The Promises and Perils of Data for Travel-Activity Behavior Analysis

Presentation to: WTS FAU Student Chapter

November 19, 2021

Presenter

Zahra Pourabdollahi, PhD, PE

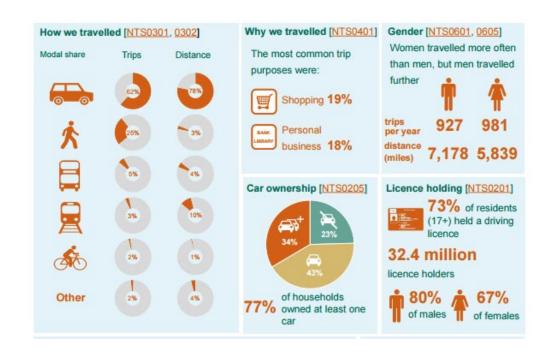
- » Travel Demand Modeling
- » 10+Years Modeling Experience
 - » Truck Touring & Behavior-Based Freight Models
 - » Florida Behavior-based Tourism Model
 - » Statewide Passenger & Freight Models
- » Serves on TRB Committees Standing Committees
 - » Freight Planning and Logistics (AT015)
 - » Traveler Behavior and Values (AEP 30)

Agenda

Travel Activity Data

» Data Types

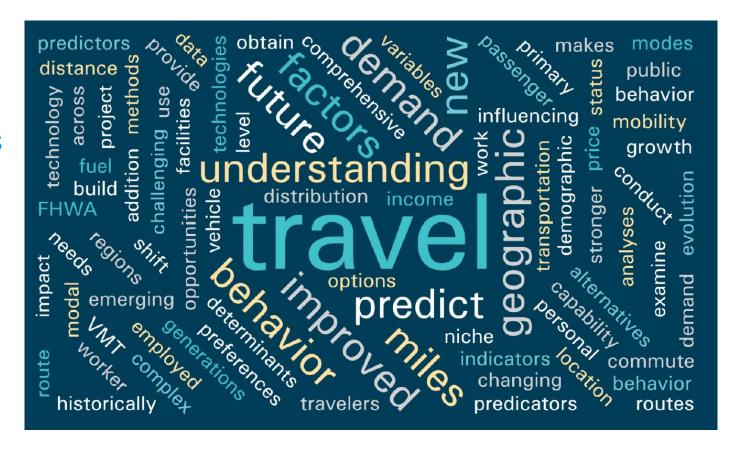
- Travel Survey Data
- Traffic Data (e.g., traffic count data)
- GPS Data
- Bluetooth and Mobile Device Data
- Social Media Data
- Public domain data
- Proprietary data



Travel Activity Data

» Purpose

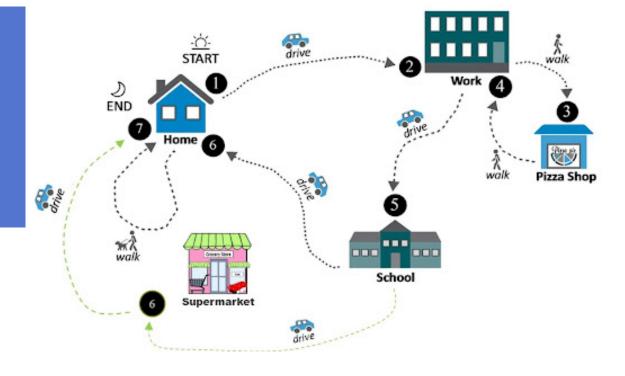
- Identifying Patterns
- Mobility Analysis
- Developing Travel Demand Models
- Understanding The Impacts of Travel Patterns on Geographical Distribution and Land Use
- Inform Decision Makers for Evaluating Plans/Polices



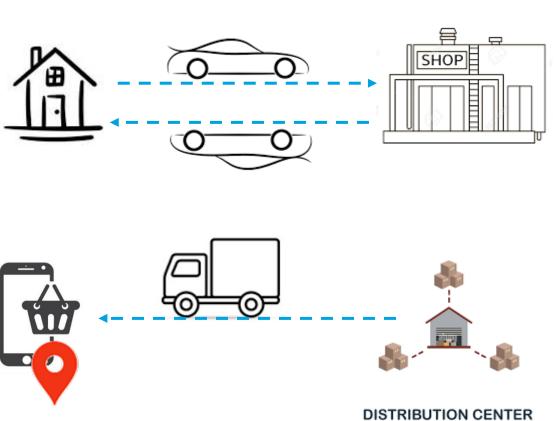
Travel Activity Data

- » Activity-Based / Agent-Based Travel Demand Modeling
- » Human/Freight Mobility Analysis

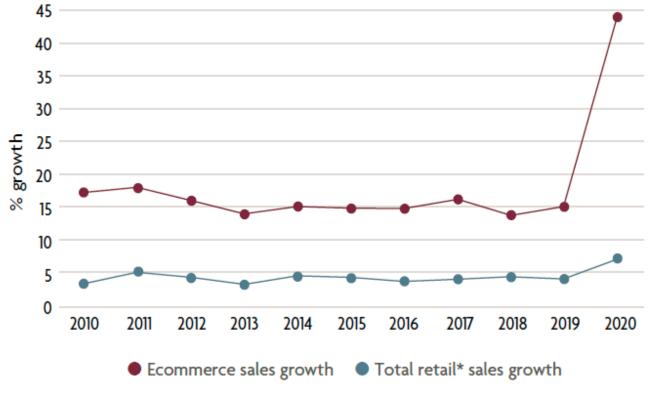
understanding and forecasting how individuals/goods perform activities and move in time and space



» E-shopping

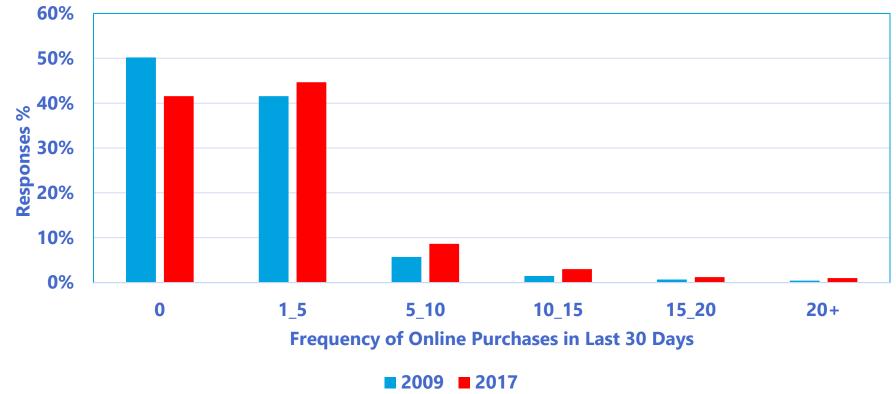


Comparing growth: US **ecommerce** vs. **total retail*** sales
Year-over-year growth, 2010-2020



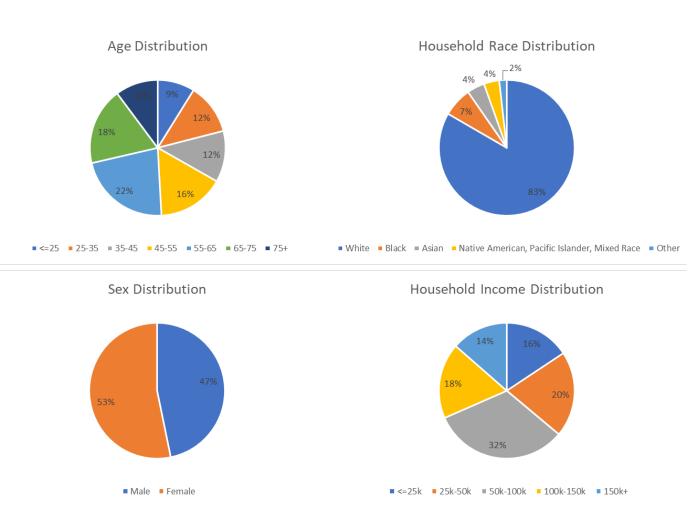
- Examine Frequency of E-shopping in The U.S. and Its Influential Factors (Who are the e-shopper and how frequently they shop online)
- » 2017 National Household Travel Survey
 - Conducted by the Federal Highway Administration (FHWA),
 - Is the authoritative source on the travel behavior of the American public
 - The only source of national data to analyze trends in personal and household travel
 - It includes daily non-commercial travel by all modes, including characteristics of the people traveling, their household, and their vehicles.

- » Examine Frequency of E-shopping in The U.S. and Its Influential Factors
 - 2009 NHTS: "number of times respondent has purchased online for delivery in last 30 days"
 - 2017 NHTS: frequency of internet use and smart devices use to access internet



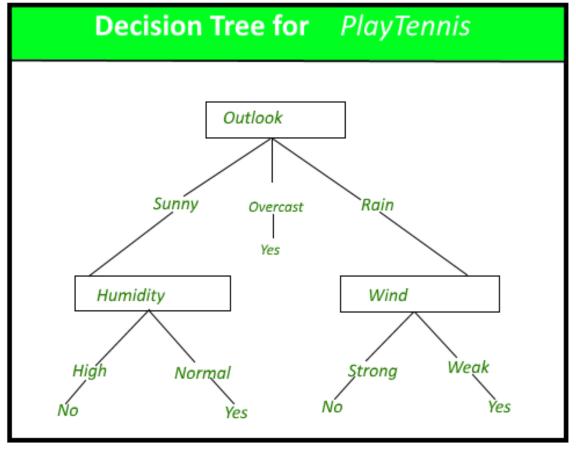
» 2017 NHTS Data

a sample of 235,805 useable records



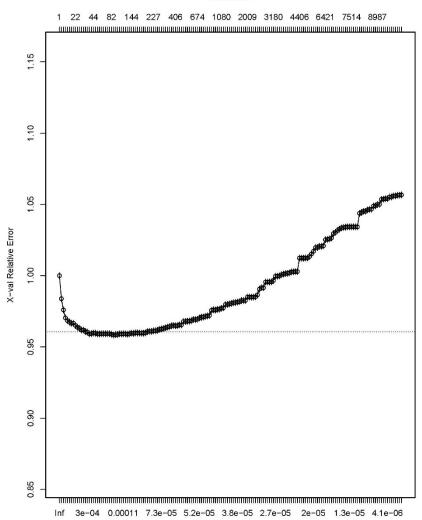
» Analysis Method

- Classification Decision Tree Approach
- Train data (70% of records) and test data (30% of records)
- _ F
- Classification and Regression Tree (CART) algorithm
- Splitting method: Entropy (Information Gain)
- Growth control: Complexity Parameter (CP)



» The Process

- 1. Classify dataset into train and test subsets
- 2. Develop unrestricted tree to fit the train data
- 3. Observe CP value changes across tree size and find optimal CP value
- 4. Measure predictive accuracy of full tree on test dataset (calculate cross-validation error)
- 5. Prune the tree using optimal CP value and cross-validation error
- 6. Measure predictive accuracy of pruned tree on test dataset
- 7. Compare accuracies and finalize the model if criteria are met



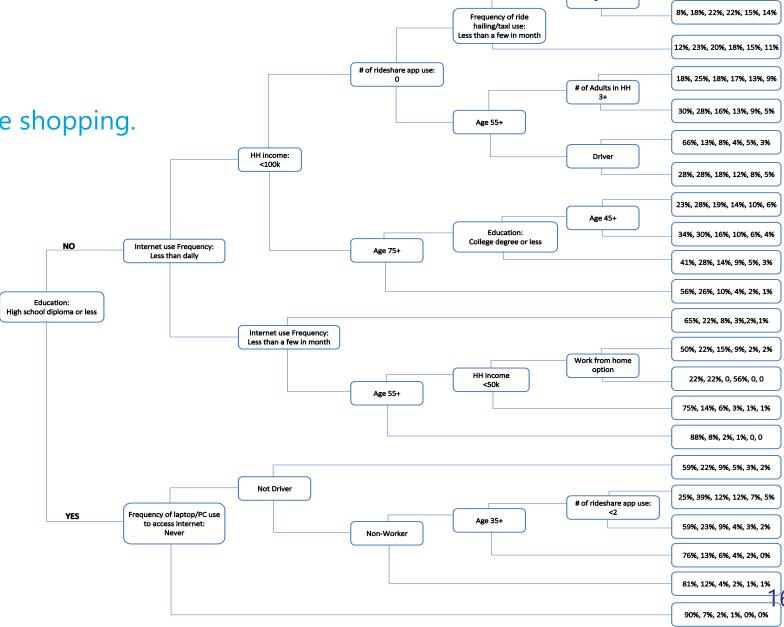
	Nodes	Split	Depth	СР	X validation error	Accuracy
Base Tree	19151	9575	30	0	1.0566	0.5984
Pruned Tree	63	31	13	0.000376	0.9619	0.6493
Final Tree	43	21	6	0.000424	0.9651	0.6421

8%, 17%, 14%, 20%, 23%, 17

» Results

the dependent variable:
 frequency of monthly online shopping.

classified into 6 categories:0, 1-2, 3-4, 5-6, 7-10, 10+



» Results

- The significant factors in determining frequency of monthly online shopping include:
 - socio-demographic characteristics
 - socio-economic characteristics
 - technology adoption/internet usage
 - Travel related attribute (ridesharing/driving)

» Results

- the least likely e-shoppers:
- With high school diploma or less, never use laptop or PC for accessing internet.
- 55 years and older, college/university/higher education, low internet usage.
- With high school diploma or less, have access to internet, non-drive, non-worker.
- 35 years and older, workers, with high school diploma or less, with access to internet, non-driver.

» Results

- the most frequent online shoppers:
 - Higher education (college/university or higher).
 - Daily access to internet
 - High income households (100K+)
- The propensity of online shopping in frequent e-shoppers increases for individuals:
 - with ride hailing applications on their device and use ridesharing services more than a few times per month.
 - with flexible work schedule and WFH option

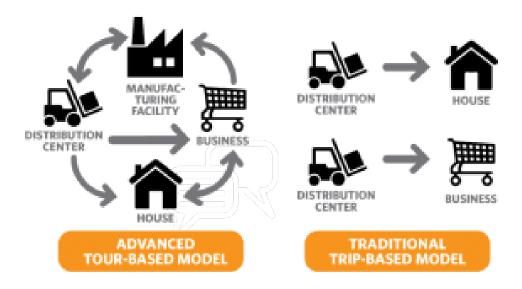
» Results

- The influential factors in determining e-shopping frequency:
 - age, household size,
 - employment, education, income, and work from home option,
 - technology adoption, frequency of internet usage,
 - Travel related attributes: ridesharing application usage, and frequency of using ride hailing or taxi services for travel, and driving status
- insignificant covariates:
 - Sex,
 - Build environment attributes,
 - Health related attribute,
 - Other transportation related characteristics

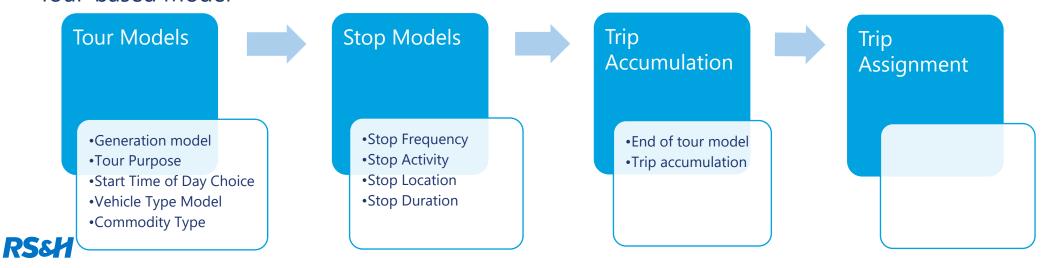
Activity-based modeling (in-home & shopping activity)
Last mile delivery / urban freight planning

Traditional Trip-based Truck Model

☐ Disregard temporal and spatial interrelations between truck trips



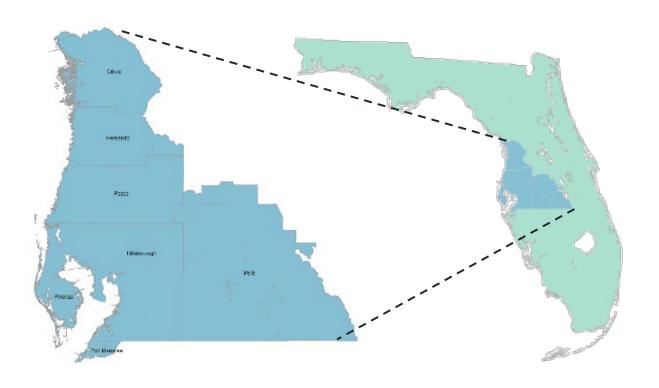
Tour-based Model



» GPS Data

- Provide spatial and temporal information on truck movements
- Require extensive pre/post processing
- Proprietary
- Limited info on cargo and other travel information
- » Today's Discussion
 - Utilizing GPS data to reveal regional truck trip patterns for modeling purpose

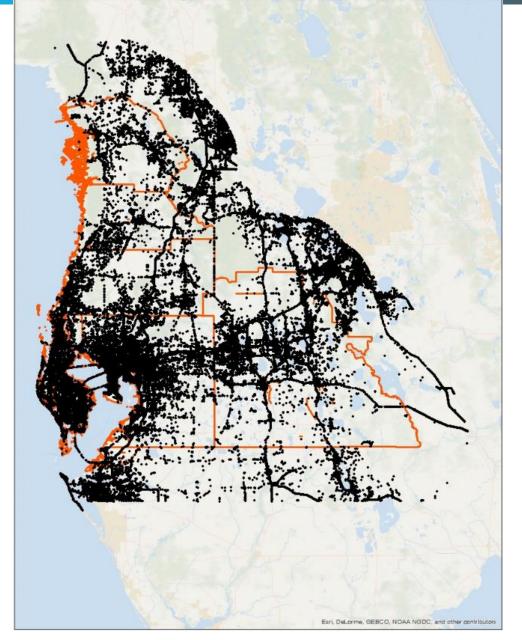
FDOT – District Seven (Tampa Bay Region)

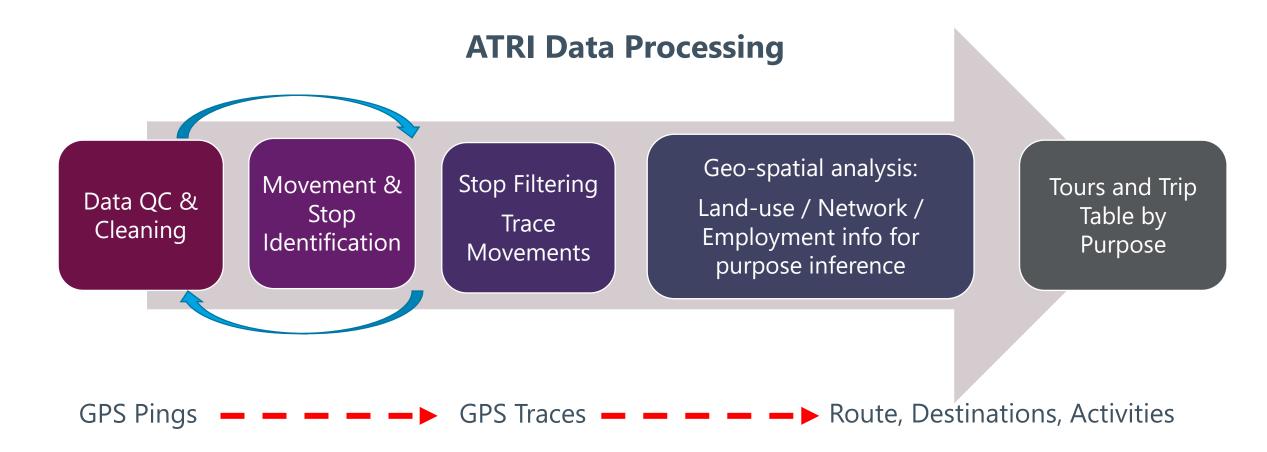


ATRI GPS Data For Trucks

ATRI Data	Description
Spatial Coverage	Seven Counties + 10 mile external buffer
Temporal Coverage	8 Weeks (between October and July)
# of Records	96.4 Million
# of Unique Truck IDs	110K

ATRI Data Attribute	Description
Truck ID	Vehicle Identifier (Dynamic IDs)
X	Degrees longitude
Y	Degrees latitude
Time/Date Stamp	Time and date
Spot Speed	Travel speed (mph)
Heading	Travel direction

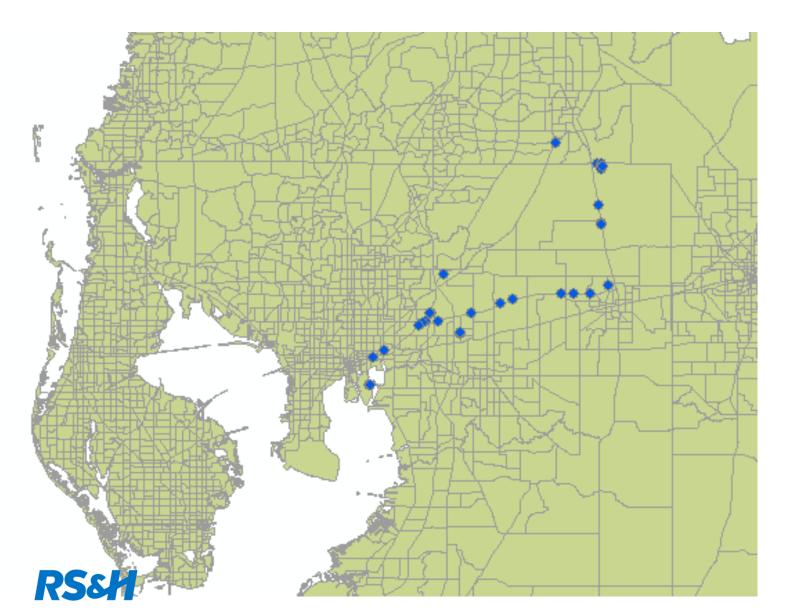




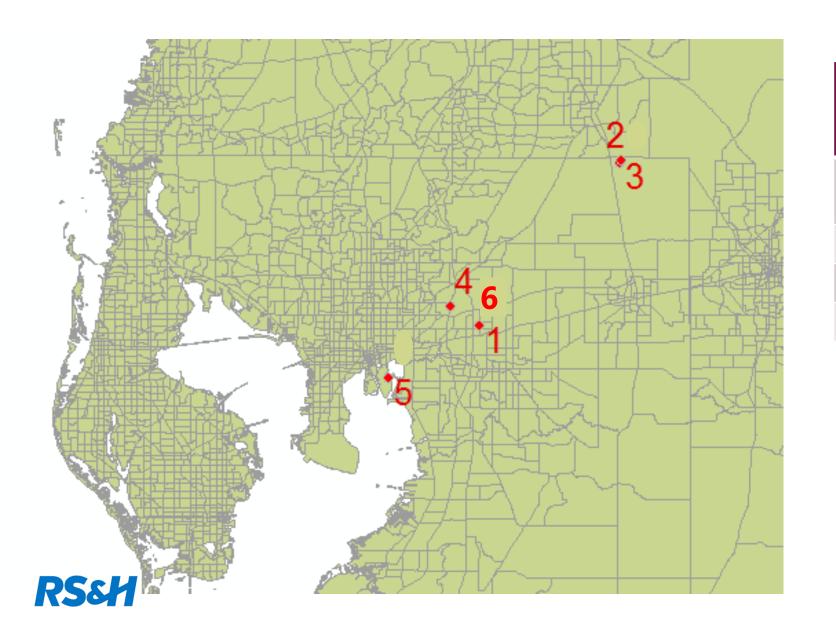
» Data Processing

- Sort pings by Truck ID and Date/Time stamp
- Calculate distance, duration, and speed between consecutive pings
- Identify the status of each record based on the average speed (First, Moving, Stopped, Last)
- Combine Cluster Stops
- Calculate stop duration
- Remove stops less than 5 min
- Remove moving records
- Assign stop and tour number
- Identify TAZ for each stop record using ArcGIS geoprocessing
- Assign land use and employment information to the stops

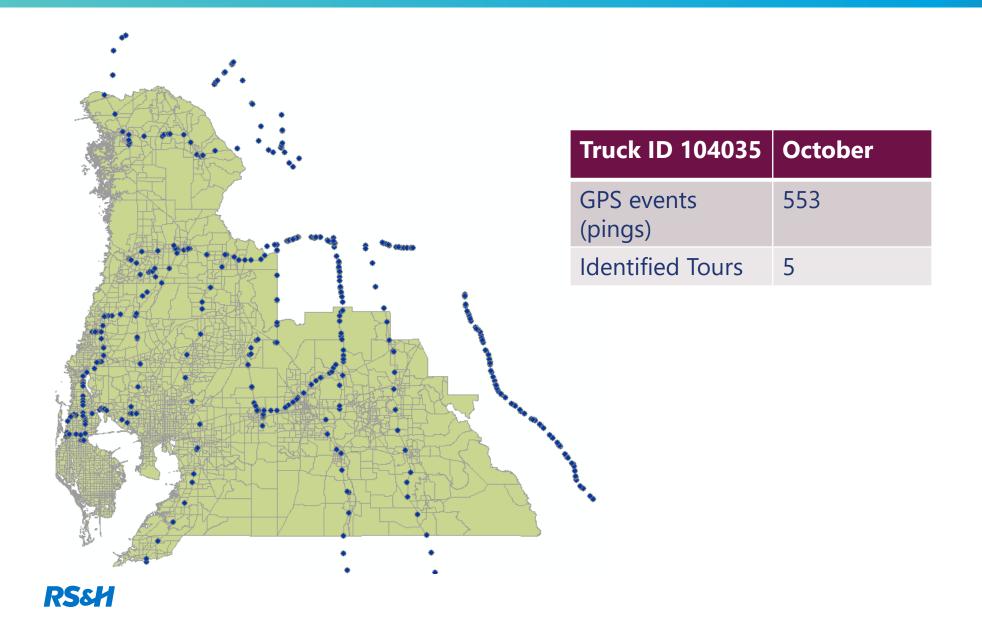
Truck ID 117722	October
GPS events (pings)	596
Identified Tours	6

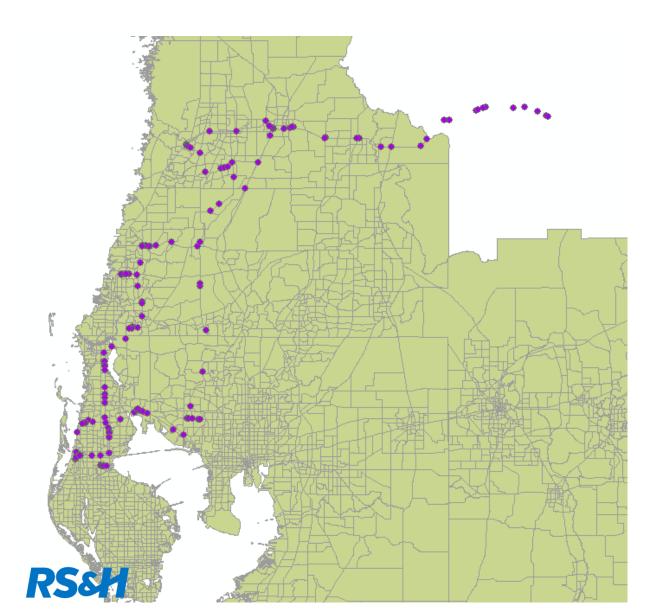


Truck ID 117722 - One example Tour	October
GPS events (pings)	73
Tour #	1
Identified Stops	4

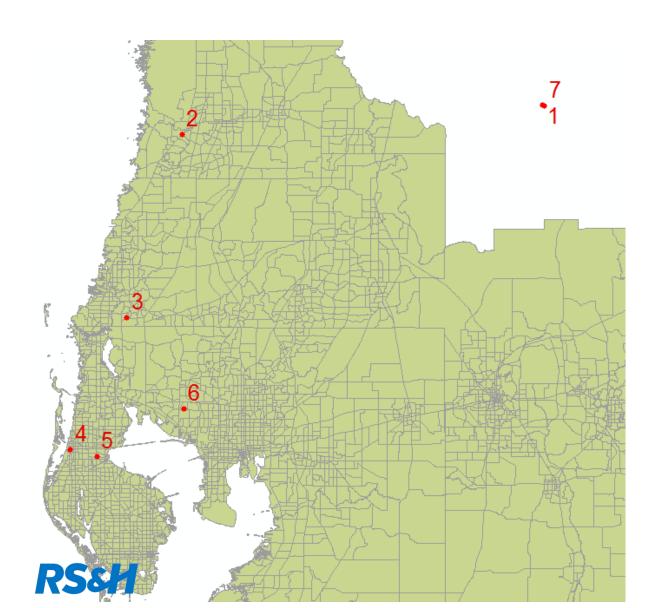


Truck ID 117722- One example Tour	October
GPS events (pings)	73
Tour #	1
Identified Stops	4
Trips	5

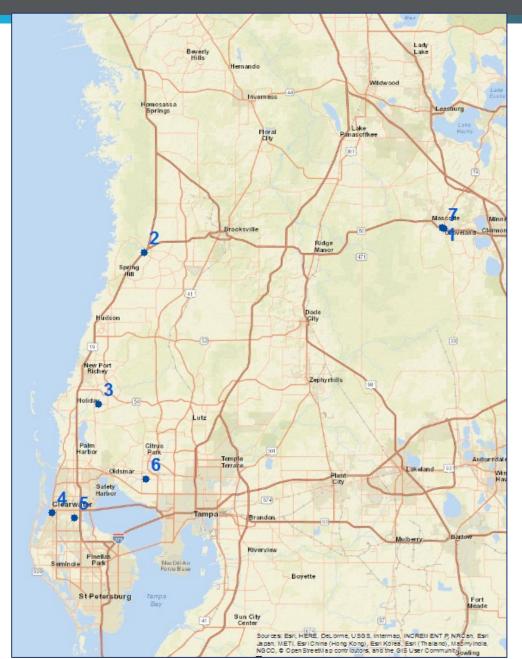




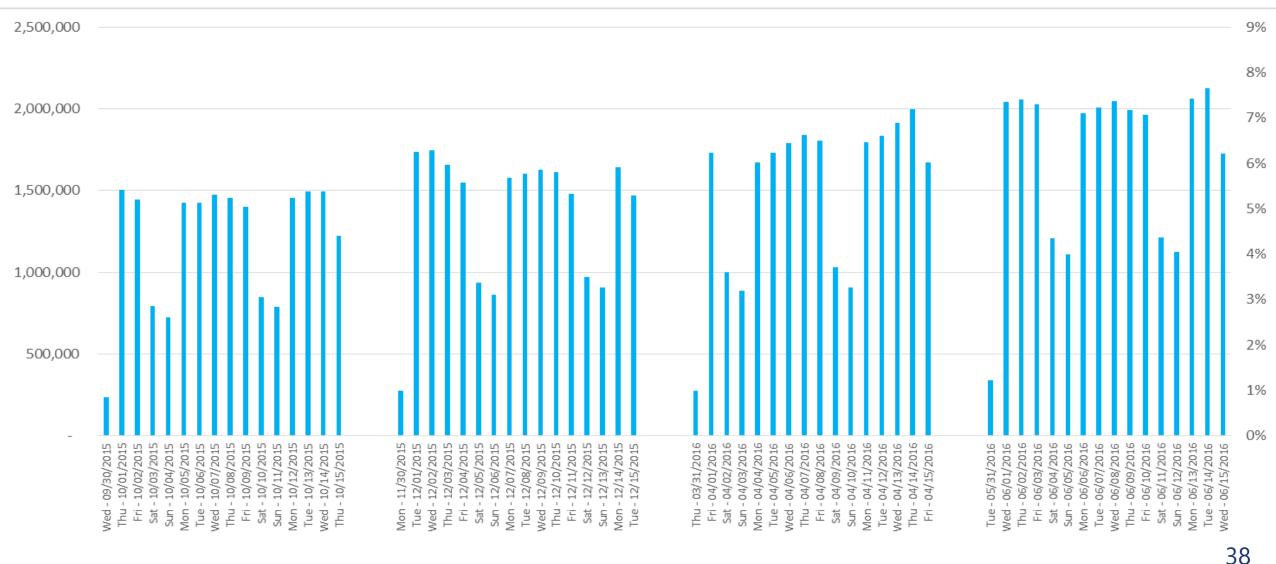
Truck ID 104035 – One example Tour	October 2015
GPS events (pings)	194
Tours #	1
Identified Stops	5



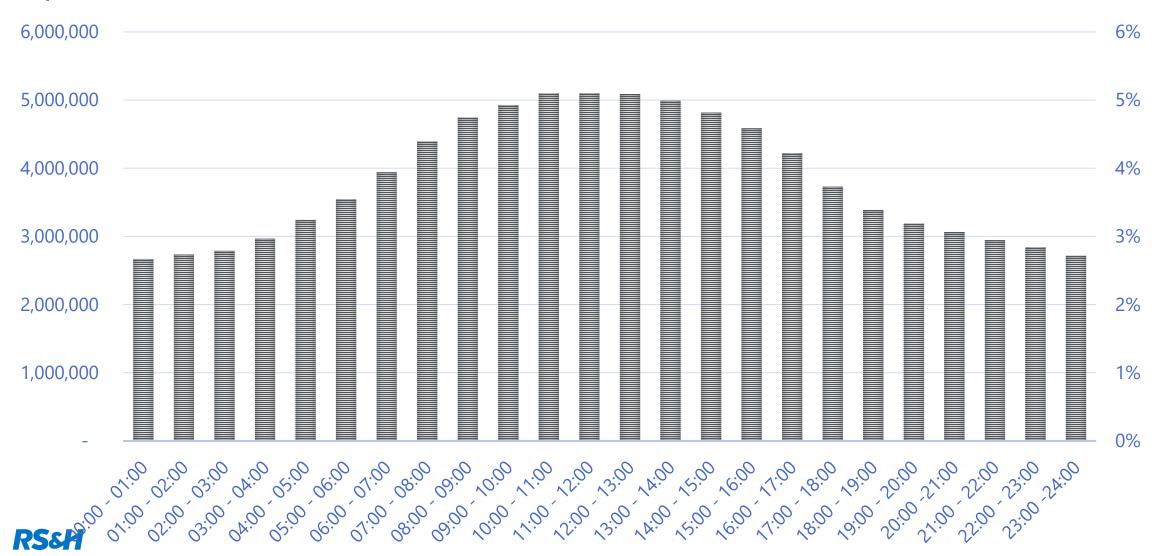
Truck ID 104035 – One example Tour	October 2015
GPS events (pings)	194
Tours #	1
Identified Stops	5
Trips	6

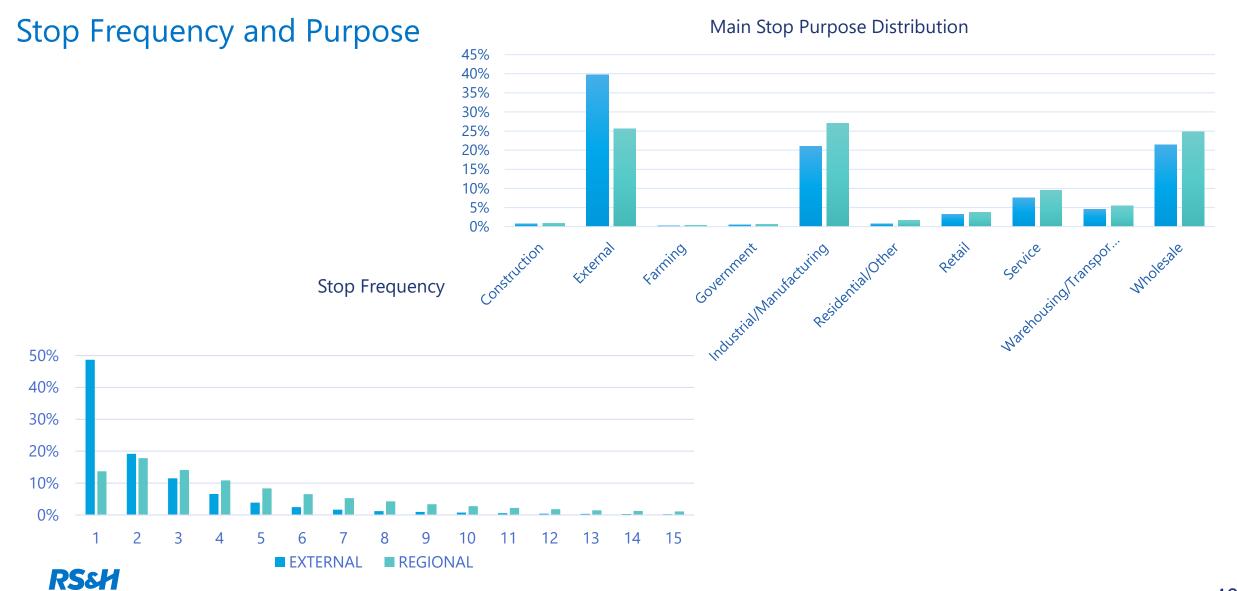


Temporal Variation of Truck Activities



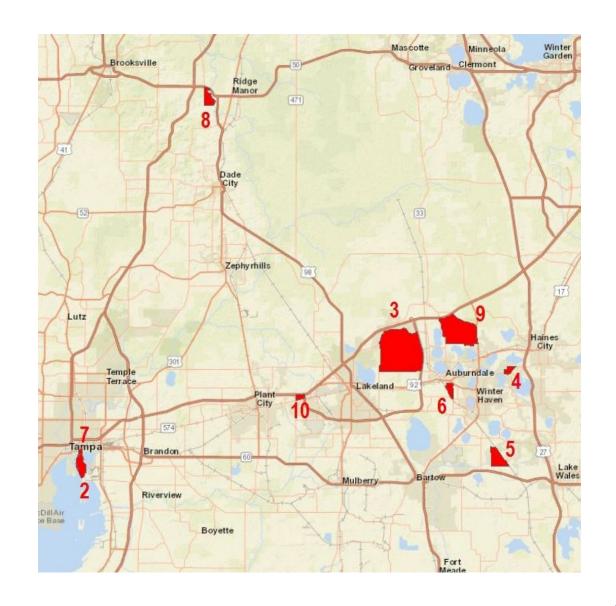
Temporal Variation of Truck Activities





Most Visited Destinations

Rank	TAZ	Description
1, 2	7-367	Port Tampa
3	1-265	Sam's Club Distribution Center and other
4	1-672	Walmart Distribution Center
5	1-467	CSX Winter Haven
6	1-665	Coca Cola
7	7-366	Port Tampa - APWU
8	7-2626	Walmart Distribution Center
9	1-379	Truck Rest Areas; Mobile Modular
10	1-3	Distribution Centers; Warehousing and Transportation Center



- » Travel activity data enable the understanding of travel patterns
- » play a critical role in travel trend monitoring, transportation planning, and policy decision support
- » Conventional travel behavior data such as NHTS
 - primary source of travel behavior information
 - high cost,
 - Less frequent,
 - cross sectional data,
 - involve more error,
 - provide detailed info and are self validating

- » The passively collected data is one of the most effective data sources that provides invaluable information
 - significant potential as supplementary data input
 - reasonable cost
 - Longitudinal (trend analysis)
 - Extensive processing, expansion, fusion, analysis, imputation and inferring methods and integration with other existing data
 - Validation issues
- » Social Media and big data such as Twitter data are among emerging data sources that will enable extracting travel-activity trends

- » The fusion and integration of different data types seems inevitable
- » Big data
- » Advanced data analytical methods are required to overcome significant challenges in developing comprehensive travel-activity data that allows stakeholders to track travel behavior trends

The last decade has witnessed very active development and some overlap in two broad, but separate fields: transportation research and data science/computer science

RS&H

Zahra Pourabdollahi

Zahra.pourabdollahi@rsandh.com 6303 Blue Lagoon Dr, Suite 325 Miami, FL 33126 305-428-3217