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ABSTRACT

Author: Steven William Tolbert

Title: Analysis of Driving Behaviors and Relevant Driving Preferences
Regarding Self-Driving Cars

Institution: Florida Atlantic University

Thesis Advisor: Dr. Mehrdad Nojoumian

Degree: Master of Science

Year: 2022

This thesis explores the cross-cultural demands from self-driving cars in re-

gards to their trust, safety, and driving styles. Through the use of international

survey data we establish several AI trust and behavior metrics that can be used for

understanding cross-cultural expectations from self-driving cars that can potentially

address problems of trust between passengers and self-driving cars, social acceptability

of self-driving cars, and development of customized autonomous driving technologies.

Further this thesis provides a serverless data-collection framework for future research

in driving behaviors.
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CHAPTER 1

INTRODUCTION

In the last decade, it has become apparent that the technologies powering self-driving

cars (SDC) are maturing at a rate that makes them a technological inevitability. The

questions for the future then revolve around the adaptability of the technology rather

than the technology itself. While self driving cars are a certainty, the large scale

adoption of self-driving cars isn’t so clear. Current research accordingly points to

a grim outlook on people’s perception of the technology. In 2021, Morning Consult

surveyed 2200 adults in the United States and found that 47% of those surveyed

believe autonomous vehicles are less safe than their human driven counterpart and

that only 22% of those surveyed believe that autonomous vehicles are safer than a

human driver [7]. With nearly half of the survey population having serious doubts

about the technology on the precipice of its arrival, it becomes clear that research

must be conducted in improving consumer trust in self driving cars. Yet the question

still remains as to what is trust and how can one cultivate it within consumers of

this technology. One method of cultivating trust for self driving cars is to improve

on human-machine interaction, by designing self driving cars in a way that communi-

cates to passengers and have them play a more active role in the experience one can

deliver a more trustful system for users. This is supported by research conducted by

Hartwich et al. where evidence suggests that even given a SAE Level 4-5 system where

no human interaction is required, the introduction of monitoring tools significantly

improves passenger trust [8].Further research conducted by Hartwich et al. shows

that the significance of the first experience with self driving cars greatly impacts the

trust one associates with the technology [9]. In addition to the first experience being
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significantly impactful to a users perception of the technology, research from Shahrdar

et al. shows how trust is greatly a↵ected by the driving style used and that defensive

driving builds more trust than aggressive driving in virtual reality simulated tests

[10][11]. These tests also showed that while initial experiences were important, trust

in the system can be rebuilt following a faulty behavior given enough time experienc-

ing safer and more defensive driving from the self-driving car. The amount of control

a user haves seems to play strongly into a users ability to trust a given system. It

is well known in the classical scenario of a person being chau↵eured that there is

an increased level of discomfort while being a passenger as compared to an active

driver [12] and it appears that this analogue translates very well to the self driving

car scenario. Yet there is still a decreased amount of trust for robotic drivers versus

a human driver given equivalent driving behaviors as shown in Mühl et al. [13]. This

poses that not only do self driving cars have to perform as well as a human driver, but

better in order to gain as much trust from their passengers. Beyond increasing the

interactions passengers can experience with a self-driving car one can also modify the

driving style in order to increase trust in the system. Research conducted by Basu

et al. showed that a more defensive driving style led to higher trust in autonomous

driving scenarios [14]. Interestingly, when participants were surveyed on their driving

preferences they responded that they would want an experience similar to their own

driving style for a self driving car. Yet, when passengers were placed in a simulation

it was found that they preferred a driving style that they thought was their own but

instead was much more conservative than their own driving style [14]. Similar results

were observed by Craig et al. where surveyed participants showed that they expect a

self driving car to behave as in a slightly less aggressive manner than their own driv-

ing style [5]. Methods proposed by Park et al. suggest adapting the driving behavior

based on EEG feedback in order to establish and maintain trust in the system [15].

With these questions in mind we must further consider how users will respond with
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these technologies outside of the demographics in which research is collected. There

is a great question as to how research participants are biased by the infrastructure

and cultural norms of the country in which research takes place. There are some

surveys that provide an international view such as research conducted by Deloitte

in 2020. This survey provided responses by country (South Korea, Japan, United

States, Germany, India, China) detailing the percentage of consumers who believe

SDCs will not be safe. The results provided by Deloitte for most countries follow

United States sentiments (⇠ 50% belief they will not be safe) with some outliers,

such as China whose survey data suggests a more trusting sentiment and India whose

survey data suggests a less trusting sentiment [16]. With the majority of self-driving

car (SDC) research being conducted and tested domestically within the United States

from the likes of Tesla and many silicon valley startups, it becomes challenging to

understand the global needs of this technology. This thesis therefore proposes to shed

light on cross-cultural expectations from autonomous vehicles. We utilized a survey

with 57 questions, prepared in English, German, and Spanish languages, that asked

157 participants about their personal driving behaviors as well as their expectations

from SDCs. The respondents totaled 52 from the United States, 64 from Germany,

and 41 from Central America. Interestingly, we observed that German drivers are

slightly more aggressive than American drivers; however, when it comes to SDCs,

both groups have the same expectation from SDCs, i.e., prefer a SDC that oper-

ates like a less aggressive version of their own driving behaviors. This is consistent

with prior research outcomes in the United States [5]. On the other hand, Cen-

tral Americans expect a very conservative driving behavior from SDCs compared to

Americans and Germans. The first observation might be due to the fact that faster

driving is allowed in Germany, e.g., highways with no speed limit; however, since

fully-autonomous driving technology still hasn’t been deployed and is unknown, both

groups expect less aggressive SDCs. The second observation may indicate that more
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exposure to autonomy, which is now happening in the United States and Germany as

opposed to developing countries, can gradually prepare the society to trust and ac-

cept these emerging autonomous technologies. These are possible hypotheses, among

others, although frequent data collections and analyses in larger scales are required

to validate and justify these fascinating observations. Other interesting observations

are illustrated in the paper. With the problem su�ciently motivated, the goal of this

thesis is then to understand driving behaviors of prospective users internationally

and establish a metric for user trust and desired driving behavior within autonomous

vehicles. Further once a trust metric is generated, this thesis proposes a methodology

for relating a users driving preferences to the AI driving task in order to provide a

driving experience more consistent with their own driving expectations.
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CHAPTER 2

LITERATURE REVIEW OF SELF-DRIVING CAR TECHNOLOGY

2.0.1 Automated Highways

The history of self-driving car technology dates back nearly a century at this point.

The 1939 World’s Fair provides an early description fully autonomous vehicles in the

form of Norman Bel Geddes’s Futurama exhibition which displayed a miniature city

with sprawling highways connecting the metropolitan cityscapes to the remote farm-

lands, remember at this time the interstate highway system has not been constructed

yet. In this exhibit cars are guided through highway routes using electromagnetic

fields generated along the highway which dictated the direction of steering for the car

allowing for the cars to stay within a given lane as well as change lanes when needed

[1]. An image showing the exhibits city highways can be seen in figure 2.1.

Figure 2.1: Futurama Exhibit from the 1939 World Fair [1]
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However it wasn’t until 1960 when the UK Transport and Road Research laboratory

modified a Citröen DS to steer without driver assistance using guidance from magnetic

rails hidden under the road [17] did the visions of the future shown in 1939 start to

come to life. The work done by the UK Transport and Road Research laboratory

represented the first real glimpse into the future of self driving cars; yet, at this point

the future of self driving cars seemed to be one based on infrastructure solutions

rather than the cars themselves. While these ideas were novel and challenged the

status quo for driving, clear issues in scaling such such a project will arise. Through

the mid 1900s we will see a steady transition from self-driving cars being envisioned

the product of radio and electromagnetic systems with large scale infrastructure to

one of computer and visual technology manifest into cars themselves.

2.0.2 AI for Self Driving Cars

Once computing became mainstream and AI hit its first major stride in the and 80s

and 90s the idea of cars self navigating started to become a reality. Two main e↵orts in

this field occurred in the form of the NAVLAB project out of Carnegie-Mellon [18] and

the VaMoRs project out of Mercades [19]. Both of these projects were revolutionary

in the usage of computer vision for vehicle navigation. At this point in time image

segmentation was extremely rudimentary, NAVLAB’s segmentation technique would

consider the probability a given pixels color belonged to the road in order to segment

road from other objects in the frame [20]. This allowed for NAVLAB to identify road

and apply geometric transforms on a given image in order to determine the pathing

required to stay on the road. Later versions of the NAVLAB during this time begin

to employ the first neural networks being designed for the self driving task. Famously

ALVINN: An Autonomus Land Vehicle in a Neural Network was able to map video

images to vehicle actions using a simple 2 layer fully connected neural network [2].

The system out of Mercades was similarly built, named VaMoRs, the Mercedes self
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Figure 2.2: ALVINN Neural Network Architecture [2]

driving car used cameras and image processing techniques to track objects and road

paths. In comparison to later versions of NAVLAB, the VaMoRs system used more

traditional image processing techniques and complex filters in order to do object

detection and tracking. Regardless of the methodology used, it was at this point in

time that it was clear that the future of self driving cars will heavily rely on visual

data processing. As we approach the early 2000s we enter a new paradigm shift

in technologies where high resolution GPS data becomes available to the masses as

well as high resolution maps. These features will eventually become a mainstay in

self driving car technology. During this period we also see the introduction of the

DARPA grand challenges which was a set of contests to build autonomous vehicles

that can traverse di�cult desert terrain. College students from Stanford were able

to build a fully autonomous vehicle, dubbed Stanley, that was able to traverse a 175

mile long desert course with vast shifting terrain in under 10 hours [21]. Stanley was

able to achieve this through a mix of cameras, lasers, and radar systems. At Stanley’s

core was an understanding of the vehicles state described by it’s position, velocity,

orientation, accelerometer biases, and gyro biases and how that state should respond
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to the world through probabilistic models. Towards the mid 2000s we begin to see

testing of autonomous vehicles using high resolution LiDAR sensors, these sensors

are able to produce very precise distance maps of the 3D space which is incredibly

useful for the self driving task. Companies such as Waymo and other large players

in the self driving car space has invested heavily in LiDAR technology as the main

sensor used for their self driving cars [22].

2.0.3 Deep Learning

As computational power increased over the coming years and machine learning inno-

vation really started taking o↵ in early 2010s, more powerful visual algorithms were

able to be implemented such as those heavily dependent on large convolutional neu-

ral networks. The rise of deep learning during this period has enabled rapid growth

and confidence in autonomous vehicle technology. One such framework at the core

of most visual systems today is You Only Look Once or YOLO by Joseph Redmon

which provided a paradigm shift for visual machine learning [3].

Figure 2.3: Example of the YOLO model performing object detection [3]

Prior to YOLO the visual systems being used in self driving cars heavily relied on

edge detection and traditional image processing techniques such as filtering in order to

parse objects from each frame. Advancements in computer vision such as YOLO has

given industry leaders such as Tesla enough confidence to go fully into visual based
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autonomous driving with their own proprietary Tesla Vision [23]. Other industry

leaders have been more hesitant in the transition to full visual systems believing the

best solution will be a mix of cameras and LiDAR systems.

2.0.4 Levels of Autonomy

The previous sections have described the several advancements in the field of au-

tonomous vehicles, with each of these advancements comes higher levels of autonomy

possible for a self driving car. The Society of Automotive Engineers (SAE) have de-

fined a hierarchy of driving automation on a 0 to 5 scale where 0 represents a fully

manual vehicle and 5 represents a fully autonomous vehicle [24]. Details about this

scale and what each level fully entails can be seen in figure 2.4.

Figure 2.4: SAE Levels of Automation [4]
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Currently on the road today, Mercedes-Benz’s “Drive Pilot” represents a level 3

automation system which is able to fully handle the driving task under well defined

areas at slow to moderate speeds [25]. There are some level 4 automated systems being

used under highly restricted conditions today and its becoming more likely that we

will see level 4 systems on the road in the coming decade. Level 5 systems however

are still far from being a reality due to the number of edge cases such a system would

need to handle. Beyond any technical limitations there are also a slew of legal issues

that arise with highly autonomous systems. Mainly there is no clear consensus on to

who accepts liability for the accidents that are inevitably going to occur. In the case

of semi-autonomous systems the lines are blurred even further to who should accept

liability. Research from Awad et al. suggests that drivers are blamed more than the

automated systems in these semi-autonomous situations even when both make errors

[26]. At some point certain legal standards need to be accepted in which liability is

shifted to the automobile manufacturer if they certify a certain level of autonomy on

their cars, what those standards are however have yet to be decided.

2.0.5 Trust in Self Driving Cars

Up until now the story of self driving cars has been focused entirely on the techni-

cal aspects. With the advancements described in deep learning and high resolution

sensors autonomous driving at scale has more-or-less already arrived. Yet with this

new territory comes questions of trust that need to be addressed. With self-driving

cars comes modern day trolly problems where the self driving car will need to make

decisions that will either maximize the safety of its passengers or of external humans.

Survey studies have shown that people want utilitarian autonomous vehicles [27].

The issue of course arises that any utilitarian framework puts the owner of the self

driving car at risk under certain conditions. Shari↵ et al. [28] proposes that the

discussion of risk needs to be posed in terms of “absolute risk” rather than relative
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risk as by driving a self-driving car your total risk of injury is diminished therefore

you shouldn’t worry too much about the edge cases where your safety may not be

prioritized. When considering things from an absolute perspective users may be more

likely to buy into a self-driving car as their chances of survival on any given drive are

overall maximized by doing so. There are also questions as to whether such utilitarian

views are universal across all cultures and whether or not the utilitarian view is one

of virtue signaling or of true sentiment.

2.0.6 Comfort as a Passenger in Self Driving Car

Yet another challenge self driving cars must overcome beyond any technical challenges

is that the driving behavior must feel natural to a given passenger. How a self-driving

car drives may feel riskier than what a human passenger is comfortable with. Studies

from Kolekar et al. suggest self-driving behavior can be made more human like with

the introduction of “driver risk field” modeling where the cars behavior is tuned to

a given drivers perceived risk when executing driving maneuvers [29]. This generates

autonomous behavior that is more in line with human driving than the current status

quo which only tries to minimize the real risk proposed from a driving scenario.

2.0.7 Adoption of Self Driving Vehicles

Adoption of self driving cars seems to be entirely dependent on the few factors dis-

cussed. The first being the self driving cars ability to truly provide a self driving

experience with little to no human intervention, having that experience be trusted,

and finally having an experience that minimizes uneasiness as a passenger. Until

these factors are met it is unlikely self-driving cars will see mass market adoption.
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CHAPTER 3

SUBJECTIVE DATA COLLECTION OF DRIVING BEHAVIORS AND

EXPECTATIONS

3.1 METHODS IN SUBJECTIVE DATA COLLECTION

3.1.1 Subjective Data Collection for Driving Behavior and AI Trust

The following sections describe a survey conducted in order to determine metrics for a

users preferred driving style and how they would prefer an autonomous vehicle to per-

form. Further, this survey was conducted internationally in order to understand the

demands of users across various areas. Through subjective data collection methods

this thesis attempts to create measurable metrics for a variety of driving behaviors

and trust.

3.1.2 Novelty of Our Approach

The novelty in our approach revolves around the cross-cultural aspects of our data

collection and analysis. As stated earlier, we surveyed 157 people across the United

States, Germany, and Central America that were recruited through local-networking

and through PollPool.com. Survey data was systematically translated from English

to the other targeted demographics primary language, mainly German and Spanish.

The respondents totaled 52 from the United States, 64 from Germany, and 41 from

Central America. This analysis was the first to collect cross-cultural data regard-

ing driving behaviors and passengers’ expectations from autonomous vehicles. Our

analysis provides the first international examination of trust and driving behaviors

contrasting a European and Central American sentiment with respect to the United
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States sentiments of self-driving cars. It expands upon current research allowing for

trust-based and behavior-based metrics to be extracted from data.

3.1.3 Subjective Data Collection Procedure and Instruments

Participants were asked to fill out a survey. The survey asks 57 questions relating

to demographics, personal driving behaviors, and trust as it relates to AI and self

driving cars. The survey was structured into 7 distinct sections as follows:

• Section 1 provides demographic information including data about what coun-

try the driver currently resides in and what country they have driven the most in

as well as age, gender, ethnicity, education, employment status, income range,

etc.

• Section 2 provides information regarding how a driver behaves on non-highway

roads and it is used to define an aggressiveness score of the driver.

• Section 3 provides information regarding how a driver behaves on highway

roads and it is also used to define an aggressiveness score of the driver.

• Section 4 provides information regarding general driving behaviors such as

parking, turning, and driving under di�cult weather conditions.

• Section 5 provides information regarding how drivers currently trust Artificial

Intelligence (AI) and its applications to self-driving cars on a set of fuzzy trust

states: distrust, somehow distrust, neutral, somehow trust, and trust.

• Section 6 provides information regarding how drivers expect AI/autonomy to

perform on non-highway roads.

• Section 7 provides information regarding how drivers expect AI/autonomy to

perform on highway roads.
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3.1.4 Quantitative Measurement

Each question asked can be related to a quantitative value in order to define a Driving

Behavior Aggressiveness (DBA), Self-Driving Car Aggressiveness (SDCA), AI Driv-

ing Mechanics Trust (AIDMT), general AI Trust (AIT), and Driver Safety Score

(DSS) metrics. A sample of a given question and its encoding can be found in Figure

3.1. Each question’s encoded score can be valued between 0 and 1, where a score

of 0 represents a cautious/conservative action, a score of 0.5 represents a moderate

action, and a score of 1 represents a more aggressive action.

Figure 3.1: Sample question to define DBA score [5].

Responses from highway based and non-highway based questions are averaged to-

gether to provide a more general scoring of the drivers aggressiveness in all situations.

The same method was applied to questions related to SDCA questions across high-

way and non-highway questions. A generalized DBA score and SDCA score are found

from averaging the results in each respective category. For DBA scores, a score of 0

represents a conservative driver and a score of 1 represents an aggressive driver. For

SDCA scores, a score of 0 represents a conservative SDC and a score of 1 represents

an aggressive SDC. These scores can then be used to contrast expectations of a SDC
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to their own driving behaviors. From the survey, a total of 20 questions were used

to determine a driver’s average DBA and SDCA scores. 16 questions were used to

determine a driver’s trust towards the AI’s ability to execute driving mechanics and

defined as the AI Driving Mechanics Trust (AIDMT) score. Driver Safety Score (DSS)

was evaluated using 10 questions that are correlated with safe driving behaviors, a

lower score is associated with safer driving behaviors. Finally, 7 questions were used

to describe a driver’s general trust of AI technology and its ability to perform in rare

and complex environments. These questions define the AI Trust (AIT) score. In order

to ensure our metrics are measuring di↵erent aspects of a respondents driving profile

we consider the correlation between their responses. Figure 3.2 shows the Pearson

correlation between each measured metric across all demographics. From this we can

see that most metrics share a very weak to no correlation with each other with the

exception of AIT and AIDMT which are slightly correlated with a correlation coef-

ficient of .66. In general a respondent who is more trustful of AI tends to trust it’s

ability to perform driving mechanics. This correlation is strongest within the German

population with a coe�cient of .73 seen in Table 3.5.

Figure 3.2: Pearson Correlations between Each Metric Across All Demographics.
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Figure 3.3: Pearson Correlations between Each Metric for US Respondents.

Figure 3.4: Pearson Correlations between Each Metric for Central American Respon-

dents.

Figure 3.5: Pearson Correlations between Each Metric for German Respondents.
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3.1.5 Consistency in Measurement

In order to measure the consistency of our survey across each measured score we con-

sider the Cronbach’s Alpha values for each survey section where a measured quantity

was calculated for each demographic. The number of items in each metric measured is

shown in the table 3.1. The alpha values allow us to determine how closely questions

Number of Items

DBA Highway 5

DBA Non-Highway 5

SDCA Highway 5

SDCA Non-Highway 5

AIDMT Highway 8

AIDMT Non-Highway 8

DSS 10

AIT 7

Table 3.1: Number of items used in each section

are related to one another in a group of questions. One should expect the consistency

of a group of questions to be invariant to the language in which the question is asked;

however, we observe di↵erences in alpha values across surveys in various languages.

3.1.6 Cronbach’s Alpha Values

We first consider the alpha values for each language and region the survey was o↵ered

in. Table 3.2 shows the Cronbach’s Alpha values for each section for US respondents.

The number of items for each question grouping is relatively small; however, we should

expect similar consistency across groupings of similar questions. What was observed

however provides di↵erent consistency of responses depending on the context in which
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the question is asked. Of note when respondents were asked the same questions in

a highway setting versus a non-highway setting the consistency of their answers was

negatively impacted as reflected in the low ↵ values calculated with respect to their

non-highway responses compared to their highway responses. Further when respon-

dents were asked the same question in the context of a self driving car performing the

action, the consistency of their answers in regards to the metric examined increased

drastically. The phrasing used for DBA scores and SDCA scores for a sample question

is shown in figure 3.6. The German Cronbach’s Alpha values can be seen in Table 3.3.

These values follow the US respondent values closely in most groups. Non-highway

based DBA questions for German respondents produced a significantly lower ↵ value

as compared to US respondents. The Central American Cronbach’s Alpha values

can be seen in Table 3.4. Compared to the US and German respondents the Central

American respondents measured a much lower alpha value for the DBA scores and

much higher alpha values for each other metric measured. The variations in alpha

values across demographics yields some interesting questions as to how context a↵ects

the relevance of question groupings. These factors may be explained by di↵erences

in highway vs non-highway constructions in those demographics as well as what is

considered aggressive driving under said context. Exploration in the factors driving

these variations is a primary question of future research e↵orts.

Figure 3.6: DBA Score Question and SDCA analogue
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↵ 95% CI 80% CI

DBA Highway .487 [.222, .682] [.327, .624]

DBA Non-Highway .306 [-.052, .569] [.089, .491]

SDCA Highway .782 [.671, .865] [.715, .841]

SDCA Non-Highway .700 [.546, .814] [.607, .781]

AIDMT Highway .905 [.824, .925] [.846, .912]

AIDMT Non-Highway .881 [.859, .940] [.877, .930]

DSS .535 [.316,.705] [.401,.654]

AIT .879 [.82,.924] [.843,.911]

Table 3.2: US Respondents Cronbach’s Alpha Scores

↵ 95% CI 80% CI

DBA Highway .531 [.325, .689] [.405, .641]

DBA Non-Highway .062 [-.350 .378] [-.190, .282]

SDCA Highway .758 [.651, .839] [.692, .814]

SDCA Non-Highway .682 [.543, .789] [.597, .757]

AIDMT Highway .883 [.835, .921] [.853,.910]

AIDMT Non-Highway .865 [.810, .909] [.831, .896]

DSS .451 [.231,.629] [.315, .575]

AIT .900 [.857,.932] [.873, .922]

Table 3.3: German Respondents Cronbach’s Alpha Scores
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↵ 95% CI 80% CI

DBA Highway .183 [-.292,.520] [-.103,.422]

DBA Non-Highway .166 [-.320,.510] [-.126,.410]

SDCA Highway .861 [.781,.919] [.813,.902]

SDCA Non-Highway .812 [.703,.890] [.746,.867]

AIDMT Highway .957 [.933,.974] [.942,.969]

AIDMT Non-Highway .956 [.932,.973] [.949,.968]

DSS .434 [..145,.664] [.261,.598]

AIT .959 [.937,.976] [.946,.971]

Table 3.4: Central American Respondents Cronbach’s Alpha Scores

3.2 SUBJECTIVE DATA COLLECTION RESULTS

This section compares the scores generated from each of the defined quantitative met-

rics (DBA, SDCA, AIDMT, AIT, and DSS) against the collected demographic data

in order to verify if there is a statistically observable di↵erence across demographics

within a nation’s population as well as from an international perspective.

3.2.1 International DBA and SDCA Metrics Across all Demographics

Across all surveyed respondents, the following summary statistics were generated de-

scribing the distributions of quantitative metrics DBA, SDCA, AIDMT, AIT, and

DSS as shown in Table 3.5. These summary statistics include the mean, standard

deviation, median, min and max values across all regions where surveys were dis-

tributed.
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DBA SDCA AIT AIDMT DSS

Mean 0.428 0.341 0.478 0.551 0.312

Standard Deviation 0.139 0.193 0.247 0.252 0.139

Median 0.450 0.350 0.500 0.547 0.300

Min 0.075 0.00 0.00 0.00 0.050

Max 0.750 1.00 1.00 1.00 0.675

Table 3.5: International summary statistics.

The following DBA and SDCA scores were generated and can be seen in Figure 3.7.

From this distribution, we can see that across all nations surveyed most drivers behave

in a conservative to moderate fashion and most drivers will lean towards having a far

more conservative self-driving car compared to their own driving behaviors. This find-

ing supports previous research conducted in [5], which provided similar distributions

across these metrics. Using the Mann-Whitney U Test, we can statistically confirm

that these distributions are statistically di↵erent with a p-value of 0.000. These dis-

tributions are shown in Figure 3.7. Further, we can compare the two new metrics

introduced for this analysis, general AI Trust and AI Driving Mechanics Trust. These

distributions can be seen in Figure 3.8. Of note, we can observe a clear divide between

somewhat trust and somewhat distrust in the driver’s AIT score. This is contrasted

against the driver’s AIDMT score, which shows a flatter distribution with a somewhat

trust bias.
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Figure 3.7: International DBA and SDCA histograms.

Figure 3.8: International AIT and AIDMT histograms.

3.2.2 International Metrics Across Genders

For this analysis, we consider if there are any significant di↵erences in the quantitative

metrics defined across genders. Using the Mann-Whitney U test, we found that there

is no statistically significant di↵erence in DBA or SDCA scores across genders for

the international respondents. There is however a statistically significant di↵erence

between gender when it comes to AIT and AIDMT with p-values of 2.84E � 05 and

0.0004, respectively.

The plots, represented in Figure 3.9, illustrate a clear di↵erence in AI trust across

genders internationally with females being less trustful of AI technology in both a

general sense and in its ability to perform several driving mechanical functions.
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Figure 3.9: International AIT & AIDMT for males vs females.

3.2.3 International Trust Levels and Driving Aggressiveness

Of interest to this analysis is the relationship between people’s trust in AI and how

they would like their SDC to perform. For this analysis, we considered a driver

with an AIT score of less than or equal to 0.5 to be generally distrustful of AI

technology while a driver with a trust score greater than 0.5 to be generally trustful

of AI technology. Under these parameters, the following SDCA score distributions

are reproduced in Figure 3.10. Using the Mann-Whitney U Test, we compared these

distributions against the international DBA score to see how the distributions are

related.The comparison of the SDCA of drivers, who are distrustful of AI technology,

to their own driving behaviors shows a p-value of 0.000 agreeing with the general result

that people want a SDC that is more conservative than their own driving behavior.

Figure 3.10: International SDCA scores for trustful and distrustful drivers based on

AIT scores.
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However, this result changes when we consider the SDCA of drivers, who are trustful

of AI technology, to their own driving behavior. In this case, we failed to reject the

null-hypothesis and show that there is evidence for these drivers preferring a SDC that

mimics their own moderate driving behaviors. This is fascinating and confirms that

social acceptability of SDCs is a challenge even among people who trust AI technology.

These results are also examined when comparing the correlated AIDMT score to the

SDCA score under the same trust split showing similar results as illustrated in 3.11

Figure 3.11: International SDCA scores for trustful and distrustful drivers based on

AIDMT score.

3.2.4 American Respondent Analysis

Across all American surveys we consider the responses evaluated across each metric

DBA, SDCA, AIT, AIDMT, and DSS. The summary statisitcs provide the mean,

standard deviation, median, min and max observed values and can be seen in Table

3.6.
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DBA SDCA AIT AIDMT DSS

Mean 0.409 0.386 0.536 0.627 0.358

Standard Deviation 0.148 0.203 0.226 0.225 0.135

Median 0.45 0.4 0.536 0.609 0.363

Min 0.1 0.0 0.071 0.02 0.100

Max 0.7 1.0 1.0 1.0 0.675

Table 3.6: American summary statistics.

This analysis further considers if there exists the same di↵erence in preference

when comparing DBA and SDCA scores for American respondents. From the plots

shown in Figure 3.12, we observe that there isn’t a large contrast between their own

driving behavior and what they expect from a SDC. When run through the Mann-

Whitney U test, we failed to reject the null-hypothesis when comparing these two

distributions. The DBA and SDCA scores from American respondents can be seen

in Figure 3.12.

Figure 3.12: American DBA and SDCA score comparison.

The DBA and SDCA scores provide evidence that Americans prefer their SDCs

to behave more like their own driving behavior.
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Figure 3.13: American AIT and AIDMT scores.

The two trust metrics AIT and AIDMT were produced and shown in Figure 3.13.

These trust metrics show that American respondents had a slightly higher trust in

AI’s ability to perform the mechanics of driving, but had less trust in the technology

as a whole.

3.2.5 German Respondent Analysis

For each metric DBA, SDCA, AIT, AIDMT, and DSS, summary statistics including

Mean, Standard Deviation, Median, Min and Max were observed and recorded in

Table 3.7.

DBA SDCA AIT AIDMT DSS

Mean 0.467 0.364 0.459 0.583 0.350

Standard Deviation 0.128 0.164 0.244 0.217 0.122

Median 0.45 0.35 0.411 0.589 0.350

Min 0.1 0.0 0.0 0.062 0.100

Max 0.75 0.85 1.0 1.0 0.675

Table 3.7: German summary statistics.
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When considering the German responses, we can observe a clear di↵erence between

the DBA and SDCA distributions, as shown in Figure 3.14. Using the Mann-Whitney

U test, we captured a p-value of 0.0002 providing statistical evidence of di↵erences be-

tween these distributions. This measurement supports the idea that German drivers

prefer a more conservative SDC than their own driving behaviors. It is also interest-

ing to note that Germans had the highest mean DBA score across all participants for

this research. Further, the two trust metrics AIT and AIDMT were plotted with the

following distribution shown in Figure 3.15.

Figure 3.14: German DBA and SDCA score comparison.

Figure 3.15: German AIT and AIDMT scores.

When considering AI Trust metrics with regards to German respondents, we ob-

served that there exists a slight discrepancy towards general AI trust and trust of AI’s
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ability to perform mechanical driving tasks. While we couldn’t find a statistically

significant di↵erence between genders for the observed metric among all other partic-

ipants, we observed statistically significant di↵erences between German males versus

females in regards to AIT and AIDMT distributions with a p-value of 2.423E � 05

and 0.0002, as shown in Figure 3.16, which requires further investigations.

Figure 3.16: German AIT and AIDMT scores by gender.

To note, this discrepancy across genders was only found in the German survey

data with all other survey data sets not providing statistically significant di↵erences

across genders.

3.2.6 Central American Respondent Analysis

For each metric DBA, SDCA, AIT, AIDMT, and DSS, summary statistics including

Mean, Standard Deviation, Median, Min and Max were observed and recorded in

Table 3.8.
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DBA SDCA AIT AIDMT DSS

Mean 0.387 0.249 0.437 0.407 0.194

Standard Deviation 0.132 0.199 0.271 0.279 0.096

Median 0.4 0.25 0.5 0.391 0.200

Min 0.075 0.0 0.0 0.0 0.050

Max 0.75 0.6 1.0 1.0 0.450

Table 3.8: Central American summary statistics.

The Central American responses showed a statistical di↵erence between the DBA

and SDCA score with a p-value of 0.003 using the Mann-Whitney U test. This result

provides statistical evidence towards Central American drivers preferring a far more

conservative car than their own driving behavior. These distributions are shown in

Figure 3.17. Further, the two trust metrics AIT and AIDMT were plotted with the

following distributions shown in Figure 3.18.

Figure 3.17: Central American DBA and SDCA comparison.
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Figure 3.18: Central American AIT and AIDMT scores.

Of note, the Central American respondents had lower scores in AIT and AIDMT

as compared to their American and German counterparts. It is also noted that Central

Americans had more trust in the general nature of AI rather than its ability to perform

the mechanics of driving. This is in a sharp contrast to both Americans and Germans

who had more trust in AI’s ability to manage driving mechanics.

3.2.7 Americans versus Germans

When we compared Americans versus Germans, we found no significant di↵erences

in the generated distributions for four of the five metrics SDCA, AIT, and AIDMT.

There is evidence to suggest a statistical di↵erence between German DBA scores and

American DBA scores with a p-value of 0.0489 as a result of the Mann-Whitney U

test. The plots for these distributions can be seen in Figure 3.19. From these, we can

interpret that German drivers have a slightly more aggressive driving style compared

to the American drivers.

3.2.8 Scores across Individual Questions for AI Trust: US and Germany

While aggregate scores yield an overall sentiment for groupings of questions, there’s

a lot of information to be gained from individual questions. When comparing USA
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Figure 3.19: Americans and Germans DBA scores.

respondents to German respondents a few questions yielded statistically significant

di↵erences in sentiment. In questions relating to AI trust we can see statistical di↵er-

ences in the trust level of using a self driving car when the technology becomes avail-

able as well as the trust that said self-driving car will be able to navigate a crowded

pedestrian area with p-values of .011 and .009 respectively in a Mann-Whitney U test.

This data points to the fact that German respondents were less trusting of self-driving

car technology as seen in figure 3.20 and its ability to navigate in crowded areas as

seen in figure 3.21. This result was not reflected in the overall AIT statistic as other

questions relating to AI trust were generally aligned with the US sentiment.

Figure 3.20: Americans and Germans Trust Scores on Self Driving Technology

31



Figure 3.21: Americans and Germans Trust Scores on Navigating Pedestrian Areas

3.2.9 Americans versus Central Americans

When we compared Americans versus Central Americans, we found statistically sig-

nificant results in the SDCA, AIDMT, and DSS metrics with p-values of 0.003,

5.28E � 05, and 2.84E � 08 respectively. These distributions can be seen in Fig-

ure 3.22 and Figure 3.23 The DBA and AIT metrics failed to show any statistically

significant di↵erences in these distributions.

Figure 3.22: Americans and Central Americans SDCA and AIDMT scores.

The di↵erences between SDCA and AIDMT are interesting. The results illustrate

that Central American drivers prefer a more conservative SDC experience relative to

the American drivers. Furthermore, the results show that Central Americans are less

trusting in an AI’s ability to perform driving mechanics. It can also be seen in the

lower DSS score that central American drivers tend to take safer driving actions as

compared to American drivers.
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Figure 3.23: Americans and Central Americans DSS score.

3.2.10 Scores across Individual Questions for AI Trust: US and Central

America

As seen in the USA vs German AIT score comparison, the aggregate does not fully

capture the sentiment across all trust scenarios. When comparing USA sentiment of

trust to Central America’s trust sentiments for AIT questions we see a few statistical

di↵erences in questions relating to safety priority and fully autonomous control with

no human intervention. These results showed that American drivers believe that their

cars will hold their own safety as an absolute priority compared to Central American

drivers. These results also showed that Central American drivers are less likely to

trust a Self Driving car to perform without any human component as compared to

American drivers. These questions showed statistical di↵erences with p-values of .028

and .0026 respectively in a Mann-Whitney U test. These results can be seen in figure

3.24 and figure 3.25.

33



Figure 3.24: Americans and Central Americans Trust Scores on Safety Priority

Figure 3.25: Americans and Central Americans Trust Scores on Ability to Perform

without Human Intervention

3.2.11 Central Americans versus Germans

When we compared Central Americans versus Germans, we found statistically sig-

nificant di↵erences in DBA, SDCA, AIDMT, and DSS scores with p-values of 0.003,

0.006, 0.0005, and 2.84E-08 respectively. These distributions can be seen in Figure

3.26, Figure 3.27, and Figure 3.28.
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Figure 3.26: Central Americans and Germans DBA and SDCA scores.

Figure 3.27: Central Americans and Germans AIDMT score.

Figure 3.28: Central Americans and Germans DSS score.
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From the distributions in Figure 3.26, we can observe that Central American

drivers prefer a more conservative driving style as compared to German drivers. It is

also seen that Central American drivers expect a more conservative self-driving car

compared to German drivers. There also exists a statistically significant di↵erence

in how Central Americans trust the SDC to be able to perform driving mechanics.

Figure 3.27 shows that Central Americans are less trustful in this metric as compared

to Germans. It can also be seen in the lower DSS score illustrated in Figure 3.28 that

central American drivers tend to take safer driving actions as compared to German

drivers.
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3.2.12 Scores across Individual Questions for AI Trust: Germany and

Central America

Once again, while overall sentiment of AI trust does not show any statistically signifi-

cant results, when we consider results between individual questions some stark di↵er-

ences appear. When considering a self driving car’s ability to perform in a crowded

pedestrian area Central American respondents showed a higher trust level than Ger-

man respondents, this is verified with a p-value of .047 using a Mann-Whitney U

test. Further when considering a self driving car’s ability to navigate you to an exact

destination we see that German respondents had much larger trust value compared

to Central American respondents verfied by a Mann-Whitney U test with a p-value

of .01. These results can be seen in figure 3.29 and figure 3.30.

Figure 3.29: Germans and Central Americans Trust Scores on SDC ability to Perform

in Crowded areas

Figure 3.30: Germans and Central Americans Trust Scores on Ability to Navigate to

Exact Destinations
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3.3 SUBJECTIVE DATA COLLECTION DISCUSSION

There are several takeaways from the research conducted that help yield future con-

siderations when designing autonomous vehicle systems.

3.3.1 Cronbach’s Alpha Values

When examining the consistency of our questions we found some interesting results in

the measured alpha values. When participants were asked a grouping of questions in

the context of their own driving behaviors the corresponding alpha values were low,

while if those same questions were asked in the context for a self driving car their

alpha values were significantly higher. Likewise, if the context was changed from a

highway scenario to a non-highway scenario there would be a significant change in the

measured alpha value for a grouping of questions. It was also shown that while one

would expect the alpha values of a set of questions to be invariant to the language in

which it’s asked, there were significant di↵erences between surveyed demographics.

These di↵erences show how much context e↵ects a participants view of a particular

driving behavior and this context is highly dependent on the experiences they are

familiar with based on their own driving experience.

3.3.2 Statistically Significant Measures

The approach taken when examining the survey data was an exploratory approach

in which we compare relationships between metrics across demographics. By seeing

statistical di↵erences between distributions we can better understand how to serve

future passengers in self driving cars. Most metrics between US and German corre-

spondents had similar distributions with the exception of DBA where German drivers

had a slightly more aggressive DBA score. The greatest di↵erences were found when

comparing both US and German responses to those from Central America. There

also existed several statistically significant di↵erences on individual questions related
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to AI trust and it’s ability to perform under various scenarios. These results are

summarized in the following list.

• United States vs German Metrics

Similar metric distributions with the exception of DBA where German drivers

scored slightly higher.

US Respondents had a higher trust level in utilizing Self Driving Car technolo-

gies when they become available compared to German Respondents.

US Respondents had a higher level of trust that the self driving car will be able

to navigate a crowded pedestrian area compared to German Respondents.

• United States vs Central American Metrics

US Respondents had higher metrics for DBA, SDCA, AIDMT, and DSS scores,

but scored similar for the AIT metric.

US Respondents had a higher trust that the self-driving car will keep its safety

as a priority compared to Central American respondents.

US respondents had a higher trust that the self-driving car will be able to

navigate safely with no person in the vehicle compared to Central American

respondents.

• German vs Central American Metrics

German Respondents had higher metrics for DBA, SDCA, AIDMT, and DSS

scores, but scored similar for the AIT metric.

Central American had a higher level of trust that the self driving car will be

able to navigate a crowded pedestrian area compared to German Respondents

German respondents had a higher level of trust that the self driving car will

be able to navigate to an exact destination compared to Central American

respondents.
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• German Men vs German Women AI Trust

German Respondents had a statistical di↵erence between genders in both trust

metrics AIT, and AIDMT. No other nation demographic showed deviations in

any metric across gender.

The potential causes for the observed di↵erences could be a result of several factors.

One factor could be the di↵erence in road quality. According to the road quality

indicator provided by the World Economic Forum [30] US and German roads score

higher than all Central American roads and US and German roads share a similar

score of 5.5 and 5.3 respectively. On this scale the highest quality road is Singapore

with a score of 6.5. Most The highest scoring Central American country (Panama)

scored 4.5 with the average central American country scoring 3.73. One can also

consider the digital adoption index (DAI) provided by the World Bank which shows

US and Germany having a higher DAI than most Central American countries [31].

The low adoption rate of digital technologies could be one cause of the lower trust

observed in AI metrics measured. Overall understanding the proper context driving

these di↵erences will be key in delivering autonomous vehicles and AI technology

internationally.
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3.4 CONCLUDING REMARKS ON SUBJECTIVE DATA COLLEC-

TION

Our research concludes that there exists observable di↵erences in the quantitative

metrics defined across the United States, Germany and Central America. Of note,

Central America had the lowest average SDCA score that deems a much more con-

servative SDC experience is requested in that part of the world as compared to both

the United States and Germany, which measured a much higher average SDCA score.

Furthermore, when comparing Central American respondents to German respondents,

statistical di↵erences were found in almost all quantitative measurements suggesting

either a vastly di↵erent technology should be developed for Central Americans, or

a completely di↵erent strategy should be employed for social acceptability of SDCs

in that region. The data also concluded that there exists a statistically significant

di↵erence in the AIT and AIDMT metrics across genders in Germany where women

are far less trusting of AI technology and AI’s capability to perform driving mechan-

ics. Further the data suggests on individual AI trust questions there exists statistical

di↵erences between cultures and their expectations of a self-driving car in various

scenarios. Further work on this study can be conducted by expanding the sample size

of the nations surveyed as well as increasing the number of nations surveyed to get a

better understanding of the global needs of the SDC technology.
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CHAPTER 4

DRIVING BEHAVIOR DATA COLLECTION

4.0.1 Mapping Survey Data to User Behaviors

The previous chapter discussed users expectations of self-driving cars through sur-

veyed question data. While these results are interesting and provide insight into cul-

tural expectations they do not provide a clear answer in terms of implementation, only

that an adaptive system will be required to adjust behaviors based on expectations.

In the field of adaptive self-driving car technologies, there exists several proposed

solutions such solutions found in patents provided from Mehrdad Nojoumian [32, 33]

suggesting modifying self-driving car behavior based on sensor data from the vehicle

and additional sensors. This thesis suggests using survey data to initialize driving

behaviors and then using data obtained from smart-phone devices in order to identify

and adapt to driving behaviors based on driving observables.

4.0.2 Driving Observables

It can be said that any classical physical system can be represented its velocity and

position. When considering a persons driving style we need only consider how the

driving style a↵ects the physical observable in the system. How a person turns, breaks,

and accelerates are just representations of changing acceleration vectors; therefore,

the key to understanding how a person drives is understanding how their acceleration

vectors change over time. As such, creating self driving cars that mimic a persons

driving behavior begins with collecting data of the persons acceleration data labeled

by their driving action.
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4.0.3 Data Collection

In order to collect such data let us consider the fact that 85% of Americans now own

a smartphone according to a study done by the Pew Research Center in 2021 [34].

One feature of the vast majority of smartphones is the rich sensor set embedded into

the technology. Of interest accelerometer, gyroscopes, and GPS sensors allow for the

rough calculation of any physical observable in regards to driving behavior. These

observables will be measured with respect to the device in the default position as

shown in 4.1.

Figure 4.1: iPhone Reference Frame [6]

This thesis proposes a cloud-based architecture in order to collect data at scale

in order to generate driving profiles based on driving behaviors. At a high level
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users will interact with AWS API Gateway through post requests, these requests are

parsed through AWS Lambda and then stored into a NoSQL database DynamoDB.

Data from dynamo DB is then inferred using AWS Sagemaker and results stored into

a S3 bucket. This data can then be formatted for user viewing via AWS Quicksight.

A high level diagram of this process can be seen in figure 4.2. The design presented

Figure 4.2: AWS Cloud Based Architecture Diagram

provides several unique advantages. The main advantage is that this system can be

rapidly scaled and ported. As we are using an API based infrastructure any device

with the correct sensors and an internet connection can be incorporated into this

framework.

4.0.4 Application Proof of Concept

The framework discussed in the previous section was built as a proof of concept and

turned into an iOS application for recording data. Data can be labeled for specific

behaviors to be captured. The proof of concept for this application is shown in figure

4.3.
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Figure 4.3: Data Collection Application Proof of Concept

This application currently requires two users to be used safely and e↵ectively

where one user is the driver and the second user is the data recorder. The driver and

data collector will first agree on a test to be conducted and a trial id to refer back to

the given trial. Once the experiment is ready to be conducted the data recorder will

toggle the record data button. When recording data the gyroscopes, accelerometers,

and GPS sensors outputs will be gathered and bundled into a post request to the

AWS endpoint at a frequency of 1Hz. The data recorder can label data on the fly

through the use of the flag data toggle. Sudden unexpected events while driving can

be flagged with the sudden event button which which will flag the timestamp with
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the sudden event when recording data. A sample of the resulting table populated in

AWS can be see in figure 4.4.

Figure 4.4: DynamoDB NoSQL Table

As the data is being added in real-time we can perform analytics on the stream

as data comes in. Future research can consider adapting self-driving car behavior

based on historical observables from a given users driving profile. For example how

hard a user likes to take a turn and how they tend to break are inherently encoded

into the accelerometer data and can be used as a training set for turning and braking

models. An example of raw data extracted from the sensors can be seen in figure 4.5.

In this frame a positive G-Force value in Z represents braking while negative result

represents accelerating. Likewise positive x g-forces represents a left turn of the vehicle

and negative x g-forces represents a right turn of the vehicle. The raw values however

have a lot of noise and make observing behaviors di�cult. In order to provide a

more interpretable result we consider an exponential moving average calculated with

a span of 60 which weights the measured values heavily to more recent values. This

result can be see in figure 4.6. In the exponential moving average graph we can see

diversions between acceleration in z and x showing how a driver reacts to a turn by

either speeding into the turn or breaking into the turn. Measures such as these can

play a key role in modeling driving behaviors.
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Figure 4.5: Raw Accelerometer Data in X, Z axis

Figure 4.6: Exponential Moving Average Accelerometer Data in X, Z axis

In addition to driver behavior modeling several secondary benefits can be enjoyed

while employing this system. As data is processed in real-time additional safety

systems such as crash detection and behavior prior to crash can be identified. Further

dangerous driving behaviors can be detected and alert a driver to improve based on

recorded observations in the form of a personalized driving dashboard which describes

the dangerous behaviors to the driver.
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CHAPTER 5

CONCLUSIONS

This thesis explores the cross-cultural expectations of self-driving cars based on an in-

ternational survey. The data analysis suggested several statistical di↵erences between

surveys distributed to di↵erent international respondents. The results suggest that

strategies used for deploying self driving cars for mass adoption in di↵erent countries

has to be tuned to the sentiments of said countries in order to match their standards

of trust, safety, and comfort. Further this thesis provides a highly scalable method

of data collection in order to capture driving behaviors without the need of obtrusive

sensors and complex installations in the vehicle. It is a matter of future research to

be able to tie the driving usage behavior data to the surveyed driving response.

48



BIBLIOGRAPHY

[1] N. B. Geddes, Magic motorways / Norman Bel Geddes. Random House [New
York], 1940.

[2] D. Pomerleau, “Alvinn: An autonomous land vehicle in a neural network,” in
Proceedings of (NeurIPS) Neural Information Processing Systems (D. Touretzky,
ed.), pp. 305 – 313, Morgan Kaufmann, December 1989.

[3] J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi, “You only look once:
Unified, real-time object detection,” CoRR, vol. abs/1506.02640, 2015.

[4] Society of Automotive Engineers, “Sae international releases updated
visual chart for its “levels of driving automation” standard for self-
driving vehicles.” https://www.sae.org/news/press-room/2018/12/

sae-international-releases-updated-visual-chart-for-its-%

E2%80%9Clevels-of-driving-automation%E2%80%

9D-standard-for-self-driving-vehicles. Accessed: 2022-11-25.

[5] J. Craig and M. Nojoumian, “Should self-driving cars mimic human driving
behaviors?,” in 3rd International Conference on HCI in Mobility, Transport and
Automotive Systems (MobiTAS), LNCS 12791, pp. 213–225, Springer, 2021.

[6] Apple, “Understanding reference frames and device attitude.” https:

//developer.apple.com/documentation/coremotion/getting_processed_

device-motion_data/understanding_reference_frames_and_device_

attitude. Accessed: 2022-11-20.

[7] C. Teale, “Amid tesla’s autopilot probe, nearly half the public thinks autonomous
vehicles are less safe than normal cars,” SEPT 2021.

[8] F. Hartwich, C. Hollander, D. Johannmeyer, and J. F. Krems, “Improving
passenger experience and trust in automated vehicles through user-adaptive
hmis:“the more the better” does not apply to everyone,” Frontiers in Human
Dynamics, p. 38, 2021.

[9] F. Hartwich, C. Witzlack, M. Beggiato, and J. F. Krems, “The first impression
counts–a combined driving simulator and test track study on the development
of trust and acceptance of highly automated driving,” Transportation research
part F: tra�c psychology and behaviour, vol. 65, pp. 522–535, 2019.

49

https://www.sae.org/news/press-room/2018/12/sae-international-releases-updated-visual-chart-for-its-%E2%80%9Clevels-of-driving-automation%E2%80%9D-standard-for-self-driving-vehicles
https://www.sae.org/news/press-room/2018/12/sae-international-releases-updated-visual-chart-for-its-%E2%80%9Clevels-of-driving-automation%E2%80%9D-standard-for-self-driving-vehicles
https://www.sae.org/news/press-room/2018/12/sae-international-releases-updated-visual-chart-for-its-%E2%80%9Clevels-of-driving-automation%E2%80%9D-standard-for-self-driving-vehicles
https://www.sae.org/news/press-room/2018/12/sae-international-releases-updated-visual-chart-for-its-%E2%80%9Clevels-of-driving-automation%E2%80%9D-standard-for-self-driving-vehicles
https://developer.apple.com/documentation/coremotion/getting_processed_device-motion_data/understanding_reference_frames_and_device_attitude
https://developer.apple.com/documentation/coremotion/getting_processed_device-motion_data/understanding_reference_frames_and_device_attitude
https://developer.apple.com/documentation/coremotion/getting_processed_device-motion_data/understanding_reference_frames_and_device_attitude
https://developer.apple.com/documentation/coremotion/getting_processed_device-motion_data/understanding_reference_frames_and_device_attitude


[10] S. Shahrdar, C. Park, and M. Nojoumian, “Human trust measurement using
an immersive virtual reality autonomous vehicle simulator,” in 2nd AAAI/ACM
Conference on Artificial Intelligence, Ethics, and Society (AIES), pp. 515–520,
ACM, 2019.

[11] S. Shahrdar, L. Menezes, and M. Nojoumian, “A survey on trust in autonomous
systems,” in Intelligent Computing (K. Arai, S. Kapoor, and R. Bhatia, eds.),
(Cham), pp. 368–386, Springer International Publishing, 2019.
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