Florida Atlantic University Department of Civil, Environmental and Geomatics Engineering Engineering Scholars Program (ESP)

CGN 1500 Innovative Materials for Infrastructure

3 credits

1. Course Description and Prerequisites

<u>Description</u>: Introduction to New-generation, Innovative and Advanced Materials for Civil Infrastructure Systems such as Bridges, Tall Structures, and Highway Pavements; Mix-Design and Mechanical Properties; Environmentally Sound Concepts; Solid Waste Recycling, Green Building, and Sustainable Development; Accelerated Testing and Long-Term Durability; Handson Laboratory Testing to determine Engineering Properties; Infrastructure security and impact / blast resistant materials and design.

Prerequisites: Algebra 2 and Biology

2. Course Objectives (what we will do in this class)

- A. Introduce emerging new materials for structures, bridges and highways
- B. Introduce concepts of recycling, green building and sustainable development
- C. Discuss the stress-strain-strength and durability properties of new materials
- D. Provide hands-on laboratory testing experience for evaluating material properties
- E. Teach how to use the material properties in simple design/construction modules
- F. Discuss Infrastructure security and impact/blast resistant design

3. Course Outcomes (what we expect you to learn)

- 1. Learn about various high-performance new materials in Civil Engineering construction
- 2. Understand the concept of Green Building and Sustainable Development
- 3. Learn how to characterize engineering materials for design applications
- 4. Ability to perform laboratory tests to determine mechanical properties
- 5. Ability to apply theoretical concepts into practical engineering design.

4. Text Book (if required)

None

5. Resources (needed/ to be provided)

Lecture notes and handouts posted on Blackboard (blackboard.fau.edu)

Recommended Reference Materials

- 1. Civil Engineering Materials, Shan Somayaji, 2nd Ed., Prentice Hall, 2001
- 2. *Materials for Civil and Construction Engineers*, M. S. Mamlouk and J. P. Zaniewski, 2nd Edition, Prentice Hall, 2006
- 3. *Materials Science and Engineering, An Introduction*, W. D. Callister, Jr., 3rd Ed., John Wiley and Sons, 1994.
- 4. Designing with Geosynthetics, Robert M. Koerner, 5th Ed., Prentice Hall, 2005
- 5. Fiber Reinforced Cement Composites, P. N. Balaguru and S. P. Shah, McGraw Hill, 1992

6. Yrjanson, W. A. (1989). "Recycling of Portland Cement Concrete Pavements," *Synthesis of Highway Practice 154*, National Cooperative Highway Research Program, Transportation Research Board, Washington, D. C.

6. Grading Scheme

The course grade is based on the following components:	
1 comprehensive Final Exam	15%
3 Quizzes	15%
1 group research paper / presentation	14%
7 laboratory design/construction modules and project reports	56%
Grading Scale: A: 90-100; B: 80-89; C: 70-79; D: 60-69; F: < 60	

7. Course Schedule Details

Monday, June 10

Morning

MODULE 1: Civil Engineering - Past, Present and Future

Introduction and overview; What is Civil Engineering? American Society of Civil Engineers (ASCE); Code of ethics and professional conduct; Civil Engineering Infrastructure; Historical perspective; Current state of buildings, bridges and roadways; Need for Rehabilitation; Need for new high-performance materials; Infrastructure Security and need for impact/blast/fire resistant design

Afternoon

<u>Laboratory Project 1</u>: Grain Size Analysis of Recycled Crushed Concrete

Introduction to testing machines; laboratory safety; alternative materials, sensors, and composites; Sieve analysis of demolition aggregate; technical report writing.

Wednesday, June 12

Morning

MODULE 2: Civil Engineering Materials

Introduction to Civil Engineering Materials; What are some of the new-generation materials? Smart Materials and Sensors; Alternative and recycled materials in civil engineering construction; Need for Alternative, High-Performance Materials; Environmental issues; Solid waste management issues; Sustainable development; Long-term durability issues.

Afternoon

Laboratory Project 2: Concrete Mix Design using Recycled Aggregate (control specimen)

Sample preparation, mix-design, and curing. Lab 1 report due.

Friday, June 14

Morning

MODULE 3: Mechanics of Engineering Materials

Concepts of stress, strain, strength and deformation; mechanics; mechanical testing; mechanical properties; failure analysis; ASTM standards; accelerated testing and evaluation of long-term durability; theoretical formulations for predicting durability and performance; durability of recycled materials **QUIZ 1**

Afternoon

<u>Laboratory Project 3</u>: Concrete Mix Design using Recycled Aggregate and Fly Ash or Rice Husk Ash as partial cement substitutes

Concrete made from construction and demolition (C&D) aggregate and fly ash; Sample preparation, mix-design, and curing. Lab 2 report due.

Monday, June 17

Morning

MODULE 4: Science of Engineering Materials

Atomic arrangements and crystalline structure; lattice and unit cells; Miller Indices; defects and dislocations; Slip mechanisms and Schmid's Law

Afternoon

<u>Laboratory Project 4</u>: Recycled Aggregate Concrete Reinforced with Post-Consumer HDPE Strips

Concrete made from Concrete from C&D waste aggregate, fly ash and recycled plastic strips; sample preparation, mix-design and curing. Lab 3 report due

Wednesday, June 19

Morning

MODULE 5: New-Generation Concrete

High-performance concrete; fiber-reinforced concrete; alternative fibers; concept of strength and toughness; unconventional materials in concrete; Fiber-reinforced plastics (FRP) for strengthening / retrofitting; recycled aggregate concrete

Assignment of Technical Research Paper

Afternoon

<u>Laboratory Project 5</u>: Compressive Strength Testing of Control Recycled Aggregate Concrete

Test control specimens from lab 2 under compression/tension. Lab 4 report due.

Friday, June 21

Morning

MODULE 6: New-Generation Geo-Composites

Soils and geomaterials; shear strength and failure mechanisms; structural foundations; fiber-reinforced soil; recycled materials in geotechnical applications; geosynthetic reinforcement; bearing capacity of foundation soils

Afternoon

Laboratory Project 6: Compressive Strength Testing of FA and RHA Recycled Aggregate Concrete

Compressive strength testing of specimens from lab 3. Lab 5 report due. QUIZ 2

Monday, June 24

Morning

MODULE 7: Sustainable Development and Green Construction

Soil and base stabilization with unconventional and recycled materials; Recycled plastics for soil reinforcement; Recycled aggregate from Construction and Demolition (C&D) wastes; sustainable, energy-efficient building walls

Afternoon

<u>Laboratory Project 7</u>: Strength Testing of Recycled Aggregate Concrete containing HDPE recycled plastic reinforcement.

Compressive strength testing of specimens from lab 3; Lab 6 report due.

Wednesday, June 26

Morning

MODULE 8: Innovations in Solid Waste Management

Vertical enhancement of existing landfill capacities; Significance of Piggyback Landfills in solid waste management practices; Design considerations such as compressibility and settlement; Innovative geosynthetic reinforcement for slope stability; Compacted Clay Liners (CCL) and Geosynthetic Clay Liners (GCL)

Afternoon

Laboratory Project 8: Research Project Activities

Friday, June 28

Morning

MODULE 9: Review, Discussions, Reflection / Meta-cognition; Comprehensive Final Exam

Afternoon

Presentation of Research Papers

8. Submission and Lab Usage Requirements

As described above

9. Instructor and Contact Information

Dr. Khaled Sobhan

Office: Room 221, BLDG. 36; Telephone: (561) 297-3473; Email: ksobhan@fau.edu

10. Class Dates, Time and Location

MWF: 9:30 AM – 4:30 PM; Location: Lecture (TBA); Laboratory: EG 262

For further information: www.cege.fau.edu