382
6	N Loop W Fwy / IH 610	North Fwy / IH 45	Katy Fwy / IH 10 / US 90	6	856,232	2.24	3.24	\$117,193,926
7	Gulf Fwy / IH 45	IH 10 / US 90	S Loop E Fwy / IH 610	5	841,919	1.84	2.52	\$147,204,103
8	Stemmons Fwy / IH 35E / US 77	John W. Carpenter / SH 183	Tom Landry Fwy / IH 30	7	762,476	1.78	2.58	\$91,478,884
9	US 75	Lyndon B. Johnson Fwy / IH 635	Woodall Rodgers Fwy / SS 366	35	728,986	1.89	2.67	\$137,657,190
10	IH 10 / US 90	North Fwy / IH 45	Eastex Fwy / US 59	4	709,397	2.12	2.95	\$25,556,267
11	Katy Fwy / IH 10 / US 90	W Loop N Fwy / IH 610	North Fwy / IH 45	13	686,642	1.86	2.53	\$84,468,539
12	IH 35	Ben White Blvd / SH 71	Slaughter Ln	11	624,012	1.77	2.74	\$54,507,889
13	South Fwy / SH 288	Gulf Fwy / IH 45	S Loop W Fwy / IH 610	16	570,702	1.80	2.79	\$59,663,362
14	Katy Fwy / IH 10 / US 90	N Eldridge Pkwy	Sam Houston Tollway W / SL 8	14	560,394	1.66	2.67	\$39,665,051
15	North Fwy / IH 45	Sam Houston Tollway N	N Loop Fwy / IH 610	18	556,129	1.50	1.94	\$110,223,734
16	North Fwy / IH 35W / US 287	SH 183	IH 30	8	545,796	1.83	2.56	\$41,930,045
17	North Fwy / IH 45	N Loop Fwy / IH 610	IH 10 / US 90	28	530,579	1.68	2.58	\$35,069,655
18	Lyndon B. Johnson Fwy / IH 635	Stemmons Fwy / IH 35E / US 77	US 75	27	525,050	1.61	1.94	\$88,543,351

Truck Delay in Austin, Texas

Select Link Analysis - Heat Maps Truck Trip Patterns (for All Trucks Using I-35W Northbound in Downtown Fort Worth)

The Concept of "Freight Fluidity"

Freight Fluidity is the performance of the trips for goods moving in your state or region

- · Awareness of goods moving in the region
- Understanding of current economic conditions and supply chain opportunities
- · Use of awareness and economic/supply chain intel to identify key trip routes for freight
- Assessment of freight mobility and bottlenecks along these trip routes

Guidebook Provides Examples and Resources

What are the key goods and how are they transported?

- -Texas Freight Mobility Plan
- -Regional Freight Transportation Plans
- -Freight Analysis Framework

Where Is the Economic Opportunity?

- -Census Bureau Commodity Flow Survey
- -Bureau of Economic Analysis (industries, production, consumption)

How Well Are Freight Corridors Moving Freight?

- -"TX100", TCAT, UMR
- In-Depth, Location-Specific Information using NPMRDS
- Multimodal: Port and Border Crossing Analysis

Institute

Matrix for Using the Freight Fluidity Guidebook – What Questions are You Trying to Answer?

			What Questions	Are You Trying	g to Answer?								
									What Can We Understand				
			What Key		Where Are The		How Well Does		about				
			Goods or		Economic		Texas's System		Multimodal		Where Can I		
			Freight Move in		Relations and		Perform for		Connections		Get Information		
W	hat Resources Are	Availahla	Texas?	Page	Opportunities?	Page	Freight?	Page	and Impacts?	Page	in a Hurry?	Page	
for	Understanding F		Freight Fluidity in Detail	9			Framework Development	22	Port	27	Texas 100	31	
Flu	Fluidity?		Texas Freight Mobility Plan	10	Economic Analysis of	12	Bottlenecks	23	Border	28	COMPAT/TCAT	32	
			Regional or Local Plans	11	Trading Partners and Opportunities		Performance Measurement/ Visualization	24	Next Steps	34	FHWA Freight	33	
			Freight Analysis Framework	12			Multimodal Trip Connections	26			Mobility Trends		
		Leadership/ Decision Maker	Main U	Main User		Main User		Main User		Secondary User		Secondary User	
Wh	ho Is the User?	Planner/ Policy Analyst	Main U	ser	Main User		Main User		Main User		Main User		
		Operator	Secondary	User	Secondary	/ User	Main U	ser	Main U	lser	Main U	ser	
		Industry Partners	Main U	ser	Secondary User		Main U	ser	Secondary User		Secondary User		

Developing and Implementing a Freight Fluidity Management Framework for U.S. Ports (U.S. Army Corps of Engineers)

Port of Mobile, Alabama

AIS Plot of All Vessels (Port of Baltimore)

Dwell Time at Terminal Areas (Port of Baltimore)

Port Fluidity Analysis

- Practical Interpretation of Results (Port of Brownsville, Texas):
 - The coefficients represent unitary increments of traffic per roadway and direction by a unit of change in sea import or export flows.
 - Example:
 - Model 1 B2out (SH 48 Outbound), a unit of sea cargo (e.g., one ton) arriving at the
 Port of Brownsville, is expected to be associated with an increase of outgoing traffic
 (from the port) in SH 48 (B2) in the same week ("lag0" model) by 0.095%, and by
 0.070% two weeks before ("lag2" model) vessel arrival.
- For a single vessel visit carrying 1,000 TEUS, this translates into 15 more trucks per week in the same week, and 11 more trucks per week two weeks before going out of the port on SH 48.

		Model 1 (Imports)		Model 1 (Imports)
Texas A&M Transportation Institute	tound (B2Out)	Import_lag0 (0.0009541) Import_lag2 (0.0007017)	SH 48 Outound (B2Out)	Same week (+15 trucks) 2 weeks prior (+11 trucks)

Understanding the 'why' (of what is happening): Implications of Urgent Deliveries

- Strain on supply chains and logistics
- Strain on the multi-modal transportation system (world-wide)
- Bottlenecks in the system
- Need for transportation <u>projects</u>, <u>programs</u> and <u>policies</u> to mitigate the impacts

Private-sector Demands/Solutions

- Carriers (and shippers) must make their delivery windows!
- "Next-day delivery" or "same day delivery" means must get product closer to customers before you click "add to cart" and "purchase now"
 - Warehouse and/or distribution centers closer to customers
- More trucks to "make their turns"
- Access to the curb

Amazon Patents – a glimpse into the future?

"Multi-level fulfillment center for unmanned aerial vehicles"

Source: www.businessinsider.com

Amazon Patents – a glimpse into the future?

Amazon Patents – a glimpse into the future?

An accordion-like drone chute

Source: www.businessinsider.com

Technological Solutions are Coming Here

- Delivery robots
- Autonomous vehicles beginning in the freight delivery, long-haul being tested (showing promise)
- "Space-age" deliveries
- What about technology xx?...
- ...if it reliably and safely helps the private-sector hit delivery windows, it will be in the running.
- How do we plan transportation systems for this? (land use, city planning implications)
- How do we successfully engage the private sector for data sharing opportunities?

Some (More) Final Thoughts

- Data considerations
 - What do you really need and how often?
 - Data governance
 - Public-private partnerships
 - Non-disclosure Agreements (NDAs) (with vendor data)
- Needed human resources
 - Data scientists!!
 - Understanding of transportation systems (typical data ranges)
 - GIS, analytics within GIS
 - Bright students & young professionals!
- Visualization / Communication
 - Begin with the end in mind (what questions are you trying to answer)
 - Simple visualizations can often get it done (vs. more complex analytics)
 - Tie decision-informing results to economics (dollars, benefit/costs)

Contact Info & Selected Resources

Bill Eisele, Ph.D., P.E., <u>b-eisele@tti.tamu.edu</u>, 979-317-2461 (find me on LinkedIn)

Texas A&M Transportation Institute Mobility Division http://mobility.tamu.edu

- TTI 2021 Urban Mobility Report, https://mobility.tamu.edu/umr/
- Transportation Research Board, Urban Freight Transportation Committee
 - http://urbanfreight.tti.tamu.edu
 - "Urban Freight Transportation Committee Centennial Paper: Embracing the Future with Insights from the Past"

