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Introduction

Luo, X., L. Li, L. Zhao, and J. Lin (2021). Dynamic Intra-Cell Repositioning in            
Free-Floating Bike Sharing Systems using Approximate Dynamic 
Programming. Transportation Science, accepted.
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Station-Based Bike Sharing Systems

Source: DeMaio (2009), official sites
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Bike Sharing Systems

Source: 1Caggiani et al. (2018), 2Laporte et al. (2015), 3State Information Center (2018) 
nypost.com (left figure), Seattle Department of Transportation (right figure)

Station-based Free-floating
Investment cost1 High Low

User convenience1 Low High

Scale Over 7000 systems with 
800,000 bikes in 20152

74 systems with more than 
23 million bikes in 20183
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Free-Floating Bike Sharing Systems

 Most users ride bikes for short trips.

5

Li et al. (2020) Xing et al. (2020)
Area Downtown and surrounding areas of 

Shanghai, China
Metropolitan area of Shanghai, China

Time August 2016 August 2016

Data set A Mobike data set of 102,361 trips A Mobike data set of 1,023,603 trips

Findings The majority of bike trip distances are 
within 2 km.
The most frequent trip has a length of 
1.2 – 1.4 km. 

The majority of bike trip distances are 
within 3 km.
The average trip distance is 
approximately 1.8 km.
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Free-Floating Bike Sharing Systems

 Partition of cells
 A free-floating bike sharing company usually partitions the 

operating area into cells.
 Factors to consider: demand density and distribution, trip patterns, 

geographic and demographic characteristics, etc.
 Cell size:  2 km × 2 km (Hellobike), 3 km × 3 km (Meituan), etc.
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Source: iResearch (2017), Hellobike (2018), Hellobike (2019), Xinhua News (2018)
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Free-Floating Bike Sharing Systems

 Spatiotemporal imbalance of bike flows
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Residential 
area

Subway 
station

Morning Peak

Residential 
area

Subway 
station

Evening Peak

Shortage of bikes at some locations & overage at some others, 
depending on the time of the day
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Bike Repositioning in Free-Floating Systems

 Static repositioning vs. dynamic repositioning
 Static repositioning: during the night
 Dynamic repositioning: during the daytime

 Intra-cell repositioning vs. inter-cell redistribution
 In the design of cells, the company tries to contain the majority

of bike trips within each cell.
 Intra-cell repositioning
 One or several movers to reposition bikes within each cell to 

counteract the spatiotemporal imbalance of bike flows within the 
cell.

 Usually performed with electronic tricycles
 Inter-cell redistribution
 Bike trips traveling across cells  “escaping bikes”  needs to 

move bikes across cells.
 Usually performed with a larger capacity vehicle, e.g., truck
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Bike Repositioning in Free-Floating Systems

 Intra-cell repositioning vs. inter-cell redistribution
 When a company enters a new market
 Initial allocation of bikes may not match the user demand in the 

cells well.
 Inter-cell redistribution plays a major role and is used frequently.

 When the market stabilizes
 Allocation of bikes among the cells reasonably well, based on a 

good knowledge of the user demand.
 Inter-cell redistribution is used less frequently.
 Intra-cell repositioning becomes to play a major role.

 It is always necessary for the company to efficiently operate 
both intra-cell repositioning and inter-cell redistribution.
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Bike Repositioning in Free-Floating Systems

 Intra-cell repositioning by a mover
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Source: Photos taken by Xue Luo in 2019 and by Lei Zhao in 2021

© Dr. Lei Zhao @ IE, Tsinghua



Bike Repositioning in Free-Floating Systems

 Intra-cell repositioning
 Clustered bikes around subway stations, office buildings, 

shopping malls, etc., referred to as gathering points.
 Scattered bikes along the paths between gathering points
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Bike Repositioning in Free-Floating Systems

 Intra-cell repositioning
 Reposition bikes among gathering points (pre-selected by the 

company)
 Collect scattered bikes along the paths at the same time
 To satisfy as many demand at the gathering points as possible
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Literature Review
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Literature Review

Literature regarding 
vehicle sharing systems

Strategic and 
tactical level

Operational level: 
repositioning

User-based 
repositioning

Operator-based 
repositioning

Lin and Yang (2011) 
Caggiani et al. (2017)

Angelopoulos et al. (2018)
Zhang et al. (2019)

Station-based 
systems

Raviv et al. (2013)
Boyaci et al. (2017)
Brinkmann et al. (2019)

Free-floating 
systems

Weikl and Bogenberger (2013)
Caggiani et al. (2018)
Jiang et al. (2020)
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Literature Review

 Papers on repositioning in free-floating systems
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Problem Description and Model Formulation
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Problem Description

Depot

Residential 
area

School 
gate

Subway 
station

 Complete graph 𝐺𝐺 =
(𝒩𝒩′,𝒜𝒜)
 Node set 𝒩𝒩′ = 𝒩𝒩 ∪ {0}
 Gathering points 𝒩𝒩, depot 0
 Capacity 𝑞𝑞𝑖𝑖, ∀𝑖𝑖 ∈ 𝒩𝒩

 Arc set 𝒜𝒜
 𝑖𝑖, 𝑗𝑗 ∈ 𝒜𝒜: a path (where 

bikes are scattered) the 
mover travels between 
nodes 𝑖𝑖 & 𝑗𝑗

 No capacity limit
 Deterministic travel time 𝜏𝜏𝑖𝑖𝑖𝑖
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A specific cell

Bikes randomly arrive and depart 
at gathering points & on arcs
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Problem Description

Depot

Residential 
area

School 
gate

Subway 
station

 Mover
 A vehicle of capacity 𝑄𝑄
 Loads bikes onto / unloads

bikes from the vehicle at 
nodes
 𝜏𝜏𝑁𝑁: unit loading / unloading 

time
 Loads bikes onto the 

vehicle on arcs
 𝜏𝜏𝐴𝐴: unit loading time
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A specific cell
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Problem Description

 System dynamics during the mover’s working time 𝒯𝒯
 The mover starts from the depot with an empty vehicle.

 Each time arriving at a node (decision epoch), the mover 
decides
 Inventory: # bikes to load onto (+) / unload from (-) the vehicle at 

the current node
 Routing: the next node to visit
 En route: # bikes expected to load onto the vehicle on the arc to the 

next node

 The mover returns to the depot at the end of the working time.

20

To satisfy as many demand as possible 
at all the nodes during the working time
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Model: Markov Decision Process

 Decision epoch 𝑘𝑘: upon arrival at a node

 State variable 𝑆𝑆𝑘𝑘 = (𝑡𝑡𝑘𝑘 , 𝐿𝐿𝑘𝑘 ,𝑁𝑁𝑘𝑘𝑁𝑁,𝑁𝑁𝑘𝑘𝐴𝐴)
 Current time 𝑡𝑡𝑘𝑘
 Vehicle attributes 𝐿𝐿𝑘𝑘 = (𝑙𝑙𝑘𝑘 ,𝑄𝑄𝑘𝑘)
 Node 𝑙𝑙𝑘𝑘
 Remaining capacity 𝑄𝑄𝑘𝑘

 Number of bikes at each node 𝑁𝑁𝑘𝑘𝑁𝑁 = 𝑛𝑛𝑘𝑘𝑖𝑖 ∀𝑖𝑖∈𝒩𝒩

 Number of bikes on each arc 𝑁𝑁𝑘𝑘𝐴𝐴 = 𝑛𝑛𝑘𝑘𝑖𝑖𝑖𝑖 ∀(𝑖𝑖,𝑖𝑖)∈𝒜𝒜
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Model: Markov Decision Process

 Decision variable 𝑥𝑥𝑘𝑘 = (𝑥𝑥𝑘𝑘𝐿𝐿 , 𝑥𝑥𝑘𝑘𝐷𝐷, 𝑥𝑥𝑘𝑘𝑅𝑅)
 Inventory decision 𝑥𝑥𝑘𝑘𝐿𝐿 ∈ ℤ: number of bikes to load onto (+) / 

unload from (-) the vehicle at the current node 𝑘𝑘
 Routing decision 𝑥𝑥𝑘𝑘𝐷𝐷 ∈ 𝒩𝒩: the next node to visit
 En route decision 𝑥𝑥𝑘𝑘𝑅𝑅 ∈ ℕ: number of bikes expected to load on 

the arc to the next node
 Constraints
 Remaining capacity & bikes on the vehicle
 Remaining capacity & bikes at the current node
 Bikes currently scattered on the arcs

 Exogenous information 𝑊𝑊𝑘𝑘+1 = (Δ𝐷𝐷𝑘𝑘+1𝑁𝑁 ,Δ𝐷𝐷𝑘𝑘+1𝐴𝐴 )
 Δ𝐷𝐷𝑘𝑘+1𝑁𝑁 = Δ𝑑𝑑𝑘𝑘+1,𝑖𝑖 ∀𝑖𝑖∈𝒩𝒩, Δ𝐷𝐷𝑘𝑘+1𝐴𝐴 = Δ𝑑𝑑𝑘𝑘+1,𝑖𝑖𝑖𝑖 ∀(𝑖𝑖,𝑖𝑖)∈𝒜𝒜
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Number of net bike 
departures at node 𝑖𝑖

Number of net bike 
departures on arc (𝑖𝑖, 𝑗𝑗)
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Model: Markov Decision Process

 Transition function
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Time

Vehicle location
& remaining capacity

Bikes at each node

Bikes on each arc

Node loading time

Travel time

Arc loading time

�𝑏𝑏𝑘𝑘+1: number of 
bikes actually 

loaded en route
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Model: Markov Decision Process

 Contribution function
 Total demand satisfied at all the gathering points between 

decision epochs 𝑘𝑘 and 𝑘𝑘 + 1

 Expected contribution 𝐶𝐶𝑘𝑘(𝑆𝑆𝑘𝑘 , 𝑥𝑥𝑘𝑘)

 Objective function
 Maximize the expected total demand satisfied at all the 

gathering points during the working time
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Model: Markov Decision Process

 Illustration
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Solution Methodology
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A Unified Framework for Stochastic Optimization
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Source: Powell (2019, 2021)
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Policy Function Approximation

 Inventory decision 
 Two-threshold policy (𝐿𝐿𝑡𝑡𝑖𝑖 ,𝑈𝑈𝑡𝑡𝑖𝑖)
 Try to keep the number of bikes at node 𝑖𝑖 at time 𝑡𝑡 within [𝐿𝐿𝑡𝑡𝑖𝑖 ,𝑈𝑈𝑡𝑡𝑖𝑖]

 At decision epoch 𝑘𝑘
 Unload bikes if 𝑛𝑛𝑘𝑘𝑙𝑙𝑘𝑘 < 𝐿𝐿𝑡𝑡𝑘𝑘𝑙𝑙𝑘𝑘, 𝑥𝑥𝑘𝑘𝐿𝐿 = −min 𝐿𝐿𝑡𝑡𝑘𝑘𝑙𝑙𝑘𝑘 − 𝑛𝑛𝑘𝑘𝑙𝑙𝑘𝑘 ,𝑄𝑄 − 𝑄𝑄𝑘𝑘

 Load bikes if 𝑛𝑛𝑘𝑘𝑙𝑙𝑘𝑘 > 𝑈𝑈𝑡𝑡𝑘𝑘𝑙𝑙𝑘𝑘, 𝑥𝑥𝑘𝑘𝐿𝐿 = min 𝑛𝑛𝑘𝑘𝑙𝑙𝑘𝑘 − 𝑈𝑈𝑡𝑡𝑘𝑘𝑙𝑙𝑘𝑘 ,𝑄𝑄𝑘𝑘

 Do nothing otherwise

Bring the inventory 
level up to 𝐿𝐿𝑡𝑡𝑘𝑘𝑙𝑙𝑘𝑘

No more than the 
remaining bikes 
on the vehicle

Bring the inventory 
level down to 𝑈𝑈𝑡𝑡𝑘𝑘𝑙𝑙𝑘𝑘

No more than the 
remaining capacity 
of the vehicle
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Policy Function Approximation

 Inventory decision
 How to specify (𝐿𝐿𝑡𝑡𝑖𝑖 ,𝑈𝑈𝑡𝑡𝑖𝑖) for each node 𝑖𝑖 at each time 𝑡𝑡?
 Five parameters 𝜃𝜃+, �̅�𝜃+ , (𝜃𝜃−, �̅�𝜃−), 𝜏𝜏𝐿𝐿

31

Notation Definition
𝜆𝜆𝑡𝑡𝑖𝑖
𝐼𝐼𝑁𝑁𝐼𝐼𝐼𝐼,+ Instantaneous bike supply rate at node 𝑖𝑖 at time 𝑡𝑡

𝜆𝜆𝑡𝑡𝑖𝑖
𝐼𝐼𝑁𝑁𝐼𝐼𝐼𝐼,− Instantaneous bike  demand rate at node 𝑖𝑖 at time 𝑡𝑡

Distinguish supply nodes, 
demand nodes, and balanced 
nodes
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Policy Function Approximation

 Inventory decision
 How to specify (𝐿𝐿𝑡𝑡𝑖𝑖 ,𝑈𝑈𝑡𝑡𝑖𝑖) for each node 𝑖𝑖 at each time 𝑡𝑡?
 Five parameters 𝜃𝜃+, �̅�𝜃+ , (𝜃𝜃−, �̅�𝜃−), 𝜏𝜏𝐿𝐿

32

Determine (𝜃𝜃𝑡𝑡𝑖𝑖 ,𝜃𝜃𝑡𝑡𝑖𝑖) for node 𝑖𝑖
at time 𝑡𝑡

Calculate (𝐿𝐿𝑡𝑡𝑖𝑖 ,𝑈𝑈𝑡𝑡𝑖𝑖) using
(𝜃𝜃𝑡𝑡𝑖𝑖 , 𝜃𝜃𝑡𝑡𝑖𝑖) and 𝜏𝜏𝐿𝐿

Distinguish supply nodes, 
demand nodes, and balanced 
nodes
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Policy Function Approximation

 Routing decision

33

many bikes on the vehicle large remaining capacity 
on the vehicle
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Policy Function Approximation

 Routing decision
 Anticipated unmet demand 𝑢𝑢𝑘𝑘+1,𝑖𝑖

 Anticipated loading amount 𝑣𝑣𝑘𝑘+1,𝑖𝑖

34

𝜏𝜏𝐷𝐷: look-ahead time for 
the routing decision
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Policy Function Approximation

 En route decision

39

Current number 
of bikes en route

Remaining capacity of the 
vehicle after the loading / 
unloading operation at 𝑙𝑙𝑘𝑘

Time limit on the 
arc loading time
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Policy Function Approximation

 How to efficiently choose among candidate parameters?

40

Notation Definition

(𝜃𝜃+,𝜃𝜃
+

) Inventory threshold parameters for supply and balanced nodes

(𝜃𝜃−,𝜃𝜃
−

) Inventory threshold parameters for demand nodes

𝜏𝜏𝐿𝐿 Look-ahead time for the inventory decision
𝜏𝜏𝐷𝐷 Look-ahead time for the routing decision
𝛿𝛿 Capacity threshold parameter
𝛽𝛽 Set size parameter
𝜙𝜙 En route time limit parameter

Inventory

Routing

En route
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Policy Function Approximation

 Optimal Computing Budget Allocation (Chen and Lee, 
2011)
 Maximize the probability of correct selection 𝑃𝑃{𝐶𝐶𝑆𝑆} with a fixed 

computing budget 𝑁𝑁𝐼𝐼𝑇𝑇𝐼𝐼𝐴𝐴𝐿𝐿

 Procedure
 Allocate an initial number of simulation replications 𝑁𝑁𝐼𝐼𝑁𝑁𝐼𝐼𝐼𝐼 for each

candidate design
 In each iteration, allocate 𝑁𝑁𝐴𝐴𝐷𝐷𝐷𝐷 to the candidate designs, until the 

computing budget 𝑁𝑁𝐼𝐼𝑇𝑇𝐼𝐼𝐴𝐴𝐿𝐿 is exhausted
 Allocate more budget to the more promising candidate designs
 For the simulation outputs of each candidate design, consider 

the sample mean and sample standard deviation
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Policy Function Approximation

 Optimal Computing Budget Allocation
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Numerical Experiments
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Experimental Setting: Test Instances

 Nodes – location

Depot

Gathering 
point

The Embassy 
Region

5

6

3

4

9
2

1

7

8 10

0
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Experimental Setting: Test Instances

 Nodes – capacity
 Based on Mobike (2017) and expert opinions
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Experimental Setting: Test Instances

Working time 𝒯𝒯: afternoon shift, 3 pm – 8 pm
 Discretized time: 5 minutes per time period

 Time intervals
 ℰ = 3 – 4 pm, 4 – 5 pm, 5 – 6 pm, 6 – 7 pm, 7 – 8 pm .
 Assume that within each time interval 𝑒𝑒 ∈ ℰ, the bike supply and 

demand at each node or on each arc remain stationary and can be 
represented as independent Poisson processes.
 𝜆𝜆𝑒𝑒𝑖𝑖+ and 𝜆𝜆𝑒𝑒𝑖𝑖− are estimated from Mobike (2017).

46

Notation Definition
𝜆𝜆𝑒𝑒𝑖𝑖+ Bike supply rate at node 𝑖𝑖 during time interval 𝑒𝑒
𝜆𝜆𝑒𝑒𝑖𝑖− Bike demand rate at node 𝑖𝑖 during time interval 𝑒𝑒
𝜆𝜆𝑒𝑒𝑖𝑖𝑖𝑖+ Bike supply rate on arc (𝑖𝑖, 𝑗𝑗) during time interval 𝑒𝑒

𝜆𝜆𝑒𝑒𝑖𝑖𝑖𝑖− Bike demand rate on arc (𝑖𝑖, 𝑗𝑗) during time interval 𝑒𝑒
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Experimental Setting: Test Instances

 Nodes – bike supply and demand
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+: evening-peak-supply nodes
−: evening-peak-demand nodes

3 – 5 pm: pre-evening-peak hours
5 – 7 pm: evening-peak hours
7 – 8 pm: post-evening-peak hours



Experimental Setting: Test Instances

 Arcs – bike supply and demand
 During time interval 𝑒𝑒, 
 𝜆𝜆𝑒𝑒+: the total bike supply rate in the network
 𝜈𝜈𝑒𝑒𝐴𝐴: the proportion of bike supply rate to the arcs

 Allocate 𝜈𝜈𝑒𝑒𝐴𝐴𝜆𝜆𝑒𝑒+ to the arcs and the rest 1 − 𝜈𝜈𝑒𝑒𝐴𝐴 𝜆𝜆𝑒𝑒+ to the nodes
 In the base instances, 𝜈𝜈𝑒𝑒𝐴𝐴 = 50%, ∀𝑒𝑒 ∈ ℰ.

 During time interval 𝑒𝑒, 𝜆𝜆𝑒𝑒𝑖𝑖𝑖𝑖+ is set proportional to 𝜆𝜆𝑒𝑒𝑖𝑖+ + 𝜆𝜆𝑒𝑒𝑖𝑖+ .
 In the base instances, 𝜆𝜆𝑒𝑒𝑖𝑖𝑖𝑖− = 𝜆𝜆𝑒𝑒𝑖𝑖𝑖𝑖+ .
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Experimental Setting: Test Instances

 Arcs – travel time
 Divide the travel distance (from Amap) by a constant travel 

speed of 25 km/h.

 Initial bike allocation
 Allocate 𝜓𝜓𝐴𝐴𝑁𝑁0 bikes to the arcs and the rest (1 − 𝜓𝜓𝐴𝐴)𝑁𝑁0 bikes 

to the nodes
 𝑁𝑁0: total number of bikes in the initial network
 𝜓𝜓𝐴𝐴: proportion of bikes on the arcs in the initial network
 In the base instances, 𝑁𝑁0 = 300, 𝜓𝜓𝐴𝐴 = 50%.
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Experimental Setting: Benchmark Policies

 NRP (No-repositioning policy)
 The mover stays at the depot and does nothing.
 To identify the value of repositioning

 STR (Short-term relocation policy)
 Brinkmann et al. (2015, 2019)
 Based on the current bike shortage/surplus of nodes
 Similar to our two-threshold policy in the inventory decision
 Lacks anticipation and does not differentiate supply nodes and 

demand nodes in the routing decision
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Experimental Setting: Benchmark Policies

 STR: parameter 𝛾𝛾, 𝜙𝜙𝐼𝐼𝐼𝐼𝑅𝑅

 Balance range [𝛾𝛾𝑞𝑞𝑖𝑖 , 1 − 𝛾𝛾 𝑞𝑞𝑖𝑖] for any node 𝑖𝑖 ∈ 𝒩𝒩
 At decision epoch 𝑘𝑘
 STR-Balanced node 𝑖𝑖: 𝛾𝛾𝑞𝑞𝑖𝑖 ≤ 𝑛𝑛𝑘𝑘𝑖𝑖 ≤ 1 − 𝛾𝛾 𝑞𝑞𝑖𝑖
 Shortage node 𝑖𝑖: 𝑛𝑛𝑘𝑘𝑖𝑖 < 𝛾𝛾𝑞𝑞𝑖𝑖
 Surplus node 𝑖𝑖:   𝑛𝑛𝑘𝑘𝑖𝑖 > 1 − 𝛾𝛾 𝑞𝑞𝑖𝑖

STR-Balanced: do nothing

Shortage: unload min{𝛾𝛾𝑞𝑞𝑙𝑙𝑘𝑘 − 𝑛𝑛𝑘𝑘𝑙𝑙𝑘𝑘 ,𝑄𝑄 − 𝑄𝑄𝑘𝑘}

Surplus:   load min{𝑛𝑛𝑘𝑘𝑙𝑙𝑘𝑘 − 1 − 𝛾𝛾 𝑞𝑞𝑙𝑙𝑘𝑘 ,𝑄𝑄𝑘𝑘}

Bikes on vehicle

Observe the imbalance and 
restore balance at 𝑙𝑙𝑘𝑘

Inventory 
decision

Shortage nodes if 𝑄𝑄 − (𝑄𝑄𝑘𝑘 − 𝑥𝑥𝑘𝑘𝐿𝐿) > 0

Surplus nodes if 𝑄𝑄𝑘𝑘 − 𝑥𝑥𝑘𝑘𝐿𝐿 > 0

Find the imbalance node set 𝐼𝐼 that 
the vehicle can serve, and choose 

the nearest one

Routing 
decision

Time limit 𝜙𝜙𝐼𝐼𝐼𝐼𝑅𝑅𝜏𝜏𝑙𝑙𝑘𝑘,𝑥𝑥𝑘𝑘
𝐷𝐷

En route 
decision 𝑥𝑥𝑘𝑘𝑅𝑅 = min 𝜙𝜙𝐼𝐼𝐼𝐼𝑅𝑅𝜏𝜏𝑙𝑙𝑘𝑘,𝑥𝑥𝑘𝑘

𝐷𝐷/𝜏𝜏𝐴𝐴,𝑛𝑛𝑘𝑘,𝑙𝑙𝑘𝑘,𝑥𝑥𝑘𝑘
𝐷𝐷 ,𝑄𝑄𝑘𝑘 − 𝑥𝑥𝑘𝑘𝐿𝐿

Bikes en route
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Experimental Setting: Benchmark Policies

 GLA (Greedy look-ahead policy)
 Mimics the mover's status quo practice in major free-floating 

bike sharing companies in China
 Looks into 𝜏𝜏𝐺𝐺𝐿𝐿𝐴𝐴 time ahead
 Makes the routing decision in a greedy way
 The mover chooses the node either with the maximum number of 

bikes or in need of bikes the most.

52© Dr. Lei Zhao @ IE, Tsinghua



Experimental Setting: Parameter Settings
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Selected parameters of policies

 Computational environment
 Implemented in Python 3.6.2
 Conducted on a PC with an Intel Core i7-7700 processor with 

3.60 GHz CPU and 16 GB RAM

54

24 hours

4 hours

Trained 
by OCBA 

Fixed

Once the policy parameters are determined, the time to make a 
dynamic repositioning decision is negligible (in centiseconds for PFA).
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Value of Repositioning

 Overall performance
 Demand satisfaction ratio: ratio of the satisfied demand to the 

total demand

 Value of repositioning of a policy: improvement of the demand 
satisfaction ratio during the working time, compared with NRP

Average demand 
satisfaction ratio

Standard
deviation

Value of 
Repositioning

NRP 77.3% 3.0% -
STR 81.1% 3.2% 3.8%
GLA 85.0% 2.9% 7.7%
PFA 91.2% 2.9% 13.9%
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Value of Repositioning

56

 Satisfied demand
 During pre-evening-peak 

hours
 PFA results in small 

demand losses at the 
evening-peak-supply 
nodes.

Pre-
evening-peak

(3 – 5 pm)

Evening-peak
(5 – 7 pm)

Post-
evening-peak

(3 – 5 pm)
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Value of Repositioning

57

 Satisfied demand
 During pre-evening-peak 

hours
 PFA results in small 

demand losses at the 
evening-peak-supply 
nodes.

 During evening-peak and 
post-evening-peak hours
 Many more satisfied 

demand at the evening-
peak-demand nodes.

Pre-
evening-peak

(3 – 5 pm)

Evening-peak
(5 – 7 pm)

Post-
evening-peak

(3 – 5 pm)
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Value of Repositioning

58

 Satisfied demand
 During pre-evening-peak 

hours
 PFA results in small 

demand losses at the 
evening-peak-supply 
nodes.

 During evening-peak and 
post-evening-peak hours
 Many more satisfied 

demand at the evening-
peak-demand nodes.

 Slightly less satisfied 
demand at the evening-
peak-supply nodes.

Pre-
evening-peak

(3 – 5 pm)

Evening-peak
(5 – 7 pm)

Post-
evening-peak

(3 – 5 pm)
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Value of Repositioning

59

 Policy behavior
 During pre-evening-peak 

hours
 PFA repositions many 

more bikes from the 
evening-peak-supply 
nodes to the evening-
peak-demand nodes.

Pre-
evening-peak

(3 – 5 pm)

Evening-peak
(5 – 7 pm)

Post-
evening-peak

(3 – 5 pm)

© Dr. Lei Zhao @ IE, Tsinghua



Value of Repositioning

60

 Policy behavior
 During pre-evening-peak 

hours
 PFA repositions many 

more bikes from the 
evening-peak-supply 
nodes to the evening-
peak-demand nodes.
 Small demand losses at 

the evening-peak-
supply nodes during 
pre-evening-peak hours

Pre-
evening-peak

(3 – 5 pm)

Evening-peak
(5 – 7 pm)

Post-
evening-peak

(3 – 5 pm)
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Value of Repositioning
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 Policy behavior
 During pre-evening-peak 

hours
 PFA repositions many 

more bikes from the 
evening-peak-supply 
nodes to the evening-
peak-demand nodes.
 Small demand losses at 

the evening-peak-
supply nodes during 
pre-evening-peak hours

 Many more satisfied 
demand at the evening-
peak-demand nodes 
during and post 
evening-peak hours

Pre-
evening-peak

(3 – 5 pm)

Evening-peak
(5 – 7 pm)

Post-
evening-peak

(3 – 5 pm)
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Value of Repositioning

62

 Policy behavior
 During evening-peak and 

post-evening-peak hours
 All the policies load bikes 

from the evening-peak-
supply nodes and unload 
bikes to the evening-peak-
demand nodes.

Pre-
evening-peak

(3 – 5 pm)

Evening-peak
(5 – 7 pm)

Post-
evening-peak

(3 – 5 pm)
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Value of Repositioning

63

 Policy behavior
 During evening-peak and 

post-evening-peak hours
 PFA repositions bikes 

more efficiently, measured 
by the correlation between 
the expected net supply 
and the loading amount 
during 5 – 8 pm.
 PFA (0.94) > GLA (0.93) 

> STR (0.58)

Pre-
evening-peak

(3 – 5 pm)

Evening-peak
(5 – 7 pm)

Post-
evening-peak

(3 – 5 pm)
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Value of Repositioning

 Number of bikes over time
 Compared with other policies, PFA 
 Accumulates fewer bikes at the evening-peak-supply node 8
 Keeps more bikes at the evening-peak-demand node 5
 Already starts repositioning during pre-evening-peak hours (3 – 5 

pm), to prepare for evening-peak hours (5 – 7 pm).
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Impact of Bike Scatteredness

 In a free-floating bike sharing system
 Bikes are not only located at the gathering points, but also 

scattered at other less popular locations.
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Impact of Bike Scatteredness

 Bike scatteredness
 𝜓𝜓𝐴𝐴: proportion of bikes on the arcs in the initial network (i.e., at 

the beginning of the working time)
 In the base instances, 𝜓𝜓𝐴𝐴 = 50%
 Test range: 50%, 60%, 70%, 80%, 90%, 100%
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Impact of Bike Scatteredness

67

 Overall performance
 The demand satisfaction 

ratio decreases in 𝜓𝜓𝐴𝐴

under each policy.

 PFA always achieves the 
highest demand 
satisfaction ratio.
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Impact of Bike Scatteredness

68

 Overall performance
 Compared with NRP, the 

company can benefit from 
adopting any of the 
repositioning policies.

 Such benefit is not very 
significant when there are 
sufficient bikes at the 
nodes at the beginning of 
the working time (𝜓𝜓𝐴𝐴 =
0%).
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Impact of Bike Scatteredness

69

 Policy behavior
 During pre-evening-peak 

hours
 Compared with other 

policies, PFA always 
unloads more bikes to the 
evening-peak-demand 
nodes.

Pre-evening-peak
(3 – 5 pm)
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Impact of Bike Scatteredness

70

 Policy behavior
 During pre-evening-peak 

hours
 Compared with other 

policies, PFA always 
unloads more bikes to the 
evening-peak-demand 
nodes.

 When there are few bikes 
at the nodes at the 
beginning of the working 
time (i.e., 𝜓𝜓𝐴𝐴 ≥ 75%), PFA 
collects more scattered 
bikes from the arcs.

Pre-evening-peak
(3 – 5 pm)
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Impact of Bike Scatteredness

71

 Policy behavior
 As a result, PFA prepares 

more bikes at the evening-
peak-demand nodes at 5 
pm.

5 pm
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Summary

 Problem characteristics
 Dynamic intra-cell reposition of bikes among gathering points
 Collection of bikes scattered along the paths
 Under stochastic demands both at the gathering points and 

along the paths
 Model: Markov Decision Process (MDP)
 Algorithm: Policy Function Approximation (PFA)
 Optimal Computing Budget Allocation (OCBA) to search for 

optimal policy parameters
 Numerical experiments based on a real data set
 Outperformance of PFA against benchmark policies
 Value of repositioning
 Impact of bike scatteredness
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