Dynamic Intra-Cell Repositioning in Free-Floating Bike Sharing Systems

Xue Luo, Li Li, and Lei Zhao, Tsinghua University Jianfeng Lin, Meituan

Freight Mobility Research Institute, Florida Atlantic University December 15, 2021

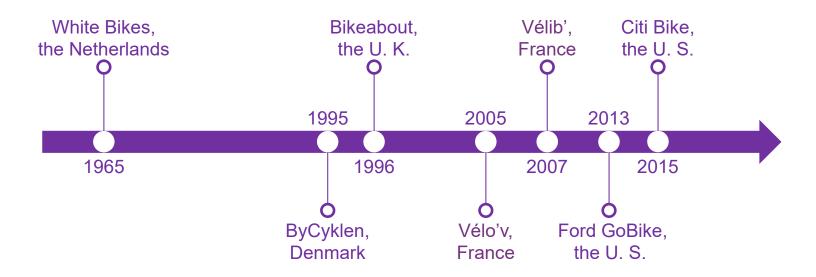
Operations & Services Research (TOpS) Laboratory Department of Industrial Engineering Tsinghua University, China

Introduction

Luo, X., L. Li, L. Zhao, and J. Lin (2021). Dynamic Intra-Cell Repositioning in Free-Floating Bike Sharing Systems using Approximate Dynamic Programming. *Transportation Science*, accepted.

Station-Based Bike Sharing Systems

TOpS



Source: DeMaio (2009), official sites

Bike Sharing Systems

	Station-based	Free-floating
Investment cost ¹	High	Low
User convenience ¹	Low	High
Scale	Over 7000 systems with 800,000 bikes in 2015 ²	74 systems with more than 23 million bikes in 2018 ³

Source: ¹Caggiani et al. (2018), ²Laporte et al. (2015), ³State Information Center (2018) nypost.com (left figure), Seattle Department of Transportation (right figure)

Free-Floating Bike Sharing Systems

TOpS

☐ Most users ride bikes for short trips.

	Li et al. (2020)	Xing et al. (2020)
Area	Downtown and surrounding areas of Shanghai, China	Metropolitan area of Shanghai, China
Time	August 2016	August 2016
Data set	A Mobike data set of 102,361 trips	A Mobike data set of 1,023,603 trips
Findings	The majority of bike trip distances are within 2 km. The most frequent trip has a length of 1.2 – 1.4 km.	The majority of bike trip distances are within 3 km. The average trip distance is approximately 1.8 km.

Free-Floating Bike Sharing Systems

⊺OpS

☐ Partition of cells

- A free-floating bike sharing company usually partitions the operating area into cells.
 - ☐ Factors to consider: demand density and distribution, trip patterns, geographic and demographic characteristics, etc.
 - \square Cell size: 2 km \times 2 km (Hellobike), 3 km \times 3 km (Meituan), etc.

Source: iResearch (2017), Hellobike (2018), Hellobike (2019), Xinhua News (2018)

Free-Floating Bike Sharing Systems

☐ Spatiotemporal imbalance of bike flows

Shortage of bikes at some locations & overage at some others, depending on the time of the day

TOpS

- ☐ Static repositioning vs. dynamic repositioning
 - Static repositioning: during the night
 - Dynamic repositioning: during the daytime
- ☐ Intra-cell repositioning vs. inter-cell redistribution
 - In the design of cells, the company tries to contain the majority of bike trips within each cell.
 - Intra-cell repositioning
 - One or several movers to reposition bikes within each cell to counteract the spatiotemporal imbalance of bike flows within the cell.
 - ☐ Usually performed with electronic tricycles
 - Inter-cell redistribution
 - □ Bike trips traveling across cells → "escaping bikes" → needs to move bikes across cells.
 - ☐ Usually performed with a larger capacity vehicle, e.g., truck

⊺OpS

- ☐ Intra-cell repositioning vs. inter-cell redistribution
 - When a company enters a new market
 - Initial allocation of bikes may not match the user demand in the cells well.
 - ☐ Inter-cell redistribution plays a major role and is used frequently.
 - When the market stabilizes
 - ☐ Allocation of bikes among the cells reasonably well, based on a good knowledge of the user demand.
 - ☐ Inter-cell redistribution is used less frequently.
 - ☐ Intra-cell repositioning becomes to play a major role.
 - It is always necessary for the company to efficiently operate both intra-cell repositioning and inter-cell redistribution.

☐ Intra-cell repositioning by a mover

Source: Photos taken by Xue Luo in 2019 and by Lei Zhao in 2021

□ Intra-cell repositioning

- Clustered bikes around subway stations, office buildings, shopping malls, etc., referred to as gathering points.
- Scattered bikes along the paths between gathering points

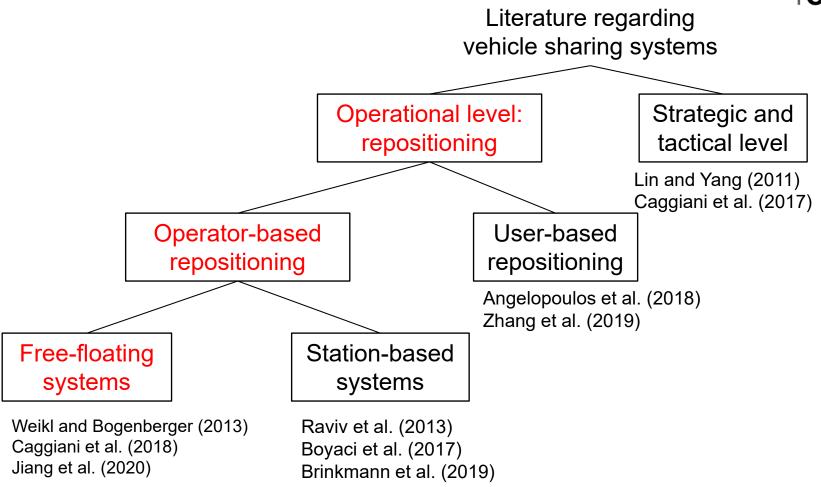
⊤OpS

- □ Intra-cell repositioning
 - Reposition bikes among gathering points (pre-selected by the company)
 - Collect scattered bikes along the paths at the same time
 - To satisfy as many demand at the gathering points as possible

Literature Review

Literature Review

⊤OpS



Literature Review

□ Papers on repositioning in free-floating systems

Paper	Repositioning	Demand	Problem characteristics	Solution approach
Weikl and Bogenberger (2015) Liu, Szeto, and Ho (2018)	Static Static	Deterministic Deterministic	Reposition among virtual stations (zones) + consider vehicle distribution inside each zone Reposition only among virtual stations	Branch-and-cut + heuristics Enhanced CRO
Usama, Shen, and Zahoor (2019)	Static	Deterministic	Reposition only among virtual stations	Branch-and-cut
Caggiani et al. (2018)	Dynamic	Deterministic	Reposition among virtual stations (zones) + consider vehicle distribution inside each zone	Genetic algorithm
Benjaafar et al. (2019) Hua et al. (2019) Warrington and Ruchti (2019) He, Hu, and Zhang (2020) He et al. (2020) Jiang, Lei, and Ouyang (2020)	Dynamic Dynamic Dynamic Dynamic Dynamic Dynamic	Stochastic Stochastic Stochastic Stochastic Stochastic	Reposition only among virtual stations Reposition among virtual stations (zones) + consider vehicle distribution inside each zone	Cutting-plane-based ADP LR + SDDP SPAR DRO + ELDR Lower and upper bounds An iterative approach
Our paper	Dynamic	Stochastic	Reposition among gathering points + collect scattered bikes on arcs	PFA

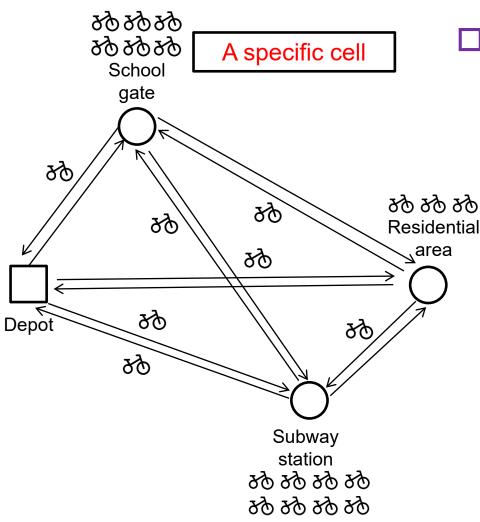
^{*}ADP: Approximate dynamic programming; CRO: Chemical reaction optimization; DRO: Distributionally robust optimization;

ELDR: Enhanced linear decision rule; LR: Lagrangian relaxation; PFA: Policy function approximation;

SDDP: Stochastic dual dynamic programming; SPAR: Separable, projective, approximation routine.

Problem Description and Model Formulation

Problem Description

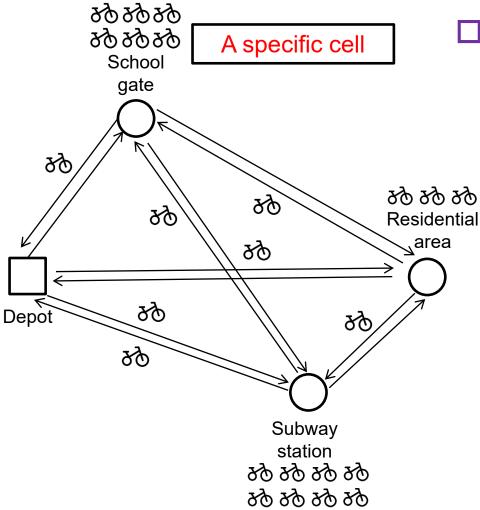


- \square Complete graph G = $(\mathcal{N}',\mathcal{A})$
 - Node set $\mathcal{N}' = \mathcal{N} \cup \{0\}$
 - \square Gathering points \mathcal{N} , depot 0
 - \square Capacity q_i , $\forall i \in \mathcal{N}$
 - Arc set A
 - \square $(i,j) \in \mathcal{A}$: a path (where bikes are scattered) the mover travels between nodes i & j
 - □ No capacity limit
 - Deterministic travel time τ_{ij}

Bikes randomly arrive and depart at gathering points & on arcs

Problem Description

⊤OpS



- Mover
 - A vehicle of capacity Q
 - Loads bikes onto / unloads bikes from the vehicle at nodes
 - \square τ^N : unit loading / unloading time
 - Loads bikes onto the vehicle on arcs
 - \square τ^A : unit loading time

Problem Description

opOpS

- \square System dynamics during the mover's working time $\mathcal T$
 - The mover starts from the depot with an empty vehicle.
 - Each time arriving at a node (decision epoch), the mover decides
 - □ Inventory: # bikes to load onto (+) / unload from (-) the vehicle at the current node
 - ☐ Routing: the next node to visit
 - ☐ En route: # bikes expected to load onto the vehicle on the arc to the next node
 - The mover returns to the depot at the end of the working time.

To satisfy as many demand as possible at all the nodes during the working time

 \square Decision epoch k: upon arrival at a node

- \square State variable $S_k = (t_k, L_k, N_k^N, N_k^A)$
 - \blacksquare Current time t_k
 - Vehicle attributes $L_k = (l_k, Q_k)$
 - \square Node l_k
 - \square Remaining capacity Q_k
 - Number of bikes at each node $N_k^N = (n_{ki})_{\forall i \in \mathcal{N}}$
 - Number of bikes on each arc $N_k^A = (n_{kij})_{\forall (i,j) \in \mathcal{A}}$

TOpS

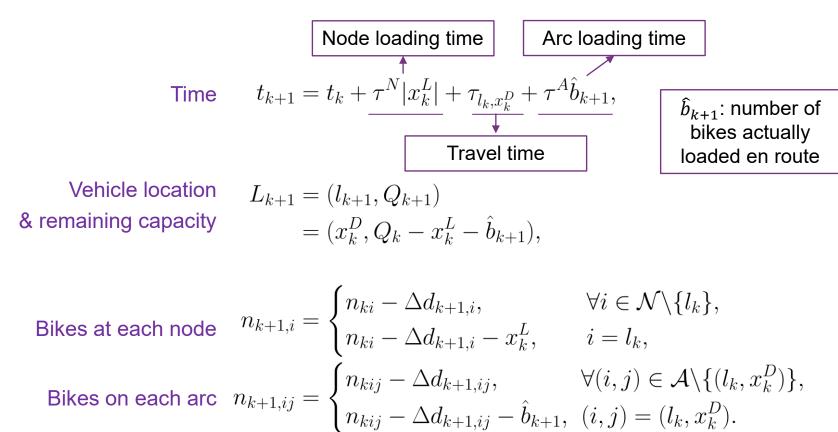
- \square Decision variable $x_k = (x_k^L, x_k^D, x_k^R)$
 - Inventory decision $x_k^L \in \mathbb{Z}$: number of bikes to load onto (+) / unload from (-) the vehicle at the current node k
 - **Routing** decision $x_k^D \in \mathcal{N}$: the next node to visit
 - En route decision $x_k^R \in \mathbb{N}$: number of bikes expected to load on the arc to the next node
 - Constraints
 - ☐ Remaining capacity & bikes on the vehicle
 - □ Remaining capacity & bikes at the current node
 - ☐ Bikes currently scattered on the arcs
- \square Exogenous information $W_{k+1} = (\Delta D_{k+1}^N, \Delta D_{k+1}^A)$

Number of net bike departures at node *i*

Number of net bike departures on arc (i, j)

TOpS

Transition function



⊤OpS

Contribution function

■ Total demand satisfied at all the gathering points between decision epochs k and k+1

$$\hat{C}_{k+1}(S_k, x_k, W_{k+1}) = \sum_{i \in \mathcal{N}} f_{k+1,i}(S_k, x_k, W_{k+1})$$

 \square Expected contribution $C_k(S_k, x_k)$

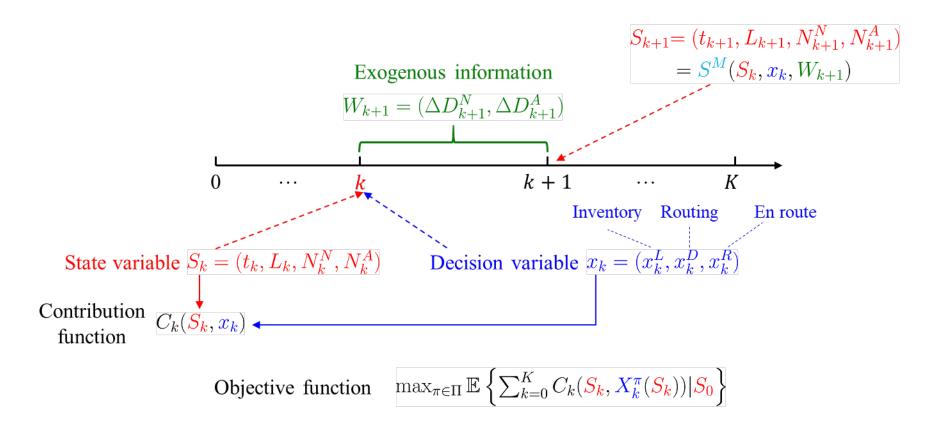
$$C_k(S_k, x_k) = \mathbb{E}\left\{\hat{C}_{k+1}(S_k, x_k, W_{k+1}) | S_k\right\}$$

- Objective function
 - Maximize the expected total demand satisfied at all the gathering points during the working time

$$\max_{\pi \in \Pi} \mathbb{E} \left\{ \sum_{k=0}^{K} C_k(S_k, X_k^{\pi}(S_k)) | S_0 \right\}$$

TOpS

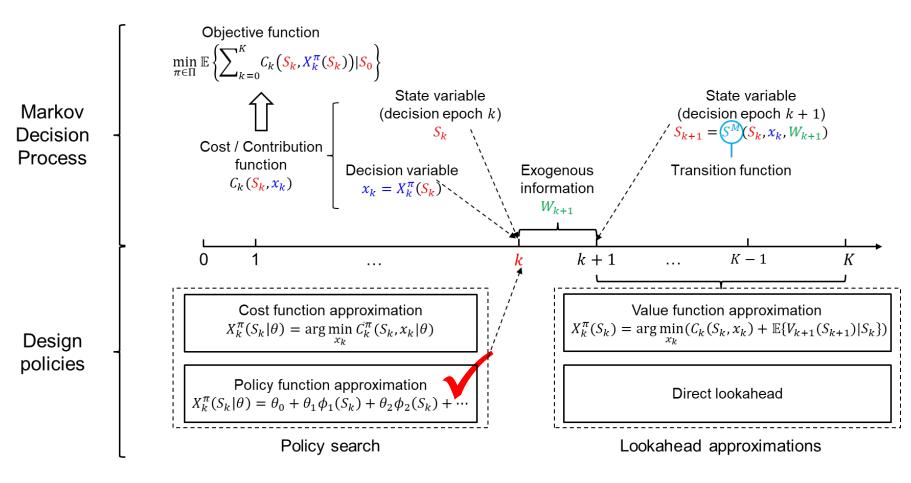
Illustration



Solution Methodology

A Unified Framework for Stochastic Optimization

⊺OpS



Source: Powell (2019, 2021)

TOpS

- □ Inventory decision
 - Two-threshold policy (L_{ti}, U_{ti})
 - \square Try to keep the number of bikes at node i at time t within $[L_{ti}, U_{ti}]$
 - At decision epoch k
 - \square Unload bikes if $n_{kl_k} < L_{t_kl_k}$, $x_k^L = -\min\{L_{t_kl_k} n_{kl_k}, Q Q_k\}$

Bring the inventory level up to $L_{t_k l_k}$

No more than the remaining bikes on the vehicle

 \square Load bikes if $n_{kl_k} > U_{t_kl_k}$, $x_k^L = \min\{n_{kl_k} - U_{t_kl_k}, Q_k\}$

Bring the inventory level down to $U_{t_k l_k}$

No more than the remaining capacity of the vehicle

□ Do nothing otherwise

⊤OpS

- □ Inventory decision
 - How to specify (L_{ti}, U_{ti}) for each node i at each time t?
 - \square Five parameters $(\underline{\theta}^+, \overline{\theta}^+), (\underline{\theta}^-, \overline{\theta}^-), \tau^L$

Distinguish supply nodes, demand nodes, and balanced nodes

$$\begin{cases} \text{Supply nodes: } \lambda_{ti}^{INST,+} > \lambda_{ti}^{INST,-} \\ \text{Demand nodes: } \lambda_{ti}^{INST,+} < \lambda_{ti}^{INST,-} \\ \text{Balanced nodes: } \lambda_{ti}^{INST,+} = \lambda_{ti}^{INST,-} \end{cases}$$

Notation	Definition
$\lambda_{ti}^{INST,+}$	Instantaneous bike supply rate at node i at time t
$\lambda_{ti}^{INST,-}$	Instantaneous bike demand rate at node i at time t

OpS

Inventory decision

- How to specify (L_{ti}, U_{ti}) for each node i at each time t?
 - \square Five parameters $(\theta^+, \bar{\theta}^+)$, $(\theta^-, \bar{\theta}^-)$, τ^L

Distinguish supply nodes, demand nodes, and balanced nodes

Supply nodes: $\lambda_{ti}^{INST,+} > \lambda_{ti}^{INST,-}$ Demand nodes: $\lambda_{ti}^{INST,+} < \lambda_{ti}^{INST,-}$ Balanced nodes: $\lambda_{ti}^{INST,+} = \lambda_{ti}^{INST,-}$

Determine $(\underline{\theta}_{ti}, \theta_{ti})$ for node iat time t

 $(\underline{\theta}_{ti}, \overline{\theta}_{ti}) = \begin{cases} (\underline{\theta}^+, \overline{\theta}^+), & \text{if } i \text{ is a supply or balanced node at } t, \\ (\underline{\theta}^-, \overline{\theta}^-), & \text{if } i \text{ is a demand node at } t. \end{cases}$

Calculate (L_{ti}, U_{ti}) using $(\underline{\theta}_{ti}, \overline{\theta}_{ti})$ and $\pmb{ au^L}$

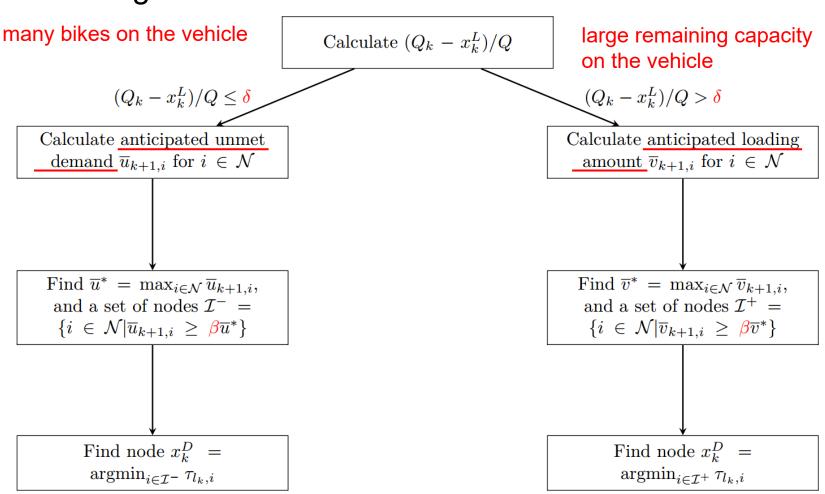
$$L_{ti} = \min \left\{ q_i, \int_t^{t+\tau^L} \alpha_{t'i} \underline{\theta}_{t'i} dt' \right\},$$

$$U_{ti} = \min \left\{ q_i, \int_t^{t+\tau^L} \alpha_{t'i} \overline{\theta}_{t'i} dt' \right\},$$

where
$$\alpha_{t'i} = \begin{cases} \frac{1}{|\lambda_{t'i}^{INST,+} - \lambda_{t'i}^{INST,-}| + 1}, & \text{if node } i \text{ is a supply or balanced node at time } t', \\ |\lambda_{t'i}^{INST,+} - \lambda_{t'i}^{INST,-}| + 1, & \text{if node } i \text{ is a demand node at time } t'. \end{cases}$$

TOpS

Routing decision

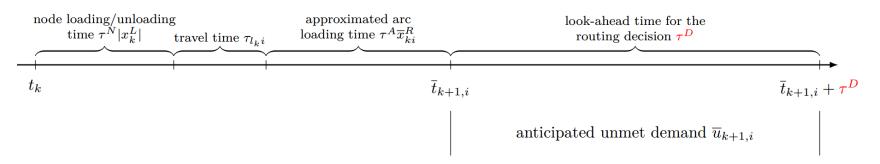


⊤OpS

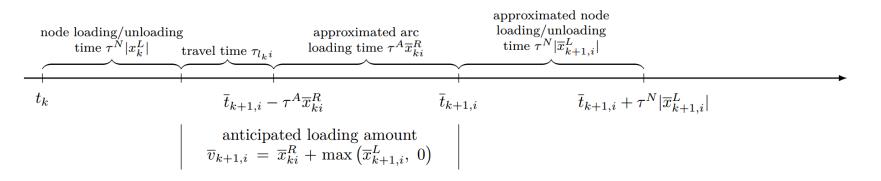
Routing decision

lacksquare Anticipated unmet demand $\overline{u}_{k+1,i}$

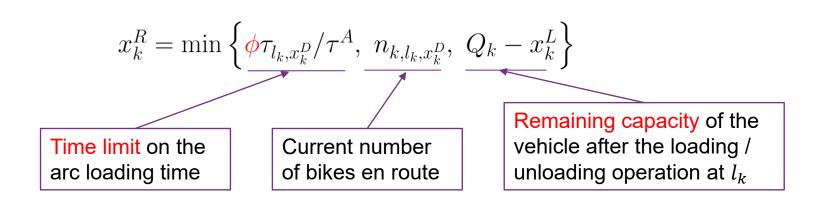
 τ^{D} : look-ahead time for the routing decision



Anticipated loading amount $\overline{v}_{k+1,i}$



□ En route decision



☐ How to efficiently choose among candidate parameters?

	Notation	Definition	
	$(\underline{\theta}^+, \overline{\theta}^+)$	Inventory threshold parameters for supply and balanced nodes	
Inventory -	$(\underline{\theta}^-, \overline{\theta}^-)$	Inventory threshold parameters for demand nodes	
	$ au^L$	Look-ahead time for the inventory decision	
Γ	$ au^D$	Look-ahead time for the routing decision	
Routing -	δ	Capacity threshold parameter	
	β	Set size parameter	
En route	ϕ	En route time limit parameter	

- ⊺OpS
- □ Optimal Computing Budget Allocation (Chen and Lee, 2011)
 - Maximize the probability of correct selection $P\{CS\}$ with a fixed computing budget N^{TOTAL}
 - Procedure
 - \square Allocate an initial number of simulation replications N^{INIT} for each candidate design
 - □ In each iteration, allocate N^{ADD} to the candidate designs, until the computing budget N^{TOTAL} is exhausted
 - Allocate more budget to the more promising candidate designs
 - For the simulation outputs of each candidate design, consider the sample mean and sample standard deviation

TOpS

Optimal Computing Budget Allocation

```
Algorithm 1: OCBA
      Input: S, N^{TOTAL}, N^{ADD}, N^{INIT}.
      Output: Candidate design b \in \mathcal{S}.
 1 n \leftarrow 0.
 2 Perform N^{INIT} simulation replications for all the designs, N_1^n = N_2^n = \cdots = N_{|S|}^n = N^{INIT}.
 3 while \sum_{i=1}^{|S|} N_i^n < N^{TOTAL} do
            for i = 1, 2, ..., |S| do
                  Calculate the sample mean \overline{M}_i^n and sample standard deviation \sigma_i^n using the simulation output
             M(\hat{s}_i, \omega_{ij}), j = 1, 2, \dots, N_i^n.
            Find b = \arg\min_{i} \overline{M}_{i}^{n}.
 6
            Increase the computing budget by N^{ADD} and calculate the new budget allocation N_1^{n+1}, N_2^{n+1}, \ldots
              N_{|S|}^{n+1}, according to
                                                                \frac{N_i^{n+1}}{N_i^{n+1}} = \left(\frac{\sigma_i^n(\overline{M}_b^n - \overline{M}_j^n)}{\sigma_i^n(\overline{M}_b^n - \overline{M}_i^n)}\right)^2, \ \forall i \neq j \neq b,
                                                                N_b^{n+1} = \sigma_b^n \sqrt{\sum_{i=1, i \neq b}^{|\mathcal{S}|} \left(\frac{N_i^{n+1}}{\sigma_i^n}\right)^2},
                                                            \sum_{i=1}^{|\mathcal{S}|} N_i^{n+1} = \sum_{i=1}^{|\mathcal{S}|} N_i^n + N^{ADD}.
            for i = 1, 2, ..., |S| do
              Perform additional \max\{N_i^{n+1} - N_i^n, 0\} simulations.
            n \leftarrow n + 1.
11 return b.
```

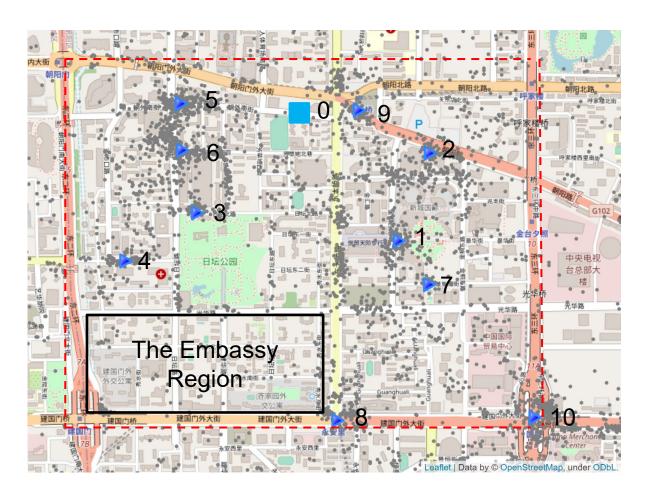

Numerical Experiments

⊤OpS

■ Nodes – location

Depot

Gathering point



TOpS

- □ Nodes capacity
 - Based on Mobike (2017) and expert opinions

Index	Location	Capacity	Description
0	Depot	/	Depot
1	The Place	65	Shopping malls
2	Chaoyangmenwai SOHO	55	Office buildings
3	Ritan International Trade Center	60	Office buildings
4	Tianya Building	50	Office buildings
5	Kuntai International Mansion	80	Residential community
6	Yijingyuan Apartment	70	Residential community
7	Prosper Center	120	Office buildings
8	Yonganli Subway Station	85	Subway station
9	Dongda Bridge Bus Station	50	Bus station
10	Guomao	175	Subway station

TOpS

- \square Working time \mathcal{T} : afternoon shift, 3 pm 8 pm
 - Discretized time: 5 minutes per time period

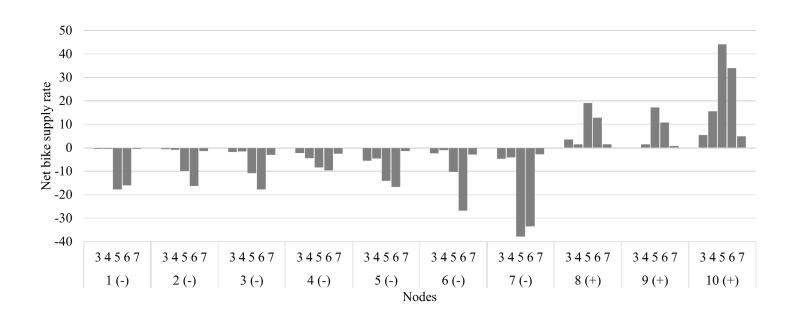
Time intervals

- \square $\mathcal{E} = \{3 4 \text{ pm}, 4 5 \text{ pm}, 5 6 \text{ pm}, 6 7 \text{ pm}, 7 8 \text{ pm}\}.$
- □ Assume that within each time interval $e \in \mathcal{E}$, the bike supply and demand at each node or on each arc remain stationary and can be represented as independent Poisson processes.
 - λ_{ei}^+ and λ_{ei}^- are estimated from Mobike (2017).

Notation	Definition
λ_{ei}^+	Bike supply rate at node i during time interval e
λ_{ei}^-	Bike demand rate at node $\it i$ during time interval $\it e$
λ_{eij}^+	Bike supply rate on $arc(i,j)$ during time interval e
λ_{eij}^-	Bike demand rate on arc (i,j) during time interval e

⊤OpS

■ Nodes – bike supply and demand



3 – 5 pm: pre-evening-peak hours

5 – 7 pm: evening-peak hours

7 – 8 pm: post-evening-peak hours

+: evening-peak-supply nodes

-: evening-peak-demand nodes

⊤OpS

- □ Arcs bike supply and demand
 - \blacksquare During time interval e,
 - \square λ_e^+ : the total bike supply rate in the network
 - \square v_e^A : the proportion of bike supply rate to the arcs
 - Allocate $v_e^A \lambda_e^+$ to the arcs and the rest $(1 v_e^A)\lambda_e^+$ to the nodes
 - □ In the base instances, $v_e^A = 50\%$, $\forall e \in \mathcal{E}$.
 - During time interval e, λ_{eij}^+ is set proportional to $\lambda_{ei}^+ + \lambda_{ej}^+$.
 - \square In the base instances, $\lambda_{eij}^- = \lambda_{eij}^+$.

⊤OpS

- □ Arcs travel time
 - Divide the travel distance (from Amap) by a constant travel speed of 25 km/h.
- ☐ Initial bike allocation
 - Allocate $\psi^A N^0$ bikes to the arcs and the rest $(1 \psi^A)N^0$ bikes to the nodes
 - \square N^0 : total number of bikes in the initial network
 - $\square \psi^A$: proportion of bikes on the arcs in the initial network
 - \square In the base instances, $N^0 = 300$, $\psi^A = 50\%$.

Experimental Setting: Benchmark Policies

- □ NRP (No-repositioning policy)
 - The mover stays at the depot and does nothing.
 - To identify the value of repositioning
- ☐ STR (Short-term relocation policy)
 - Brinkmann et al. (2015, 2019)
 - Based on the current bike shortage/surplus of nodes
 - Similar to our two-threshold policy in the inventory decision
 - Lacks anticipation and does not differentiate supply nodes and demand nodes in the routing decision

Experimental Setting: Benchmark Policies

OpS

- \square STR: parameter γ , ϕ^{STR}
 - Balance range $[\gamma q_i, (1 \gamma)q_i]$ for any node $i \in \mathcal{N}$
 - At decision epoch *k*
 - \square STR-Balanced node *i*: $\gamma q_i \leq n_{ki} \leq (1 \gamma)q_i$
 - \square Shortage node i: $n_{ki} < \gamma q_i$
 - \square Surplus node *i*: $n_{ki} > (1 \gamma)q_i$

Inventory Observe the imbalance and decision restore balance at l_k Find the imbalance node set I that Routing the vehicle can serve, and choose decision the nearest one En route Time limit $\phi^{STR} \tau_{l_k, \chi_k^D}$

Bikes on vehicle STR-Balanced: do nothing Shortage: unload $\min\{\gamma q_{l_k} - n_{kl_k}, \underline{Q - Q_k}\}$ Surplus: load min $\{n_{kl_k} - (1 - \gamma)q_{l_k}, Q_k\}$

Shortage nodes if $Q - (Q_k - x_k^L) > 0$ Surplus nodes if $Q_k - x_k^L > 0$

Bikes en route $x_k^R = \min \left\{ \phi^{STR} \tau_{l_k, x_k^D} / \tau^A, n_{k, l_k, x_k^D}, Q_k - x_k^L \right\}$

decision

Experimental Setting: Benchmark Policies

TOpS

- □ GLA (Greedy look-ahead policy)
 - Mimics the mover's status quo practice in major free-floating bike sharing companies in China
 - Looks into τ^{GLA} time ahead
 - Makes the routing decision in a greedy way
 - □ The mover chooses the node either with the maximum number of bikes or in need of bikes the most.

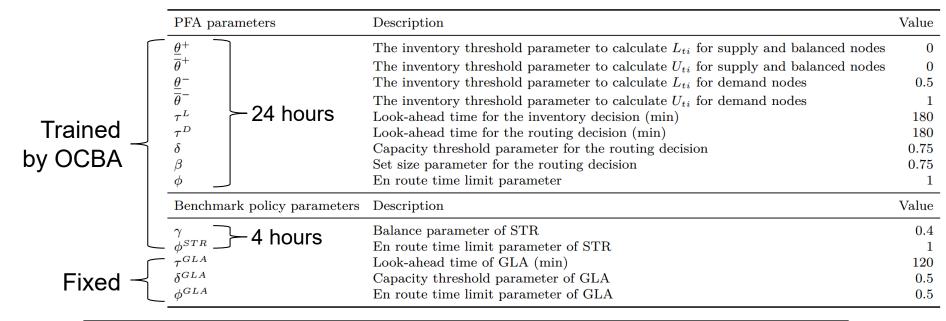
Experimental Setting: Parameter Settings

Instance parameters	Description	Value	
N^{EVAL}	Number of replications for policy evaluation	200	
N^0	Total number of bikes in the initial network	300	
Q	Full capacity of the vehicle	25	
$Q_0 \atop au^A$	Initial remaining capacity of the vehicle	25	
	Unit loading time on any arc (min)	0.5	
$ au^N$	Unit loading/unloading time at any node (min)	0.25	
$ au^U$	Length of each discretized time period (min)	5	
$ au^W$	Waiting time (min)	5	
ψ^A	Proportion of bikes on the arcs in the initial network	50%	
$\nu_e^A, e \in \mathcal{E}$	Proportion of bike supply rate to the arcs during time interval e	50%	
PFA parameters	Description	Value	
$\frac{\underline{\theta}^+}{\overline{\theta}^+} - \underline{\theta}^+$	The inventory threshold parameter to calculate L_{ti} for supply and balanced nodes	{0, 0.5, 1}	
$\overline{\theta}^+ - \underline{\theta}^+$	Gap between inventory threshold parameters for supply and balanced nodes	$\{0, 0.5, 1\}$	
θ^-	The inventory threshold parameter to calculate L_{ti} for demand nodes	$\{0, 0.5, \dots, 2\}$	
$\frac{-}{\theta}$ - θ	Gap between inventory threshold parameters for demand nodes	$\{0, 0.5, \dots, 2\}$	
τ^L	Look-ahead time for the inventory decision (min)	{60, 120, 180}	
τ^D	Look-ahead time for the routing decision (min)	{60, 120, 180}	
δ	Capacity threshold parameter for the routing decision	$\{0.25, 0.5, 0.75\}$	
β	Set size parameter for the routing decision	{0.25, 0.5, 0.75}	
ϕ	En route time limit parameter	$\{0.25, 0.5, 0.75, 1\}$	
Benchmark policy parameters	Description	Value	
γ	Balance parameter of STR	$\{0, 0.1, \dots, 0.5\}$	
$\phi^{\prime}STR$	En route time limit parameter of STR	$\{0.25, 0.5, 0.75, 1\}$	
$ au^{GLA}$	Look-ahead time of GLA (min)	120	
δ^{GLA}	Capacity threshold parameter of GLA	0.5	
ϕ^{GLA}	En route time limit parameter of GLA	0.5	
OCBA parameters	Description	Value	
N^{TOTAL}	Total number of replications	500,000	
N^{INIT}	Initial number of replications for each design	20	
N^{ADD}	Additional number of replications in each iteration	100	

Selected parameters of policies

TOpS

- Computational environment
 - Implemented in Python 3.6.2
 - Conducted on a PC with an Intel Core i7-7700 processor with 3.60 GHz CPU and 16 GB RAM



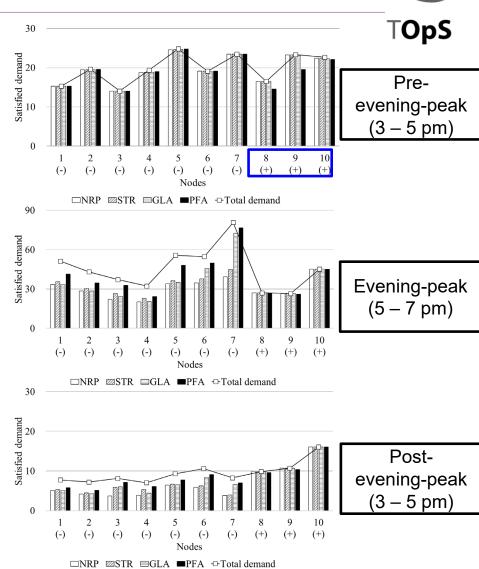
Once the policy parameters are determined, the time to make a dynamic repositioning decision is negligible (in centiseconds for PFA).

Overall performance

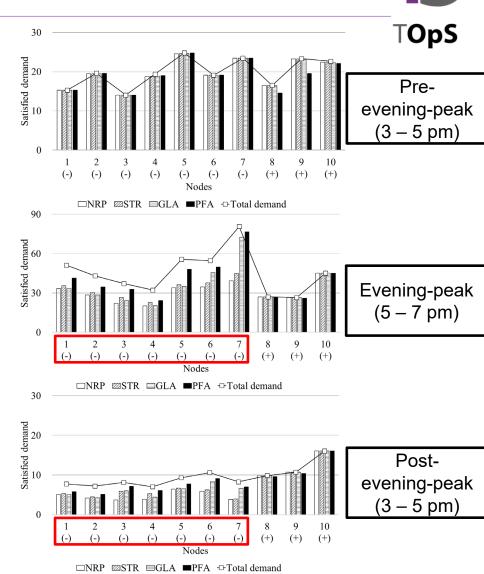
- Demand satisfaction ratio: ratio of the satisfied demand to the total demand
- Value of repositioning of a policy: improvement of the demand satisfaction ratio during the working time, compared with NRP

	Average demand	Standard	Value of
	satisfaction ratio	deviation	Repositioning
NRP	77.3%	6 3.0 ⁹	-
STR	81.1%	6 3.2 ⁹	3.8%
GLA	85.0%	6 2.9%	7.7%
PFA	91.2%	6 2.9%	13.9%

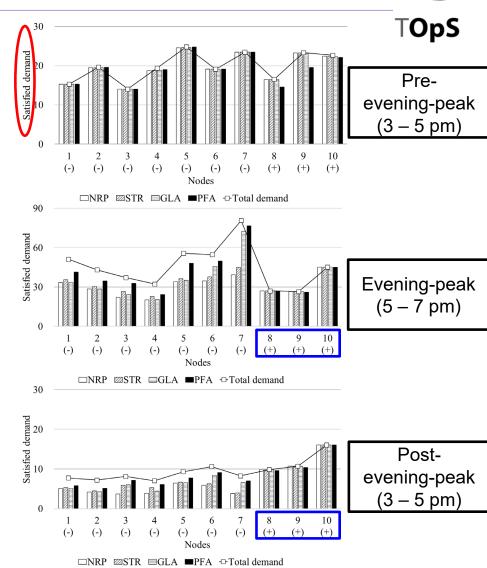
- Satisfied demand
 - During pre-evening-peak hours
 - □ PFA results in small demand losses at the evening-peak-supply nodes.



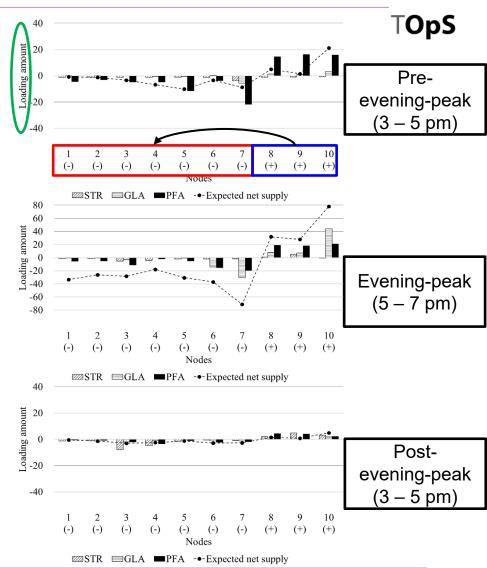
- Satisfied demand
 - During pre-evening-peak hours
 - □ PFA results in small demand losses at the evening-peak-supply nodes.
 - During evening-peak and post-evening-peak hours
 - Many more satisfied demand at the eveningpeak-demand nodes.



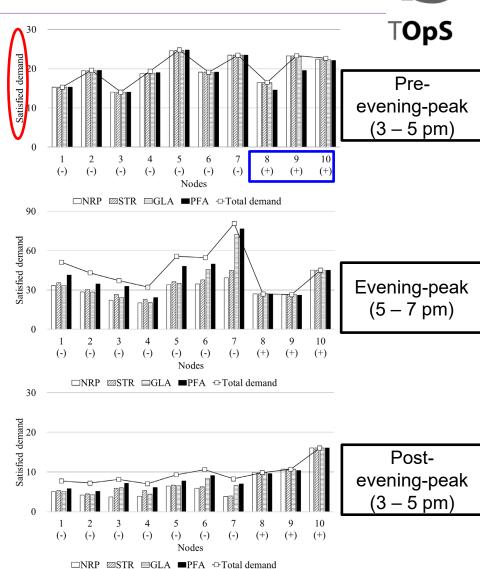
- Satisfied demand
 - During pre-evening-peak hours
 - □ PFA results in small demand losses at the evening-peak-supply nodes.
 - During evening-peak and post-evening-peak hours
 - Many more satisfied demand at the eveningpeak-demand nodes.
 - Slightly less satisfied demand at the evening-peak-supply nodes.



- □ Policy behavior
 - During pre-evening-peak hours
 - □ PFA repositions many more bikes from the evening-peak-supply nodes to the eveningpeak-demand nodes.

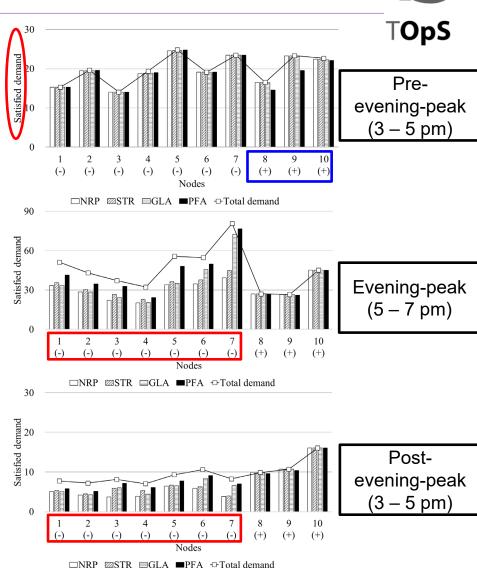


- □ Policy behavior
 - During pre-evening-peak hours
 - □ PFA repositions many more bikes from the evening-peak-supply nodes to the eveningpeak-demand nodes.
 - Small demand losses at the evening-peaksupply nodes during pre-evening-peak hours



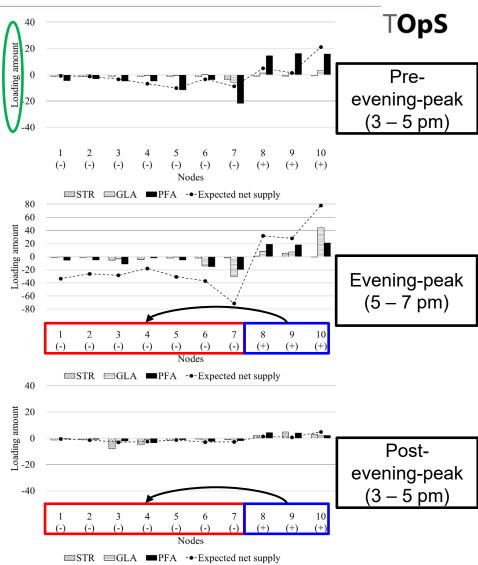
Policy behavior

- During pre-evening-peak hours
 - □ PFA repositions many more bikes from the evening-peak-supply nodes to the eveningpeak-demand nodes.
 - Small demand losses at the evening-peaksupply nodes during pre-evening-peak hours
 - Many more satisfied demand at the eveningpeak-demand nodes during and post evening-peak hours



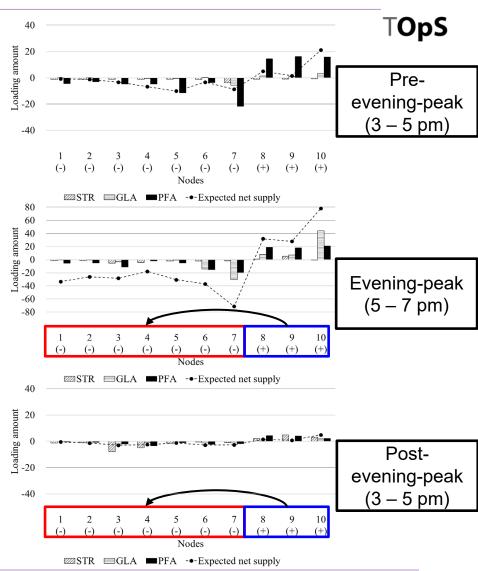
□ Policy behavior

- During evening-peak and post-evening-peak hours
 - ☐ All the policies load bikes from the evening-peak-supply nodes and unload bikes to the evening-peak-demand nodes.



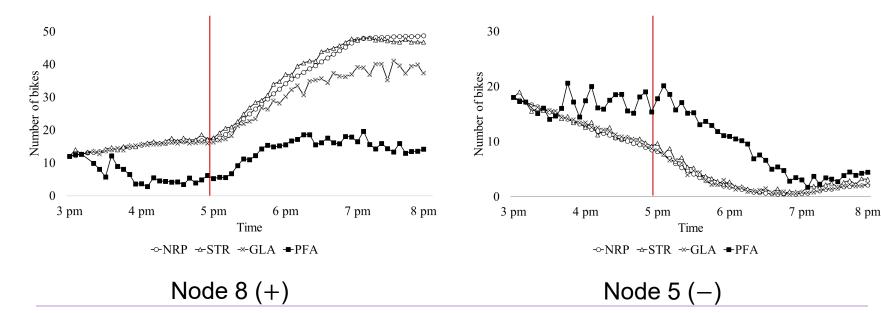
□ Policy behavior

- During evening-peak and post-evening-peak hours
 - □ PFA repositions bikes more efficiently, measured by the correlation between the expected net supply and the loading amount during 5 – 8 pm.
 - PFA (0.94) > GLA (0.93)> STR (0.58)

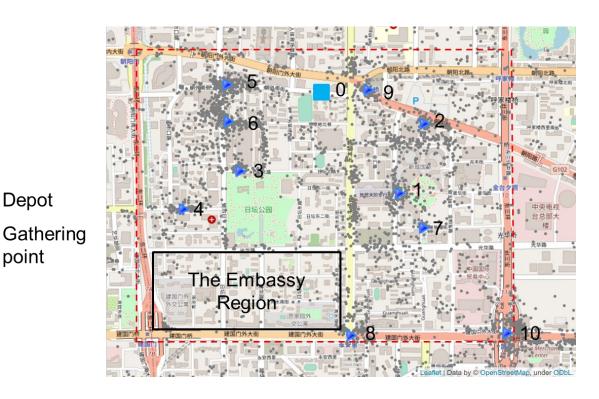


TOpS

- Number of bikes over time
 - Compared with other policies, PFA
 - ☐ Accumulates fewer bikes at the evening-peak-supply node 8
 - ☐ Keeps more bikes at the evening-peak-demand node 5
 - \square Already starts repositioning during pre-evening-peak hours (3 5 pm), to prepare for evening-peak hours (5 7 pm).



- □ In a free-floating bike sharing system
 - Bikes are not only located at the gathering points, but also scattered at other less popular locations.



© Dr. Lei Zhao @ IE, Tsinghua

Depot

point

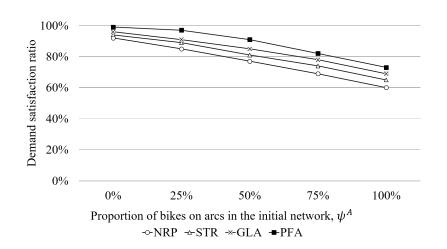
TOpS

- □ Bike scatteredness
 - ψ^A : proportion of bikes on the arcs in the initial network (i.e., at the beginning of the working time)
 - \square In the base instances, $\psi^A = 50\%$
 - ☐ Test range: {50%, 60%, 70%, 80%, 90%, 100%}

⊺OpS

□ Overall performance

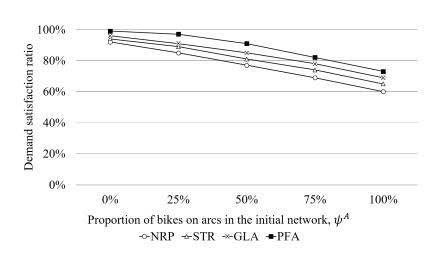
- The demand satisfaction ratio decreases in ψ^A under each policy.
- PFA always achieves the highest demand satisfaction ratio.



⊤OpS

Overall performance

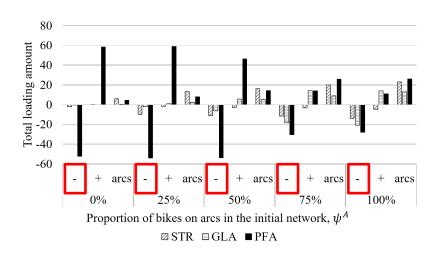
- Compared with NRP, the company can benefit from adopting any of the repositioning policies.
- Such benefit is not very significant when there are sufficient bikes at the nodes at the beginning of the working time ($\psi^A = 0\%$).



⊺OpS

□ Policy behavior

- During pre-evening-peak hours
 - □ Compared with other policies, PFA always unloads more bikes to the evening-peak-demand nodes.

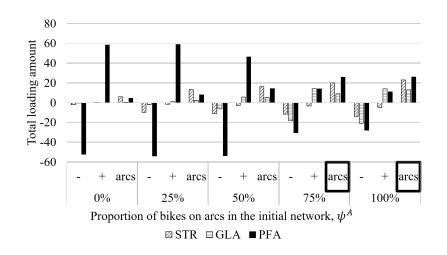


Pre-evening-peak (3 – 5 pm)

⊤OpS

Policy behavior

- During pre-evening-peak hours
 - Compared with other policies, PFA always unloads more bikes to the evening-peak-demand nodes.
 - When there are few bikes at the nodes at the beginning of the working time (i.e., $\psi^A \ge 75\%$), PFA collects more scattered bikes from the arcs.

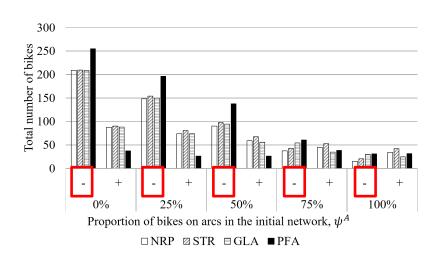


Pre-evening-peak (3 – 5 pm)

TOpS

Policy behavior

As a result, PFA prepares more bikes at the eveningpeak-demand nodes at 5 pm.



5 pm

Summary

Ops

- Problem characteristics
 - Dynamic intra-cell reposition of bikes among gathering points
 - Collection of bikes scattered along the paths
 - Under stochastic demands both at the gathering points and along the paths
- Model: Markov Decision Process (MDP)
- ☐ Algorithm: Policy Function Approximation (PFA)
 - Optimal Computing Budget Allocation (OCBA) to search for optimal policy parameters
- □ Numerical experiments based on a real data set
 - Outperformance of PFA against benchmark policies
 - Value of repositioning
 - Impact of bike scatteredness

Aftabuzzaman, M., Currie, G., & Sarvi, M. (2010). Evaluating The Congestion Relief Impacts Of Public Transport In Monetary Torms. Journal Of Public Transport In Monetary Torms. Transport In Monetary Terms. Journal Of Public Transportation, 13(1), 1-24. Agussurja, L., Cheng, S. F., & Lau, H. C. (2019). A State Aggregation Approach For Stochastic Multiperiod Last-mile Ride-sharing Problems. *Transportation Science*, 53(1), 148-166. Angelopoulos, A., Gavalas, D., Konstantopoulos, C., Kypriadis, D., & Pantziou, G. (2018). Incentivized Vehicle Relocation In Vehicle Sharing Systems. Transportation Research Part C: Emerging Technologies, 97, 175-193. Benjaafar, S., Jiang, D., Li, X., & Li, X. Dynamic Inventory Repositioning In On-demand Rental Networks. Working Paper. Boyacı, B., Zografos, K. G., & Geroliminis, N. (2017). An Integrated Optimization-simulation Framework For Vehicle And Personnel Relocations Of Electric Carsharing Systems With Reservations. Transportation Research Part B: Methodological, 95, 214-237. Brinkmann, J., Ulmer, M. W., & Mattfeld, D. C. (2015). Short-term Strategies For Stochastic Inventory Routing In Bike Sharing Systems. *Transportation Research Procedia*, 10, 364-373. Brinkmann, J., Ulmer, M. W., & Mattfeld, D. C. (2019). Dynamic Lookahead Policies For Stochasticdynamic Inventory Routing In Bike Sharing Systems. Computers & Operations Research, 106, 260-279. Caggiani, L., Camporeale, R., Marinelli, M., & Ottomanelli, M. (2018). User Satisfaction Based Model For Resource Allocation In Bike-sharing Systems. *Transport Policy*. Caggiani, L., Camporeale, R., & Ottomanelli, M. (2017). A Dynamic Clustering Method For Relocation Process In Free-floating Vehicle Sharing Systems. Transportation Research Procedia, 27, 278-285. Chen, C. H., & Lee, L. H. (2011). Stochastic Simulation Optimization: An Optimal Computing Budget Allocation. World Scientific.

$\top \mathbf{O}_{\mathbf{I}}$
DeMaio, P. (2009). Bike-sharing: History, impacts, models of provision, and future. <i>Journal of public transportation</i> , 12(4), 3.
Folkestad, C. A., Hansen, N., Fagerholt, K., Andersson, H., & Pantuso, G. (2020). Optimal Charging And Repositioning Of Electric Vehicles In A Free-floating Carsharing System. <i>Computers</i> & <i>Operations Research</i> , 113, 104771.
Freund, D., Henderson, S. G., O'Mahony, E., & Shmoys, D. B. (2019). Analytics and bikes: Riding tandem with motivate to improve mobility. <i>INFORMS Journal on Applied Analytics</i> , 49(5), 310-323.
Hamilton, T. L., & Wichman, C. J. (2018). Bicycle Infrastructure And Traffic Congestion: Evidence From Dc's Capital Bikeshare. <i>Journal Of Environmental Economics And Management</i> , 87, 72-93.
He, L., Hu, Z., & Zhang, M. (2019). Robust Repositioning For Vehicle Sharing. <i>Manufacturing</i> & Service Operations Management.
He, L., Ma, G., Qi, W., & Wang, X. (2020). Charging An Electric Vehicle-sharing Fleet. <i>Manufacturing & Service Operations Management</i> .
Hellobike. (2018). Regulations and Protocols.
iResearch. (2017). Report of Bike Sharing In China.
Laporte, G., Meunier, F., & Calvo, R. W. (2015). Shared Mobility Systems. 4or, 13(4), 341-360.
Legros, B. (2019). Dynamic repositioning strategy in a bike-sharing system; how to prioritize and how to rebalance a bike station. <i>European Journal of Operational Research</i> , 272(2), 740-753.
Li, L., Wang, S., Li, M., & Tan, J. (2018). Comparison Of Travel Mode Choice Between Taxi And Subway Regarding Traveling Convenience. <i>Tsinghua Science And Technology</i> , 23(2), 135-144.
Li, M., Wang, X., Zhang, X., Yun, L., & Yuan, Y. (2018). A Multiperiodic Optimization Formulation For The Operation Planning Of Free-floating Shared Bike In China. <i>Mathematical Problems In Engineering</i> , 2018.

TOI
Li, W., Wang, S., Zhang, X., Jia, Q., & Tian, Y. (2020). Understanding intra-urban human mobility through an exploratory spatiotemporal analysis of bike-sharing trajectories. <i>International Journal of Geographical Information Science</i> , <i>34</i> (12), 2451-2474.
Lin, J. R., & Yang, T. H. (2011). Strategic Design Of Public Bicycle Sharing Systems With Service Level Constraints. <i>Transportation Research Part E: Logistics And Transportation Review</i> , 47(2), 284-294.
Liu, Y., Szeto, W. Y., & Ho, S. C. (2018). A Static Free-floating Bike Repositioning Problem With Multiple Heterogeneous Vehicles, Multiple Depots, And Multiple Visits. <i>Transportation Research Part C: Emerging Technologies</i> , 92, 208-242.
Mahmoodiana, V., Zhang, Y., & Charkhgarda, H. (2019). Hybrid Rebalancing With Dynamic Hubbing For Free-floating Bike Sharing Using Multi-objective Simulation Optimization. <i>Working Paper</i> .
Mobike. (2017). Mobike data mining competition at biendata.
Pal, A., & Zhang, Y. (2017). Free-floating Bike Sharing: Solving Real-life Large-scale Static Rebalancing Problems. <i>Transportation Research Part C: Emerging Technologies</i> , 80, 92-116.
Powell, W. B. (2019). A unified framework for stochastic optimization. <i>European Journal of Operational Research</i> , 275(3), 795-821.
Powell, W. B. (2021). Reinforcement Learning and Stochastic Optimization. John Wiley & Sons, to appear.
Raviv, T., Tzur, M., & Forma, I. A. (2013). Static Repositioning In A Bike-sharing System: Models And Solution Approaches. <i>EURO Journal On Transportation And Logistics</i> , 2(3), 187-229.
State Information Center. (2018). Annual Report Of Sharing Economy In China.
Usama, M., Shen, Y., & Zahoor, O. (2019). A Free-floating Bike Repositioning Problem With Faulty Bikes. <i>Procedia Comput. Sci</i> , 151, 155-162.

⊤OpS

- □ United Nations. (2018). World Urbanization Prospects: The 2018 Revision.
- □ Warrington, J., & Ruchti, D. (2019). Two-stage Stochastic Approximation For Dynamic Rebalancing Of Shared Mobility Systems. *Transportation Research Part C: Emerging Technologies*, 104, 110-134
- Weikl, S., & Bogenberger, K. (2015). A Practice-ready Relocation Model For Free-floating Carsharing Systems With Electric Vehicles–mesoscopic Approach And Field Trial Results. *Transportation* Research Part C: Emerging Technologies, 57, 206-223.
- Xing, Y., Wang, K., & Lu, J. J. (2020). Exploring travel patterns and trip purposes of dockless bikesharing by analyzing massive bike-sharing data in Shanghai, China. *Journal of transport* geography, 87, 102787.
- ☐ Xinhua News. (2019). *Delicacy management of bike sharing systems*.
- Yang, Y., Heppenstall, A., Turner, A., & Comber, A. (2019). A Spatiotemporal And Graph-based Analysis Of Dockless Bike Sharing Patterns To Understand Urban Flows Over The Last Mile. *Computers, Environment And Urban Systems*, 77, 101361.
- □ Zhang, J., Meng, M., & David, Z. W. (2019). A Dynamic Pricing Scheme With Negative Prices In Dockless Bike Sharing Systems. *Transportation Research Part B: Methodological*, 127, 201-224.