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Most of recent studies indicate that people are negatively predisposed toward uti-

lizing autonomous systems. These findings highlight the necessity of conducting research

to better understand the evolution of trust between humans and growing autonomous tech-

nologies such as self-driving cars (SDC). This research therefore presents a new approach

for real-time trust measurement between passengers and SDCs. We utilized a new struc-

tured data collection approach along with a virtual reality (VR) SDC simulator to under-

stand how various autonomous driving scenarios can increase or decrease human trust and

how trust can be re-built in the case of incidental failures. To verify our methodology, we

designed and conducted an empirical experiment on 50 human subjects. The results of this

experiment indicated that most subjects could rebuild trust during a reasonable timeframe

after the system demonstrated faulty behavior. Furthermore, we discovered that the cultural

background and past trust-related experiences of the subjects affect how they lose or regain

their trust in SDCs. Our analysis showed that this model is highly effective for collect-

ing real-time data from human subjects and lays the foundation for more-involved future

research in the domain of human trust and autonomous driving.
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CHAPTER 1

INTRODUCTION

The rapid growth of technology has resulted in the automation of many daily tasks humans

had to perform themselves in the past. From industrial robots used in factories to autopilot

systems and self-driving cars, automation continues to aid humans with repetitive, tedious,

and monotonous tasks. Every day, automation introduces newer and more sophisticated

concepts and systems in different areas of our lives including, but not limited to, our homes,

the daily commute, the workplace, and the military.

As automated systems evolve and their levels of complexity advance over time, their

presence in various daily activities in humans lives leads to the development of new notions

in human-autonomy interactions, for example, trust, satisfaction, and frustration, to name

a few. Studies have indicated that one of the primary challenges in successfully integrating

advanced autonomous systems and artificial intelligence technologies in humans lives will

be the management and development of mutual trust [9].

The possible misuses and abuses that humans would bring into automation technologies

is another prominent issue in this domain. According to [10], users can become overly

dependent on an automation technology, attempt to use functions that are out of the scope

of the system, or not monitor the system adequately. These are due to trust or distrust

in these technologies. This highlights the importance of educating those who intend to

purchase or use an autonomous technology, mainly with respect to the proper use of these

technologies.

Furthermore, the usage of information that is given to users regarding an autonomous

system is also important. In [10], human subjects were given information sources regarding

the usage of an autonomous system with faulty behavior. This study revealed that when
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more errors occur, the participants will not use the information provided to them due to a

lack of trust. Therefore, a proper trust management strategy would help the users utilize

such information even in the presence of errors.

Finally, a fair amount of consideration should be given to the safety of autonomous

systems. Indeed, users tend to be unaware of functions that an autonomous vehicle can

perform, often due to the over-complexity that appears throughout the system. The authors

in [11] state that safety would increase with simplification and possible training through a

simulated interface between autonomous systems and drivers.

In this thesis, we study how the passengers of a simulated self driving car respond to

various modes of autonomous driving. By implementing a realistic VR SDC simulator

as well as an advanced, easy to use trust self reporting tool, we aimed to understand how

people gain or lose trust in the simulated SDC, and what factors affect the fluctuations in

their trust levels.

This thesis is structured as follows: In Chapter 2, a survey of major studies in the

domain of trust and autonomous systems is presented. Chapter 3 describes our simulation

setup in detail, the equipments we used, and the challenges we faced when developing

our simulation. Chapter 4 presents a new approach for measuring and managing trust in

autonomous vehicles by utilizing VR technology, our experimental approach, followed by

our experiment and its results. Finally, Chapter 5 contains the limitations in the current

literature, new ideas, and the future direction of the research discussed in this thesis.

1.1 OUR MOTIVATION

Recent studies indicate that people generally have negative attitudes toward utilizing au-

tonomous platforms such as carriers with autopilot modes; according to recent findings by

researchers at Chapman University1, Americans expressed the highest levels of fear about

man-made disasters followed by fears about technology. Furthermore, with the exponential

1http://www.chapman.edu/wilkinson/research-centers/babbie-center/survey-american-fears.aspx
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growth and increase in the complexity of autonomous systems in the 21st century, manag-

ing the trust of users in such systems has become an important concept when designing

new AI and autonomous systems. Numerous studies in the domain of trust and AI have

suggested that the management and constant improvement of this mutual trust between

autonomous systems and their users will be one of the primary challenges faced by in-

dustry professionals when attempting to popularize the use of fully autonomous systems

[12, 13, 9]. These interesting discoveries highlight the necessity and urgency of conduct-

ing research to better understand the evolution of trust between humans and developing

autonomous technologies and to provide technologies that are responsive to human trust.

A concrete example of the trust management problem that we mentioned previously

would be the systematic maintenance of trust in SDCs. Car manufacturers and tech gi-

ants (e.g., Tesla, Mercedes Benz, GM, Volvo, Waymo, and Intel) have successfully man-

ufactured semi-autonomous cars and have been working on level-4 and level-5 fully au-

tonomous prototypes since the early 2010s. Many of these corporations have projected the

mass production of SDCs in the early 2020’s [14, 15, 16]. Their major challenge in the

upcoming years will be to attract the attention of average consumers in the US and around

the world who have not only high expectations but also a high level of distrust in fully

automated SDCs [17].

According to a World Economic Forum study, consumers are very reluctant to consider

purchasing, or even trying autonomous vehicles. Safety, control, and faulty behavior of

the autonomous car are some of the many concerns the consumers expressed (see Figure

1.1 for the detailed break down of the consumer concerns in this study). These are valid

consumer concerns. With the recent trust damaging, fatal car accidents involving SDCs

by Tesla and Uber [18] [19], the need for additional research to provide a safer test en-

vironment and managing human-machine trust becomes more important than ever. New

research objectives and innovative methodologies can potentially provide a robust platform

to develop autonomous vehicles that perform well and are trustworthy.
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Consumer Concerns About Self-Driving Cars

Figure 1.1: Top Reasons for Consumer Distrust in SDCs [1]

In the domain of trust, AI, and autonomous systems, the literature related to trust is very

broad. Very little research has been conducted on physiological responses and fluctuations

in the trust levels of passengers of SDCs [20]. Furthermore, most research in this area has

utilized online surveys and primitive simulations for their experiments rather than realis-

tic, immersive simulations (See Chapter 2 for a brief review of literature in the domain of

SDCs). 2. The open questions and the gaps in the current literature motivated us to attempt

to contribute to filling these gaps by designing an empirical experiment to measure the

trustworthiness of a simulated SDC. By implementing an immersive VR simulation, which

uses real VR driving videos, and utilizing an advanced trust self-reporting software that

we developed, we intended to collect accurate data from test subjects. We asked the par-

2In this phase of our research we did not use any devices to measure physiological responses.
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ticipants to use our trust self-reporting tool after they experience different simulated SDC

driving segments (see Section 4.1). We believe that our investigation and its outcome will

contribute to the general understanding of factors affecting trust and satisfaction among

passengers of SDCs.

1.2 NOVELTY OF OUR APPROACH

To the best of our knowledge, the following items are novel aspects of our research method-

ology and approach:

• Sequential and Structured Data Collection: Our data was collected based on a limited

(to avoid allowing our human subjects to provide inaccurate responses) sequence of

trust-building/damaging incidents that affect each other. This helped us understand

how the human mind goes from one specific trust-state to another one in a sequence

of events. We utilize specific templates (see Figure 4.1) to form these incidents.

• Various Trust States: Although most approaches [21, 22] utilize two forms of re-

sponses from subjects (distrust and trust), we consider a fuzzy set of trust states

(distrust, somehow distrust, neutral, somehow trust, and trust).

• Realistic Simulation Platforms: In many “trust-in-autonomy” projects (except the

robotic ones), subjects were asked to respond to questions in a survey or interact

with an algorithm to express their inputs. To the best of our knowledge, our SDC

simulator is the first platform that is utilized in a similar project. In fact, it is a very

safe test bed to expose our human subjects to inconvenient trust-damaging incidents.

Note that our intention here is to construct computational (or quantitative) models of

trust by experimental methods. We intend to understand principles of trust reduction and

escalation in real-time human-autonomy interactions. In the later phases of our research,

we will define our models’ specifications and construct computational models that are un-

derstandable to controllers.
5



1.3 HIGHLIGHTS OF OUR NEW DISCOVERIES

In this research, we discovered a few interesting things after conducting our experiment on

the levels of trust between humans and the different driving styles of SDC, and performing

data analysis on the demographic data that we collected prior to the experiment. We list

below some of the highlights of our findings (see Chapter 4 for a detailed report of these

findings).

1. Females gained or lost their trust in the simulated SDC with a slower pace compared

to males, who lost or gained their trust with a faster pace.

2. Subjects from Hispanic/Latino backgrounds gained or lost their trust with a slower

pace compared to others, who lost and gained their trust with a faster pace.

3. Subjects who expressed their trust can be easily rebuilt, re-gained their trust with a

faster pace versus subjects who mentioned otherwise.

4. Subjects with recent bad trust-related experiences gained or lost their trust with a

faster pace whereas, subjects who had bad trust-related experiences long time ago,

gained or lost their trust with a slower pace.

5. Subjects with a high-level of trust in SDC technology lost their trust with a slower

pace and regained their trust with a faster pace whereas, subjects with a low-level of

trust in this technology, lost their trust with a faster pace and regained their trust with

a slower pace.

1.4 BASIC DEFINITIONS

1.4.1 Autonomous Systems

The definition of an autonomous system continuously changes [23]. The Merriam-Webster

dictionary currently defines autonomy as “the quality or state of being self-governing; es-

pecially, the right of self-government.” The concept of autonomy has existed for thousands
6



of years in many different areas including philosophy, sociology, and politics. It is worth

mentioning that the second part of the autonomous term, i.e. nomos, means law in Greek.

Therefore, an autonomous system is an independent entity that creates its own laws [24].

A more specific definition would be a machine that is capable of performing tasks by itself

and without explicit human control [25].

Although automation was introduced to human civilization many years ago and has

been widely utilized since the industrial revolution [26], autonomous systems and industrial

robots are relatively new technologies that were introduced in recent decades. In this thesis,

our primary focus will be trust in SDCs.

1.4.2 Levels of Autonomous Driving

According to SAE Internationals standard J3016 [27], the levels of autonomy in SDCs are

broken down into six categories:

1. Level 0 - No Automation: The human user manually controls the system 100% of

the time. Most of the manufactured vehicles today are in this category.

2. Level 1 - Driver Assistance: In certain situations such as changing lanes and adjust-

ing the vehicles speed, the system can assist the driver. The driver still drives the car

manually at all times.

3. Level 2 - Partial Automation: The car can autonomously engage the breaks, steer,

or accelerate in certain scenarios, but human involvement in tasks such as detecting

hazards or traffic signals is still be required

4. Level 3 - Conditional Automation: The car can manage most of the driving with

minimal human intervention. Human attention would still be required if a system

failure occurs.
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5. Level 4 - High Automation: Most of the driving will be done autonomously. How-

ever, depending on certain geographic areas, minimal human intervention is some-

times required.

6. Level 5 - Full Automation: All driving autonomous at this level. The only human

intervention required would be entering the destination into the system.

Level Autonomy

0 No Automation

1 Driver Assistance

2 Partial Automation

3 Conditional Automation

4 High Automation

5 Full Automation

Table 1.1: Levels of Autonomous Driving

1.4.3 Trust and its Measurement

Trust is a term that has many different definitions in various contexts such as psychology,

sociology, economics, and computer science. Currently, there is no uniform definition of

trust [28]. Prior research indicates that there are over 300 definitions in various research

areas, and in the context of human-autonomy interactions, there are too many definitions

and notions of trust. These notions include the measurement of trust [23], computational

models of trust [29], and human-inspired models of trust [30], to name a few. The formal

definition of computational trust between two entities can be defined as follows [31]:

Definition 1 Let T j
i (t) be the trust value assigned by a group of players Pj to a specific

player Pi in period t. Let Ti(t) : N 7→R be the trust function that illustrates how trustworthy

8



Pi is.

Ti(t) =
1

n−1

n

∑
j 6=i

T j
i (t),

where−1≤ Ti(t)≤+1 defines the upper and lower bounds of the trust value, and Ti(0) = 0

determines the initial trust value, which is assigned when an interaction starts.

Indeed, this formal definition illustrates that trust can be quantified and measured. Accord-

ingly, actions or behaviors can be modified. The goal in technological systems is to have a

quantifiable model of trust so the system can be responsive to human trust.

The Oxford dictionary defines the notion of trust as “a firm belief in the reliability,

truth, or ability of someone or something [32].” If we consider this simple definition in our

context, the definition of trust would be: a strong human belief in the reliability, truth, or

ability of an autonomous system. Some examples of trust in autonomous systems include

trust in robots, machines, SDCs, autonomous airplanes, and software agents.
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CHAPTER 2

LITERATURE REVIEW TRUST IN AUTONOMOUS SYSTEMS

In this chapter, we review the related studies in four categories in order of publication

date. The classification includes trust in SDCs, trust in human-robot or human-machine

interaction, and trust in autopilot systems. Currently, the level of trust between humans

and autonomous systems is known to be very low. This results in humans not allowing

autonomous systems to be completely in charge, especially in dangerous situations.

2.1 TRUST IN SDCS

Uggirala et al. [33] analyzed trust in a situation in which users were given information

about the capacity of the autonomous vehicle. This study aimed to decrease uncertainty and

optimize system performance by making the users knowledgeable about the functions that

the autonomous car can perform. The participants completed training to become familiar

with the system. Subsequently, they had to judge whether the vehicle would be capable

of efficiently completing certain functions given reference lines. This study concluded that

when users are knowledgeable about the system, their trust in it increases.

The authors in [34] conducted a study related to the ability of SDCs to function in snow

conditions. In this study, 59 drivers were chosen to sit in an autonomous simulator cockpit.

One group of drivers were given information about the risks and uncertainties of the SDC

when driving in heavy snow conditions, whereas a second group of drivers were not told

anything about the SDCs capabilities. This experiment indicated that the first group of

drivers who were knowledgeable about the risks and uncertainties did not trust the SDC,

and they preferred to override the system so they could drive the car manually. However,

10



the second group did not override the autonomous system to drive the car manually and

had more trust in the system.

In [35], Howard focused on factors affecting trust in SDCs. The author examined av-

erage consumers attitudes towards SDCs. This research discovered that most consumers

have positive feelings toward the ease of use that comes with SDCs. In the context of fully

autonomous vehicles, users would not have to feel frustrated when driving in heavy traffic

or finding parking in busy areas. One can imagine that at some time in the future, com-

muters will be able to take naps or watch movies while the car drives them to wherever

they desire. The author also discovered that most individuals have concerns regarding the

cost, liability, and potential loss of control in SDCs. Income and gender are other variables

that affect consumers attitudes towards SDCs. For example, subjects with higher levels of

income were more concerned about liability, but subjects with lower levels of income were

more concerned about the loss of control.

Carlson et al. [17] conducted a statistical analysis in the domain of autonomous vehicles

and autonomous diagnostic systems. They created an online survey and asked human sub-

jects about various scenarios related to SDCs and the use of IBM Watson in critical medical

situations (e.g., to determine types of cancer). It was discovered that most test subjects had

concerns regarding the past performance of the car, reliability, errors, software/hardware

failures, and the liability of the car manufacturer. Similarly, it was discovered that top

factors that affect trust during the use of IBM Watson in critical medical situations are

accuracy and past performance. The result of this study indicated that, regardless of the

domain, most people tend to prioritize safety, efficiency, and failure rates when deciding to

trust an autonomous system.

Kyriakidis et al. [36] created an international questionnaire related to the general

publics opinion of automated driving. The questions were related to concerns, acceptance,

and willingness to purchase an SDC. Most of the 5000 participants from 109 countries

agreed that fully automated cars have the potential to be very popular among consumers
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by 2050. However, most were also concerned about safety, malicious activities/hacking,

and legal issues related to autonomous vehicles. The authors also found that most of the

educated subjects had more income and lived in developed countries. This subset of par-

ticipants was uncomfortable with the idea of SDCs transmitting data to external sources.

They were concerned about malicious use of the transmitted data.

The authors in [37] explored the possibilities of developing trust in SDCs using tech-

niques that are currently available. This study argued that SDCs aim to make our lives

easier and reduce the number of accidents. However, in many situations such as unpre-

dictable hazards and intense weather situations, a human driver’s reactions are superior and

needed. Testing was discovered to be a critical aspect of determining if the car is trust-

worthy enough to be on the road or has the potential to develop trustworthiness overtime.

SDCs utilize machine learning and image processing techniques to provide functions like

detecting pedestrians or stop signs. It was argued that many people require very high ac-

curacy in the functions of their SDCs (close to 100%), but machine learning algorithms

cannot produce such accurate results.

Butakov and Ioannou [38] suggested that users levels of comfort and trust will increase

if the design and dynamics of cars autopilot systems are closer to those in regular vehicles.

In this study, the authors presented a methodology that allows the custom modification of

autopilot modes such as adaptive cruise control and automatic lane change systems based

on individual preferences.

Payre et al. [39] conducted an experiment and analyzed how alternating levels of trust

would affect a driver’s reaction time. The main objective of this experiment was to mea-

sure manual control recovery (MCR) times when emergency situations arise in fully au-

tonomous cars. These cars are certified and eligible to be used by drivers with a standard

driver license. Nonetheless, the drivers are still accountable for their vehicles, including re-

gaining MCR in an emergency and remaining in the driver’s seat with their seat-belt buck-

led at all times. This study demonstrated that higher trust levels in fully autonomous cars
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resulted in slower reaction times, which can create a hazardous environment for drivers.

This experiment can help companies become more aware of problems that over-trust can

cause.

Akash et al. [21] presented a gray-box modeling approach that has the capability of

capturing different variations of human behavior related to human-machine trust. In an

experiment involving 581 human subjects, the authors utilized a computer simulation plat-

form by which human subjects were shown an obstacle detection system (as used in SDCs)

and were asked if they trust or distrust the image processing algorithm used in the system.

The study discovered that human trust significantly decreases in faulty scenarios. An ob-

servation of this study was that the amount of trust in the system slightly increases after

around 8 to 10 trials when a negative experience has already lowered their trust. Addi-

tionally, this study investigated the effects of national origins, culture, and gender on the

level of trust. The results indicated that Americans usually have less trust in autonomous

vehicles compared to people from other nationalities such as Mexicans and Indians. This

finding matches previous discoveries in this domain. The overall conclusion of this study

suggests that a perfect autonomous system should be able to collect data (e.g., psycholog-

ical factors and demographic information) from its users and use this data to maintain and

improve trust.

Finally, Daziano et al. [40] investigated consumers willingness to purchase SDCs by

conducting an online experiment. After analyzing data collected from over 1260 human

subjects around the world, it was estimated that the average household tends to pay about

$3,500 more for partial automation and $4,900 for full automation when purchasing a new

vehicle. This research also found that consumers preferences regarding different levels of

automation (i.e. low, semi, full) are highly variable. A significant portion of participants

even preferred to pay more than $10,000 extra for fully automated vehicles. Based on

information from this study, we can detect a pattern in consumers’ behavior which suggests

that public interest in SDCs is increasing rapidly. We believe that this public interest will
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spike in the near future as issues such as trust between humans and SDCs as well as the

reliability of autonomous technologies are resolved. A summary of this section’s results is

shown in Table 2.1.

Reference Summary Approach Concentration

[33] When users are knowledgeable about an autonomous system, their trust in the system increases Simulation Training & education

[34] Drivers who are knowledgeable about risks, don’t trust SDCs in snow conditions Simulation Risks and uncertainties

[35] Consumers have positive feelings toward the ease of use that comes with SDCs Survey Fender and income & trust

[17] Errors, software and hardware failures will affect trust Survey Safety, efficiency, Malfunction & trust

[36] Users are concerned about safety, hacking, and legal issues Survey The future of SDCs

[37] Unpredictable hazards are still an issue that needs to be resolved N/A Safety

[38] Level of trust increases if the design and dynamics of SDC are closer to what they are in regular vehicles Simulation Autopilot modes

[39] Over-trust is an issue and can potentially cause hazardous situations Simulation Training & education

[21] A model to capture the dynamic variations of human trust Survey Dynamic trust

[40] Consumers are willing to pay significantly more for autonomous features Survey Consumer behavior

Table 2.1: Trust in SDCs

2.2 TRUST IN HUMAN-MACHINE INTERACTION

Muir [41] provided an analysis of trust in human-machine interaction from a psycholog-

ical perspective. The author illustrated how trust evolves when decision support systems

(DSS) are used. DSS are computer programs that assist an individual or an organization

when making decisions. These decisions include ranking important documents, buying

and selling stocks quickly, choosing a target market, and many other important decisions

[42]. Since DSS have a significant impact on some critical decisions, the user’s trust in

such systems becomes a crucial factor when designing decision support systems. The au-

thor initially analyzed the psychological trust models among humans and then developed a

human-machine trust model. In this model, the concept of trust calibration is introduced

in which the user has the responsibility of calibrating their trust based on the reliability of

the decision support system. The author suggested that there are certain factors and design
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goals that should be considered to better calibrate trust when designing decision support

systems. These factors are as follows:

1. Aiming to improve the user’s perception of the trustworthiness of decision support

systems: This would require the user to understand how a DSS works and become

familiar with the predictability of the system’s decisions. The author recommended

that this can be achieved by putting each user on a trial period of using a DSS to

improve the user’s perception. A candidate solution would be the use of a simulation

environment to allow the user to freely explore the DSS without any fear or concern

related to wrong or dangerous decisions.

2. Modifying the decision support systems criterion of trustworthiness: To achieve this

goal, the DSS has to demonstrate a history of efficiency and good performance. It

was recommended that the users have access to statistical data such as information

related to the systems performance.

3. Continuous identification and fixing the causes of poor trust calibration: To improve

the level of trust between humans and machines, the system (or developers) should

detect low levels of trust and fix the problem. This study indicated that some of the

main causes of low levels of trust might be due to users incorrect expectations. Thus,

users calibration training for this issue is crucial.

Another fascinating study, which examined the role of trust in decision support systems

and autonomous aids, was conducted by Madhaven and Wiegmann [43]. Since the role

of DSS and autonomous aids in making critical decisions has increased significantly over

time, this paper proposed a framework by which human trust in autonomous aids can be

increased over time. The proposed trust framework utilizes psychological traits that affect

trust among humans. It uses these traits to provide a set of instructions for the DSS so that

human trust is increased. The outcome of this research contributed to the identification of
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several important psychological factors such as favoritism (human vs. robot partners) and

subjective bias in users, which affect the human-robot trust relationship. These variables

are critical for the development of decision support systems as well as autonomous systems

that interact with humans.

Factory automation is another line of research in this domain. Lee and Moray [44] ex-

ecuted an experiment to characterize variation in an operator’s trust during an interaction

with a semi-automatic pasteurization plant. The authors investigated the relationship be-

tween changes in the operators’ control strategies and trust. In the same line of research

and based on [45], Muir [46] conducted two experiments to test influential variables in

human-machine trust and provided an experimental analysis of the theoretical trust model

proposed a few years earlier. The results of these experiments indicated that the perceived

competence of an autonomous system relates to the amount of trust a user may have in the

system. For example, if a user detected that the system might be incapable of doing its job,

i.e. incompetence, they would manually take control of the system, and as a result, their

trust would drastically decrease. Another finding of this study indicated that the amount of

monitoring the autonomous system requires will decrease if the level of trust in the system

increases. The author suggested that the findings in this research could be used by industry

professionals to determine which properties of autonomous systems could have vulnerabil-

ities that might display incompetence and lower human trust. By doing so and predicting

the patterns of human trust, they would be able to increase the overall effectiveness of the

autonomous system.

Dassonville et al. [47] investigated the issue of trust within the context of a teleoper-

ation system, which is a type of system in which human operators control a machine or

system from a distance. The authors conducted experiments on the role of self-confidence

in human-machine interactions. A teleoperation system is composed of three components

as follows:

1. Master universe: The master universe is the environment in which the operator re-
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sides. An example would be a military drone operator sitting in a container in the

middle of a desert and controlling a strike drone somewhere far away in a combat

zone.

2. Slave universe: Similarly, the slave universe is the environment in which the ma-

chinery or the system operates through the operator’s commands. This universe is

composed of hardware and a group of sensors.

3. Space between the master universe and the slave universe: The space between the

master universe and the slave universe contains data transmission (e.g., the internet),

fast computers, and decision control systems.

In this study, a simulated experiment was performed by having an operator to use a

joystick (master universe) that was connected to a computer (space in between) to control a

cursor on the screen (slave universe). This experiment was conducted on two student pop-

ulations of literature and scientific studies. The study discovered that the first population

appeared more self-confident in operating the machine; however, both groups had similar

levels of trust in the system.

In [48], Moray and Idnagaekri analyzed how trust in autonomous systems leads to a

lower level of human supervision. They discovered that as subjects become more reliant

on the system, a decrease in constant monitoring occurs. This study also scrutinized a

situation in which participants overly trusted a system, which could lead to malpractice in

certain situations.

The authors in [49] conducted a study based on the effects of continuous and discrete

malfunctions within autonomous systems. The study had two parts. The first section tested

human participants based on continuous and discrete faults separately, whereas the second

part intertwined two malfunction types. These experiments found a significant decrease in

trust after five continuous failures. However, there was no significant reduction in trust after

one discrete malfunction. The results of this study demonstrated how trust was dissipated
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and how users relied on autonomous systems based on previous faults.

Dzindolet et al. [50] performed an experiment to improve trust in autonomous systems.

This study involved participants detecting a soldier camouflaged in an area. They had the

option of manually guessing whether the soldier was there or obtaining assistance from

an automated aid. The first study measured human trust in the system before any interac-

tion with the system. The results indicated that the operator would trust the system that

had higher approval ratings and fewer errors. The second study compared the number of

mistakes the user made to the number of errors produced by the system. To accomplish

this, two separate groups were selected. One group had a system that made twice as many

errors as the user, and the other system made half as many errors as the user. The result

demonstrated that those who had more errors were more inclined to stick to their decision.

Finally, Merritt [51] examined the importance of considering differences in human be-

haviors in the context of human-automation interaction. The author conducted an empirical

study by providing an experiment related to X-ray screening. Subjects were asked to use

simulation software to detect dangerous items such as weapons in luggage. They were

given the options of scanning the x-ray image manually and flagging it if they spot any-

thing suspicious or having a fictional autonomous system examine the image and report

any issues. This study found that individual differences among subjects affect the value

of trust in autonomous systems, even if the characteristics of the autonomous system are

constant. This study suggests that future researchers should consider human characteristics

when designing experiments for trust analysis and measurements. The summary of this

section’s results is shown in Table 2.2.

2.3 TRUST IN HUMAN-ROBOT INTERACTION

Murphy et al. [52] investigated the use of autonomous rescue robots in combat situations

as well as cases where victims were unable to be reached, for example, victims trapped in

earthquake rubble. In this study, the purpose of the rescue mission was to find the victims,
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Reference Summary Approach Concentration

[41] User should calibrate their trust based on the reliability of DSS Analytical DSSs

[43] Introduced framework for trust improvemnt Framework DSSs

[44] Changes in operators’ trust Simulation Control strategies

[46] Manual override of the system by distrustful users Simulation Incompetence of autonomous systems

[47] Role of self-confidence and trust in teleoperation systems Simulation Trust and teleoperation systems

[48] Theoretical trust models were explored Meta-Analysis Human-machine interaction

[49] Demonstrated the changes in trust based on malfunctions Simulation Malfunctions and their impact on trust

[50] Trust is a critical factor in automation reliance decisions Survey Automation reliance

[51] Different people have different trust levels in autonomous system Simulation User perceptions of trust

Table 2.2: Trust in Human-Machine Interaction

check for vital signs, and help the victims until they were rescued. The study discovered

that the success of these robots simply depended on the victims’ trust. Specifically, it was

crucial that the victims allowed the robot to help and collect data for optimal recovery and

assistance, which could be achieved if a high level of trust was established.

Human trust also depends on the failure rate of the autonomous systems. For instance, a

study of commercially available ruggedized robots operating under field conditions showed

a mean-time-between-failures (MTBF) of 12.26 hours and an availability rate of 37% [53].

This finding indicates that if the robotic systems reduce their failure rates, their reliability

will increase, and subsequently, users confidence in their performance will increase. It is

apparent that, due to recent advancements in technology, the mean-time-between-failures

has been decreased in autonomous systems even outside of robotics.

Parasuraman and Miller [54] investigated the concept of trust and etiquette in the do-

main of human-robot interaction (HRI). Given that respect and etiquette significantly affect

the level of trust in many human-to-human social interaction scenarios, the authors argued

that these factors also impact humans perception of autonomous robots. In this study, eti-
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quette is described as a set of prescribed and proscribed behaviors that permits meaning and

intent to be ascribed to actions. This study also conducted an experiment related to the role

of etiquette in HRI. Human subjects used flight simulator software called Multi-Attribute

Task (MAT) and communicated with the autonomous system using different communi-

cation styles such as interrupting the user and being impatient. The empirical evidence

obtained in this experiment showed that both etiquette and reliability affect humans trust of

autonomous robots.

Stormont [55] showed a low level of trust in HRI. The author investigated the factors

that affect trust between humans and robotic systems. He discovered that one reason for a

low level of confidence in autonomous systems is their low level of reliability. The author

also discovered that unpredictability is another factor affecting trust between humans and

autonomous systems. He argued that, in various hazardous circumstances such as battle-

fields (as shown in Figure 2.1) and rescue missions, the unpredictability of robots becomes

a significant problem for human supervisors. Although the autonomous nature of robots

and their capacity for quick decision-making are considered positive traits, a problem arises

when the life or death of humans depends on the choices of a robot. Indeed, questions such

as “Should life or death decisions be made by an autonomous system?” have been the focus

of many researchers. The same study executed a simulation of robots assisting firefighters

in a hazardous fire situation. The simulation showed that although the firefighters did not

initially trust these robots, their reliance on and trust in the robots increased as the mission

progressed and the firefighters became tired. As a result, they finally allowed the robots to

extinguish the fire.

The authors in [56] investigated how culture and appearance might have an impact on

trust. The team sampled participants from China, Germany, and Korea to analyze different

cultural backgrounds. The participants were asked to interact with a robot that knew the

culture of each participants country. The results were scaled based on likeability, engage-

ment, trust, and satisfaction. The outcomes demonstrated that each participant perceived
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Figure 2.1: Autonomous and Semi-Autonomous Aobots Used in Battlefields [2].

the robot differently, thus showing the need for increased concentration in different areas.

Producers may use this information to create robots which are more unique to specific

regions and cultures to improve trust and demand within particular communities.

Hancock et al. [3] provided a comprehensive analysis of factors affecting trust in

human-robot interaction. This study classified factors affecting trust in HRI into three

different categories (i.e. human, robot, and environment), as shown in Figure 2.2. Human-

related factors include training, expertise, situational awareness, and demographic infor-

mation. Similarly, robot-related factors are behavior, dependability, reliability, level of

automation, failure rates, false alarms, transparency, and attribute-based factors such as lo-

cation, personality, adaptability, robot type, and anthropomorphism (having human traits).

Finally, environmental factors include teamwork, culture, communication, shared mental

models, task type, task complexity, and multi-tasking. This paper discovered that robot

performance has the highest impact on human trust.

Yagoda and Gillan [57] proposed a new mechanism for measuring the value of trust in

the context of HRI. This measurement was based on multiple factors such as team configu-

ration, team processes, the context, the task, and the system. The proposed trust measuring

mechanism was developed using two experiments. The results of these two studies were

combined to create a new HRI trust measuring tool.

Penders et al. [58] investigated HRI in “no-visibility” conditions, which means the
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Figure 2.2: Trust Factors Identified by Hancock [3].

human subjects might be visually impaired or blind. Therefore, they would have to trust

the robot completely. This study analyzed interactions between visually impaired people

and their guide-dogs and examined the variables that could be utilized in the design and

behavior of robots to improve human trust. These variables include human dominance,

cooperation over time, and accountability. It is worth mentioning that Castelfranchi and

Falcone [59] investigated how control negatively affects trust. Their research discovered

that human trust will decrease if a participant is forced to take control of an autonomous

system. We do believe that this is a prominent issue that should be considered in no-

visibility conditions.

Wang et al. [60] investigated human-robot trust in the context of underwater semi-

autonomous robots. To increase the performance of a submarine robot, the operator’s trust

in the submarine robots capabilities must be established and sustained. This study proposed

a trust model that mainly deals with recording the robot’s past performance, the human
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operators performance, and the fault rates of humans and robots. A semi-autonomous robot

known as YSI EcoMapper AUV was tested in this study. The authors show the effectiveness

of this trust model through a simulation-based approach.

An essential aspect of improving human trust with respect to robotic systems is the

real-time measurement of human subjects emotional responses. If artificial intelligence

technologies can learn and interpret the emotional states of humans, they will be able to

adjust themselves accordingly to be responsive to these emotional states. Hu et al. [22]

provided a trust sensor model that utilizes psychophysiological measurements of human

subjects. The objective of this project was to determine whether humans psychological

factors captured through sensors such as Electroencephalography (EEG) and Galvanic Skin

Response (GSR) can be used to manage trust in the context of human-robot interaction.

After a series of experimental studies, statistical analyses, and classification, this study

concluded that psychophysiological measurements could be used to measure trust in human

participants. However, the mean accuracy of this claim was only 71.57%, so this method

cannot be used for all humans. The authors believe that human subjects’ demographic

information should be considered in any experimental study.

Finally, due to technological advancements in recent years, care-giving robots are be-

coming popular and common in our lives. As a result, trust in these robotic systems is a

prominent issue from the consumers perspective. In a recent study [61, 62], the authors

measured levels of trust, satisfaction, and frustration in the context of care-giving robots

by designing several experiments in which human subjects interacted with a Baxter robot

through a sequence of trust-building or trust-damaging incidents. In this study, various sce-

narios were tested, for example, delivering an object with different speeds or accidentally

dropping the object. The authors discovered that the assistant robots performance affected

the human participants level of trust, satisfaction, and frustration when a sequence of struc-

tured incidents is considered. The summary of this section’s results is shown in Table 2.3.
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Reference Summary Approach Concentration

[52] Success of the rescue robots depends on their reputation Survey Rescue robots

[53] Reduction in failure rates leads to increase in trust Simulation Improving trust by reducing failure rates

[54] Etiquette affects human trust as well as the reliability of autonomous robots Simulation Etiquette & trust

[55] Unpredictability of robots affects trust Simulation Military and hazardous environments

[56] The appearance of a robot affects human perception and trust Robot Experiment Trust and cultural differences

[3] The performance of robots has the highest impact on trust in the context of human-robot interaction Survey Human-robot interaction

[57] Created a trust measuring tool for human-robot interaction Survey Trust measurement

[58] To enhance trust in human-robot interaction, a number of design choices need to be made Live Experiment Improving trust in human-robot interaction

[59] Control on autonomous systems increases or decreases trust depending on the circumstances Cognitive analysis Trust and artificial intelligence

[60] If humans trust a robot, its performance will increase Robot experiment Trust and semi-autonomous robots

[22] Psychophysiological measurements can be used to measure human trust Survey Psychophysiological measurements & trust

[61][62] Performance of a robot directly affects trust, satisfaction and frustration Robot Experiment Trust, satisfaction, and frustration

Table 2.3: Trust in Human-Robot Interaction

2.4 TRUST IN AUTOPILOT SYSTEMS

de Vries et al. [63] showed how planned routes in manual and automatic modes affected

trust. This experiment involved instructing a group of participants to plan a route and

then choose to complete it manually and automatically ten times each. The study proved

that automatic failures had more negative impacts on trust compared to manual failures.

Participants were more likely to forgive themselves for the error they had committed than

the failures that happened during the automatic mode. The results demonstrated a bias

towards participants trust in the manual mode as opposed to the automatic mode.

In [64], the authors conducted research on human trust regarding air traffic management

systems. They provided guidelines and strategies for improving trust in autopilot systems

over time. They argued that air traffic control operators currently utilize many automated

and semi-automated computer tools, and more usage of fully automated systems is antici-

pated in the near future. Thus, the operators will have to trust components of autonomous

(or fully autonomous) air traffic management systems, for example, radar systems and com-

munication tools. The procedure to address the trust issue can be formed through multiple

24



development phases as follows:

1. Assign experienced air traffic controllers to develop a system.

2. Provide high-quality simulations.

3. Provide training for the controllers.

4. Schedule a transition period for the controllers.

5. Keep the old technology in case failures occur.

Jiang et al. [65] discovered that there is a direct correlation between specific types of

errors that occur and operators’ trust in the autonomous system. In this study, the partic-

ipants were monitored for one week. The first day was based solely on training them to

recognize errors and functions of the system. During the remainder of the trial, the team

examined how participants felt about false alarms given by high-risk systems. The results

demonstrated that there was a significantly greater decrease in trust towards systems that

consistently output false alarms.

In an experimental study [66], the authors investigated the methods by which human

subjects were able to judge the performance of complex autonomous systems. To ensure

accuracy in the investigation, the participants completed training in measuring the accuracy

and performance of airplanes. The participants were then asked to analyze an airplane’s

performance and rate it as friendly or hostile based on the measured speed, altitude, range,

and time in the air. The post-training results were relatively accurate, and demonstrated

that the judgments became more accurate when participants learned what they should be

looking for in complex autonomous systems.

Finally, Winter et al. [67] investigated humans distrust of autonomous airplanes. In this

study, participants were asked if they prefer to be on a commercial airplane with two pilots

(i.e. a pilot and a co-pilot), an airplane with a pilot in the cockpit and a co-pilot working
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remotely, or an airplane with both pilots controlling the aircraft remotely. The authors

found that the human subjects would have a high degree of discomfort if they were on

a fully autonomous commercial airplane with both pilots only overseeing the movements

and controlling the airplane remotely. They also mentioned that the subjects would have a

high degree of distrust when only one pilot was in the cockpit. This study also discovered

that humans trust in autonomous airplanes is related to their culture. For example, the test

subjects from India felt more comfortable if they were on a fully autonomous aircraft than

subjects from the United States. A summary of this section’s results is shown in Table 2.4.

Reference Summary Approach Concentration

[63] Failures caused by system have more negative impacts on trust Simulation Trust in automatic and manual failures

[64] Provides a procedure for improving trust in air traffic management systems Survey Trust in air traffic management systems

[65] Greater decrease in trust when systems continuously outputted false alarms Empirical Experiments False alarms & trust

[66] Participants analyzed airplanes and rated them as friendly or hostile Simulation trust management in aircraft autopilot features

[67] Culture directly affects trust survey Trust in autopilot systems

Table 2.4: Trust in Autopilot Systems

2.5 CONCLUSION

In this chapter, we reviewed the existing literature on trust in autonomous systems. We

investigated technical papers that examined trust between humans and SDCs, robots, ma-

chines, and autopilot systems. The reviewed studies provide new discoveries as well as

recommendations to manage and improve trust between humans and autonomous systems.

The literature on trust, however, is still very broad and does not address particular issues

that are currently present such as how all the theoretical trust frameworks can be trans-

formed into models that are understandable to machines. Further research discoveries and

innovative methodologies can potentially provide a reliable platform to develop trustworthy

SDCs that perform well.
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CHAPTER 3

SIMULATION SETUP AND CHALLENGES

In this chapter, we will go over the design of our simulation setup and its technical config-

urations in detail. Section 3.1 covers simulation setup and the equipments used to develop

this VR simulator. Section 3.2 discusses the realistic nature of our simulator, our video

capturing mechanism, and the use of real VR driving videos. Section 3.3 goes over the

programming languages and the technology used to develop our trust self reporting tool.

In Section 3.4 we will go over some of the challenges we faced during the development of

this simulator, and how we managed to resolve them, and we will go over the high level ar-

chitecture of the VR SDC simulator and the development phases we executed to implement

each component of the SDC VR simulator.

3.1 SIMULATION SETUP

Our simulator is a safe platform to expose human subjects to any inconvenient trust-damaging

incidents, including but not limited to sharp turns, sudden stops, stop-light violations,

speeding, tailgating, unexpected accidents, and others. The SDC VR simulator is based

on the fusion of an Oculus Rift VR headset with an Atomic A3 Full Motion Simulator.

Figure 3.1 shows a participant sitting in the simulator.

3.1.1 Atomic A3 motion simulator

Atomic A3 motion simulator was utilized to create this simulation. This motion simula-

tor is designed by Atomic Motion Systems, a UK based company, and manufactured and

distributed in the US by Talon Simulations [4]. The Atomic A3 Full Motion Simulator is
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Figure 3.1: Participant Using the SDC Simulator.

capable of moving up to 71 degrees per second across a full 27 degree dual-axis movement

range [68]. The combination of complete VR visual effects, 3D audio, and movements

provides a convincingly realistic simulation. Hence, it is used for realistic simulations such

as NASA’s Hybrid Reality Work [69] [70]. Figure 3.2 displays the Atomic A3 motion

simulator with one of the participants experiencing once of the trust segments.

For motion, The Atomic A3 Simulator receives telemetry data via UDP packets. Each

UDP packet contains pitch are roll values in degrees. Pitch values are used for front and

back movements. Similarly, roll values for left and right movements (e.g., negative value

for pitch indicates backwards motion).

3.1.2 Oculus Rift VR Headset

Oculus Rift VR headset was used in combination with the Atomic A3 motion simulator

to create the SDC Motion Simulator. Developed and manufactured by Oculus VR, which

is a sub-division of Facebook Inc. [71], the Oculus Rift VR headset outputs 1080x1200

resolution graphics per eye at a 90 Hz refresh rate and a 110-degree field of view; it also
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Figure 3.2: Atomic A3 Motion Simulator [4] and Alienware Area 51

has headphones which output 3D audio effects. Oculus Rift is mainly used for gaming and 

entertainment, but recently, it has been gaining momentum in many different applications 

such as education, media, virtual casinos, etc. [72]. See Figure 3.3 for a picture of 

Oculus Rift.

Figure 3.3: Oculus Rift VR Headset & Oculus LED Sensor [5]

For input, Oculus Rift takes in 6DOF (3-axis rotational tracking and 3-axis positional

tracking) input data from an IR LED sensor sensor that tracks the user’s head movements

[5]. This allows the VR “feel” when the user moves their head around in the simulation.

See Figure 3.3 for a picture of Oculus Rif’s LED sensor.
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3.1.3 Alienware Area 51

To run a VR simulation with realistic graphics, a high end machine with a top notch quality

graphics card and processor is needed. In order to address this problem, we used an Alien-

ware Area 51 desktop computer. This $10,000 machine is equipped with an Intel Core

i7-6950X (10 cores) processor along with dual NVIDIA GeForce GTX Titan Z (12 GB

GDDR5X each) graphics cards. This high end machine with superior computing power al-

lowed us to run our Simulation with no problems. See Figure 3.2 for a picture of Alienware

Area 51.

3.1.4 Advanced Noise Canceling earmuffs

To increase the immersion of the SDC simulation, and reduce the exterior noise when the

simulation is running (e.g, the noises coming from the mechanical movements of the sim-

ulator), a pair of ClearArmor 141001 Shooters Hearing Protection Safety Ear Muffs were

used to cancel any kind of a distracting noise. These earmuffs have a noise cancellation

rating of 31 decibels. See Figure 3.4 for an illustration of ClearArmor earmuffs.

Figure 3.4: ClearArmor Earmuffs [6]
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3.2 REALISTIC VR ENVIRONMENT

To provide realistic simulation with high degree of immersion, 360-degree videos of driving

various driving styles were recorded using a GoPro Fusion Camera and edited using GoPro

Fusion Studio software. The videos were exported from Fusion Studio at 4k resolution as

MP4s along with 360-degree MP3 audio files [8].

3.2.1 Gopro Fusion

Gopro Fusion is one of the latest cameras that allows 360 video capture with a very high

quality (4k and 5k). Released in November 2017, Gopro Fusion features two lenses; one in

the front, and one in the back of the camera and records two videos simultaneously, which

are later stitched together using Gopro’s video stiching software, Gopro Fusion Studio.

After using 360fly 4k, and experiencing low VR quality (see 3.4), we decided to purchase

a Gopro Fusion, which drastically improved the video quality. Figure 3.5 illustraces the

Gopro Fusion camera.

Figure 3.5: 360Fly 4K Action Sports Camera [7] and Gopro Fusion [8]

3.2.2 Capturing Trust Damaging Footage

One of the team members volunteered to mount a Gopro Fusion camera in his car using the

Gopro’s Goosneck mount (See Figure 3.8). To capture interesting driving footage and trust

damaging scenarios, the team member recorded 360 degree videos of his commute to and
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from work everyday for the duration of a month. These videos were later analyzed, edited,

and categorized to be used in the SDC simulation.

3.3 SOFTWARE

A variety of software and programming languages were utilized for different to develop

different components of the SDC simulator such as scripting, automation, video editing.

3.3.1 Unity Game Engine & C# Scripting

The SDC simulator application was built in the Unity Game Engine using C#. Unity is

one of the most powerful game engines in the video game industry. It is also used for

production of VR simulations, since it is compatible with the Oculus Rift headset. The

compiled C# executable is responsible for synchronously playing the video, audio and

sending the telemetry UDP packets to the simulator. To maintain a clean and maintainable

architecture, Our experienced software development team coded the simulation based on

the best practices of Object Oriented Design patterns and SOLID principles.

Furthermore, the SDC simulator software is responsible for creating structured directo-

ries with log files and spreadsheets for the data collected from the test subjects after every

test run.

3.3.2 Simtools

SimTools motion simulator software was used to send the telemetry data for each video

to Atomic A3 motion simulator via UDP packets. By using a plug-in called “Video Ride

Creator”, we were able to create telemetry points for every frame in the simulation videos.

Another plug-in, “Video Ride Player” was used to rapidly send the telemetry points as UDP

packets to Atomic A3’s motion simulator Software, Symphinity, which recieved the UDP

packets and moved the chair [73].
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3.3.3 Powershell and Batch

PowerShell was used to automate multiple tasks in the SDC motion simulator. We wrote

multiple PowerShell scripts combined with Windows batch scripts to synchronize the ac-

tivities of the Simtools software and the Unity executable, so that when the videos are being

played in VR, the UDP packets would get sent to the chair automatically with no human

intervention.

3.3.4 Stare-and-Select Trust Reporting Tool

We developed a software component called “Stare-and-Select” (SAS). SAS was used as our

main data collection tool in this phase of our experiment. After each simulated autonomous

driving segment was completed, the participants were presented with a Likert scale that

appeared inside the VR environment. The participants were able to select their response by

just focusing their gaze on the desired answer for five seconds while wearing the Oculus

Rift. We believe that this data collection approach is novel because it is quick, it does not

distract the users, and it is pleasant to work with. Figure 3.6 shows a sample question in

the VR environment.

Figure 3.6: SAS Trust Reporting Tool
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3.4 CHALLENGES

We encountered several challenges during the development of the SDC VR simulator and

SAS. Some of the obstacles we faced include Low VR video quality, Telemetry Meta-Data

optimization, video shakiness, and VR sickness.

3.4.1 VR Video Quality

360 videos are known to have lower quality when viewed in VR headsets. This is due to

the inability of many 360 degree cameras to capture footage with very high resolutions and

low quality video stitching algorithms [74].

Initially, 360Fly 4K action sports camera was used to capture driving footage, but after

testing on Oculus Rift, we discovered that the video quality is very poor. To increase

the immersive nature of the SDC simulation, we had to wait until November 2017 for

Gopro Fusion to be released into the market, which proved to capture higher quality driving

footage. Figure 3.5 shows 360Fly 4K Action Sports camera.

3.4.2 Obtaining Telemetry Meta-Data

Obtaining and optimizing the telemetry data for the Atomic A3 motion simulator was the

most difficult challenge that we faced when developing the SDC VR Simulator. Initially,

we used smart phone apps like MotionLogger [75] and SensorData [76] to capture the

pitch and roll telemetry values of the simulated autonomous driving scenarios. However,

after deploying and testing on the Atomic A3 motion simulator, we noticed the raw data

is insufficient for the simulation because the movements were not completely in sync with

the movements in the VR videos. For example, when the car was making a right turn, there

was a massive delay or even no motion detected by the sensor. This was due to the fact

that the sensor resided inside the car, as well as the fact that the car did not do anything

too erratic such as drifting. To Address this problem, we had to manually go through each

telemtery file and manually adjust the pitch and roll values to ensure that they are in sync
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with the car movements. Figure 3.7 is a flowchart that visualizes the high level view of the

process and the development cycle of the SDC VR simulator.

Capture driving footageStitch & edit using Gopro
FusionVideo Categorization

Telemetry Data
Optimization & Testing

No

Yes

All Categories
satisfied?

No

YesMotion in sync? Include in Unity project

Start

Done

Figure 3.7: SDC VR Simulator Development Phases

3.4.3 Shakiness

Another major challenge when developing the SDC VR Simulator was the shakiness in

the videos. In the initial phases of the development, we mounted our camera on a bicycle

helmet, and had our driver wear the bicycle helmet when driving and capturing footage.

This approach was problematic. Whenever the driver looked around (e.g., to check the

blind spots and side view mirrors), it disrupted the VR video due to the shakiness.

To attempt to address this issue, we purchased a “Goose Neck” mount for our Gopro

camera, and attempted to attach it to the sun visor of the car upside down. We noticed

a slight improvement, but still detected shakiness on bumpy roads and sharp turns. After

several trials and errors, we attached the Goose Neck mount to the moon-roof of the car

upside down, and positioned the Gopro Fusion in front of the steering wheel. Figure 3.8

shows the position of the Gopro Fusion Camera.
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Figure 3.8: Gopro Fusion Mounted onto The Car’s Sun-roof

3.4.4 VR Sickness

VR sickness is a known phenomenon in which people experience symptoms that are very

similar to motion sickness symptoms when they watch or interact with VR content. Some

of the symptoms include headache, general discomfort, nausea, vomiting and vertigo [77].

In the initial development phases of the SDC motion simulator, our early test runs indicated

that excessive motion in the simulated autonomous driving videos causes VR sickness. To

address this problem, we lowered the motion output of the Atomic A3 motion simulator to

5%. Furthermore, in our IRB application we stated that the eligible test subjects cannot be

pregnant, have history of nausea, vertigo, or motion sickness.

36



CHAPTER 4

REAL-TIME TRUST MEASUREMENT IN HUMAN-SDC INTERACTIONS

In this chapter, we will describe the procedure and outcome of the empirical experiment

that we have conducted to investigate the level of trust, distrust, and satisfaction of pas-

sengers of SDCs. Section 4.1 illustrates our research methodology. Section 4.2 covers the

experimental design. The results of our research and our demographic data analysis are

presented in Section 4.3. Finally, in Section 4.4, we end the paper with concluding remarks

and the future direction of our research.

4.1 HUMAN-INSPIRED TRUST MODELING: RESEARCH METHODOLOGY

In our methodology, experiments are executed to measure initial trust, trust escalation, and

trust reduction in human-autonomy interactions. Our goal is to understand how humans

gain or lose trust while interacting with technological systems such as SDCs. We intend to

understand humans’ perception of trustworthy and untrustworthy actions. Specifically, we

performed experiments and examined interactions between human subjects and our test bed

under the lens of trust in a controlled setting. We intended to understand (a) how we can

establish trust between humans and autonomous vehicles, (b) how we can sustain trust over

time, and (c) how we can rebuild trust when incidental failures occur. From the outcomes

of our experiments, we derived humans’ perception of trustworthy/untrustworthy actions.

4.1.1 Our Sequential and Structured Data Collection Approach

Using a structured and sequential data collection approach, we intended to understand how

humans gain or lose trust in autonomous vehicles and how trust escalation or reduction
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can be controlled in various incidents as well as among different groups of people (i.e,

young, mid-age and senior). Our collected data can be transformed into specifications

to be used in the controllers of autonomous vehicles. Our data collection scenarios must

have a specific structure and capture certain information. As shown below, scenarios are

categorized into five distinct groups. Note that demographic data and past psychological

data are collected prior to our experiments to characterize our human subjects regarding

self-confidence, trusting attitude, risk-acceptance, past unpleasant experiences, and other

traits because these factors impact the outcome of our research.

1. Initial Trust: Scenarios that aim to capture the initial trust of the passengers in the

first few minutes of the first interaction.

2. Trust Escalation: Scenarios that illustrate a sequence of incidents in which human

subject’s trust is increased. e.g., 2 minutes of smooth and predictable driving by the

SDC without any complications or surprises.

3. Trust Reduction: Scenarios that illustrate a sequence of incidents in which the hu-

man subject’s trust is decreased, for example, when the SDC cuts off another con-

trolled vehicle.

4. Trust Mutation: Second and third scenarios can be a sequence of mild incidents

(e.g., a rapid lane change by the SDC) followed by critical incidents (e.g., stop-sign

violation or tailgating by the SDC) and vice versa.

5. Re-Building Trust: Scenarios that demonstrate how trust can be rebuilt; for exam-

ple, the SDC performs smoothly for a reasonable period of time after trust-damaging

incidents.

Consider the following sample templates for five consecutive incidents in a 10-minute

interaction, as shown in Figure 4.1. For instance, the initial trust measurement occurs
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within the first few minutes, followed by a trust reduction incident, a further trust reduc-

tion incident, and a negative trust mutation followed by rebuilding trust in the last few

minutes. Every 2 minutes, the human subject has an opportunity to express whether the

interaction is reliable by selecting one of the following options through the VR headset

(by staring at the option for five seconds): “Red/No, Light Red/Maybe Not, White/Neutral,

Light Green/Maybe Yes, Green/Yes.” 1 Note that we considered two out of eight structured

templates in the present work.

Template-5 Template-6 Template-7 Template-8 

 
Initial Trust 

 
Initial Trust 

 
Initial Trust 

 
Initial Trust 

 
Trust 

Escalation 

 
Trust 

Escalation 

 
Trust 

Reduction 

 
Trust 

Reduction 

 
Trust 

Reduction  

 
Trust 

Reduction  

 
Trust 

Escalation 

 
Trust 

Escalation  

 
Trust Mutation 

(positive) 

 
Trust Mutation 

(negative) 

 
Trust Mutation 

(positive) 

 
Trust Mutation 

(negative) 

 
Rebuild Trust 

 
Rebuild Trust 

 
Rebuild Trust 

 
Rebuild Trust 

Template-1 Template-2 Template-3 Template-4 

 
Initial Trust 

 
Initial Trust 

 
Initial Trust 

 
Initial Trust 

 
Trust 

Reduction 

 
Trust 

Reduction 

 
Trust 

Escalation 

 
Trust 

Escalation 

 
Further Trust 

Reduction  

 
Further Trust 

Reduction  

 
Further Trust 

Escalation  

 
Further Trust 

Escalation  

 
Trust Mutation 

(negative) 

 
Trust Mutation 

(positive) 

 
Trust Mutation 

(positive) 

 
Trust Mutation 

(negative) 

 
Rebuild Trust 

 
Rebuild Trust 

 
Strengthen 

Trust 

 
Rebuild Trust 

Figure 4.1: Structured and Sequential Data Collection: Eight Templates For Various

Scenarios.

4.2 EXPERIMENTAL DESIGN

Prior to the simulation, participants were asked to answer 16 demographic and psycholog-

ical questions by filling out an anonymous survey using Google Forms. Then, participants

were randomly placed in one of two possible SDC simulation scenarios. Each scenario

is made up of 5 segments. Specific scenario-segment pairs are denoted with a two letter

abbreviation followed by the scenario and segment numbers, for example TRI−II denotes

trust reduction segment II of scenario I. Each segment starts with an exposure to an approx-

imately 2 minute SDC driving simulation followed by a response interval to the question

1The colors serve as a visual guide for participants to indicate low trust versus high trust
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“On a scale of 1-5 with 1 being the lowest and 5 being the highest, after this simulation,

what is your level of trust in the self-driving car?”. After the participant responds, the ap-

plication moves on to the next segment until the simulation scenario is complete. Tables

4.1 and 4.2 define the scenario and segment pairings.

ITI−I Initial Trust

TRI−II Trust Reduction

TRI−III Further Trust Reduction

NMI−IV Negative Trust Mutation

RTI−V Rebuild Trust

Table 4.1: Simulation Scenario 1 Based on

Template-1

ITII−I Initial Trust

TEII−II Trust Escalation

TRII−III Trust Reduction

NMII−IV Negative Trust Mutation

RTII−V Rebuild Trust

Table 4.2: Simulation Scenario 2 Based on

Template-6

An initial trust/trust escalation section involves the SDC moving slowly and predictably

while adhering to the rules of the road. A trust reduction section involves the SDC moving

erratically and unpredictably, breaking rules of the road including speeding, tailgating, and

sudden lane changes. In the negative trust mutation section, the SDC runs through a stop

sign and nearly collides with another car and then proceeds to drive erratically through a

residential neighborhood. In the second negative trust mutation segment, the SDC runs

through multiple stop signs and detects a pedestrian and a bicyclist crossing a cross walk

and comes to a stop. See Figure 4.2 for the scene of the pedestrian crossing the street.
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Figure 4.2: Segment NMII−IV: SDC Detects a Pedestrian, But Does Not Come To a

Complete Stop

It is predicted that after the initial trust/trust escalation segments, the participants will

respond with high levels of trust in the SDC, and after trust reduction segments, the par-

ticipant will respond with low levels of trust in the SDC. It is also predicted that after the

negative trust mutation segment, the participant will report a drastic decrease in trust. An

objective of this study is to determine if trust can be rebuilt after the participant experiences

a negative trust mutation or general decrease in trust. We predict that exposure to more trust

building interactions will help rebuild trust after a trust reducing event. Since participants

in Scenario 2 have more time to recover from their trust reduction experience with more

exposure to positive trust experiences, we expect them to report higher levels of trust in the

SDC simulator than participants in Scenario 1. We are also interested in investigating the

sequential impacts of our trust-damaging or trust-building scenarios due to the structured

data collection approach that we utilize. For the detail breakdown of trust segments used in

scenario 1 and 2, see Figure 4.3
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Segment Summary

IT Highway driving, defensive driving, using turn signals

TR 0-60 acceleration, frequent lane changes, speeding, not allowing other

vehicles to pass

NM Running stop signs, almost crashing in to other cars, speeding in resi-

dential areas, driving in the middle of the road, driving near pedestrians

RT Defensive driving, using turn signals, driving in traffic jams

Table 4.3: Detailed Breakdown of Negative and Positive Trust Segments in both Scenarios

4.3 RESULTS

Fifty human subjects were recruited to participate in the 10 minute VR autonomous driving

simulation 2 . Most of the participants were college students aged 18-30 years and recruited

on or near Florida Atlantic University’s campus. Half of the participants were randomly

selected to be in Scenario 1, and the other half were assigned to Scenario 2.

4.3.1 Demographics & Psychological Questions

As we mentioned previously, before the experiment, we asked each participant sixteen

demographics, psychological, and trust questions through an anonymous Google Forms

survey. The reason we collected this data prior to the actual experiment was because we

wanted to see if there are correlations between the background of the participant, their

negative and positive past experiences and their reported trust levels in the simulated SDC.

See section 4.3.5 for the correlations found in the actual trust levels.

Figure 4.3 includes pie charts to visualize the combined participant responses for ques-

2IRBNET ID #: 1187756-1
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tions 1-7 from the anynomous survey we conducted prior to the experiment.

Figure 4.3: Survey Questions 1-7
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Figure 4.4 shows the results of combined participant responses for questions 8-11.

Figure 4.4: Survey Questions 8-11
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Figure 4.5 shows the results of combined participant responses for questions 12-16.

Figure 4.5: Survey Questions 12-16
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Figure 4.6 shows the breakdown of the demographic information of Group 1 and Group

2 by gender, age, ethnicity, education, martial status, employment status, and income range.
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Figure 4.6: Group 1 vs. Group 2 Demographics
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Figure 4.7 shows how the participants categorized themselves in terms of happiness,

the ability to influence others, the ease of getting influenced by others, and recent bad/trust

damaging experiences. 3
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Figure 4.7: Group 1 vs. Group 2 - Psychological Questions 8-11

3Question 11 was split into two questions.
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Figure 4.8 shows how the participants in Group 1 and 2 categorized themselves in terms

of how easily they can rebuild their damaged trust in people, how much they trust their close

friends/family, strangers, AI/autonomous systems, and the SDC technology.
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Figure 4.8: Group 1 vs. Group 2 - Psychological Questions 12-16

4.3.2 Scenario 1

Figure 4.9 shows the mean trust levels participants reported after each segment in sce-

nario 1. In the initial trust segment (ITI−I), participants responded with an average score

of 4.52±0.17, followed by a mean score of 3.60±0.23 in the first trust reduction segment

(TRI−II). After exposure to further trust reduction (TRI−III), the score increased slightly to

3.84±0.19, followed by a large decline to 2.28 ±0.23 when exposed to negative trust mu-

tation (NMI−IV). Finally, trust levels increased to 4.08±0.19 in the rebuild trust (RTI−V)

segment. The most obvious change across segments was between the negative trust mu-

48



tation (NMI−IV) and the initial trust segment (ITI−I), consistent with our expectations that

erratic driving has the potential to severely reduce trust.

Figure 4.9: Mean Trust Levels Across Segments in Scenario 1

To assess whether the observed scores are statistically different, the Wilcoxon Rank Sum

Test was performed across segments; the resulting p-values are shown in Figure 4.10. Here,

we see that scored changes in trust are not distinguishable above the 0.05 p-value between

TRI−II and TRI−III, RTI−V and TRI−II, or TRI−III. All other comparisons show statistically

significant changes in trust.

Figure 4.10: Wilcoxon Rank Sum Test P-Values Across Segments in Scenario 1
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Scenario 1 performed as expected. Participants scored the initial trust and rebuild trust

segments with high levels of trust, the trust reduction segments with lower levels of trust,

and the negative trust mutation segment with the lowest level of trust. It is interesting that

mean values of trust appear to have slightly increased in TRI−III, a segment designed to

elicit further trust reduction. This may be due to acclimation as the participant becomes

more comfortable in the simulation. As expected, the negative trust mutation had the low-

est trust levels and was significantly lower than all other segments. This indicates the

simulations effectiveness in reducing participants trust.

An interesting result is the difference between the initial trust segment and the final

segment designed to rebuild trust. While participants scored their level of trust after RTI−V

at 4.08±0.19, a high value, it is significantly lower than the initial trust value (4.52±0.17),

representing a 12.00% decrease. This seems to indicate that participants trusted the SDC

less after being exposed to trust reducing segments.

4.3.3 Scenario 2

Figure 4.11 shows the mean trust levels participants reported after each segment in Sce-

nario 2. In the initial trust segment (ITII−I), participants responded with an average score

of 4.24±0.15, followed by a mean score of 4.52±0.14 in the first trust escalation segment

(TEII−I). After exposure to trust reduction (TRII−III), the score decreased to 3.36±0.20,

followed by a further decline to 3.12 ±0.26 when exposed to the negative trust muta-

tion (NMII−IV). Finally, trust levels increased to 3.80±0.23 in the Rebuild Trust segment

(RTII−V). Here, we can observe that the trust increase from the negative trust mutation

(NMII−IV) to Rebuild Trust (RTII−V) segments is not very sharp. This is due to the fact that

after experiencing the trust reduction (TRII−III) segment, the participants already had a low

trust level.
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Figure 4.11: Mean Trust Levels Across Segments in Scenario 2

Figure 4.10 shows the results of the Wilcoxon Rank Sum Test across segments in Sce-

nario 2. Here, we see that scored changes in trust are not distinguishable above the 0.05

p-value between TRII−III and TEII−II. All other inter-comparisons show statistically signif-

icant changes in trust.

Figure 4.12: Wilcoxon Rank Sum Test: P-Values Across Segments in Scenario 2

In (NMII−IV), the SDC approaches a crosswalk and stops for a pedestrian to cross the

street. This was the only segment that involved the SDC running through multiple stop
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signs and interacting near a pedestrian. Participants reported low levels of trust after this

segment. Many participants reported that they did not trust the SDC near pedestrians.

These results seem to indicate that people do not fully trust SDCs around pedestrians.

Like Scenario 1, in Scenario 2 there is a difference between the initial trust segment and

the final segment designed to rebuild trust. While participants score their level of trust after

RTII−V at 3.80 ±0.23, a high value, it is significantly lower than the initial trust segment

(4.24 ±0.15), representing a 13.50% decrease. This seems to indicate that participants

trusted the SDC less after being exposed to trust reducing segments.

4.3.4 Scenario 1 vs Scenario 2

We performed the Wilcoxon Rank Sum Test p-Value between the trust segments in Scenario

1 and Scenario 2 to investigate the fluctuations of trust levels in participants in groups 1

and 2. Figure 4.13 illustrates this comparison. Our analysis indicated that participants

from both groups reported similar expected trust levels after positive and negative trust

segments. The only significant difference that we observed was the reported trust levels

for Negative Trust Mutation segments (NMI−IV and NMII−IV). We believe that this is due

to the fact that the Negative Trust Mutation segment in Scenario 2 (NMII−IV) was much

milder compared to the one in scenario 1; It mostly involved the SDC running stop signs in

a parking lot and driving near pedestrians and a bicyclist, as opposed to speeding, almost

crashing into another car, and driving in the middle of the road in NMI−IV.
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Figure 4.13: Wilcoxon Rank Sum Test: P-Values Across Segments in Scenario 1 & 2

The results of the experiment were generally consistent with our expectations. The

participants reported higher trust levels after experiencing initial trust and trust escalation

segments and reported distrust after the trust reduction segments, as well as high distrust

after the negative trust mutation segment. Finally, participants in both groups were able to

relatively rebuild their trust after the trust damaging Negative Trust Mutation segments.

4.3.5 Data Correlation Between Demographic Data and reported Trust Values

Our data analysis on the demographic and psychological data that we collected from our

participants revealed some interesting facts. According to our data, females gained or lost

their trust with a slower pace compared to males, who had with a faster pace. We calculated

the average value of the reported trust levels of of males and females before and after they

experienced damaging simulated segments (NMI−IV in group 1 and NMII−IV in group 2),

and calculated their value of their slopes ∆t. We discovered that after viewing the trust

damaging experience, females had ∆t = -0.63, which indicates a slow decline. Similarly,

after viewing the trust re-building segments (RTI−V in group 1 and RTII−V in group 2),

females had a ∆t = 1.29, which is slightly slower than the trust recovery of males (∆t =

1.29). Figure 4.14 visualizes this trust difference.
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Figure 4.14: Average trust Level Fluctuation Comparison in Males vs Females

Another interesting discovery was that on average, the majority of the participants who

were of Hispanic/Latino origin reported higher levels of trust in both groups. Addition-

ally, their trust fluctuations indicated that they gained or lost their trust with a slower pace

compared to others with a faster pace. This finding matches the findings of Akash in [21].

Figure 4.15 illustrates the fluctuations of trust levels in the Hispanic/Latino participants

compared to participants of other ethnic backgrounds. We are comparing the sharpness of

the slope ∆t from segment Trust Reduction (TRIII) to Negative Trust Mutation (NMIV) and

from Negative Trust Mutation (NMIV) to Rebuild Trust (RTV).
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Figure 4.15: Average Trust Fluctuation of Hispanic/Latino Participants vs Others

We also observed that subjects who expressed that their trust can be easily rebuilt, re-

gained their trust with a faster pace versus subjects who mentioned otherwise. See Figure

4.16 for the comparison of the slopes. As shown, participants who declared that they can

easily rebuild their damaged trust had a sharper positive slope (∆t = 1.5) compared to the
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participants who reported that they usually have difficulty regaining their trust in people

(∆t = 1.26).
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Figure 4.16: Average Trust Fluctuation Comparison for Rebuilding Trust

Subjects with recent bad trust-related experiences gained or lost their trust with a faster

pace whereas, subjects who had bad trust-related experiences long time ago, gained or lost

their trust with a slower pace. Illustrated in Figure 4.17, After experiencing the Negative

Trust Mutation driving segments (NMIV), subjects with recent bad experiences had ∆t =

-1, which indicates a steep decline for the trust decrease when compared to ∆t = -0.77 and

∆t = -0.73. Similarly, after the participants went through the Rebuild Trust segment (RTV),

subjects with recent bad experiences had ∆t = 1.5 compared to ∆t = 1.077 and ∆t = 0.86.
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Figure 4.17: Recent Trust Damaging Experiences in the Participants

Subjects with a high-level of trust in SDC technology lost their trust with a slower pace

and regained their trust with a faster pace whereas, subjects with a low-level of trust in this

technology, lost their trust with a faster pace and regained their trust with a slower pace.

Figure 4.18 illustrates this discovery.
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Figure 4.18: Participants Who Trust SDCs vs Others

It is worth mentioning our experiment did not reveal any meaningful results for the data

correlation between the age of the participants, their income levels, their employment status

and the reported trust values. This is due to the fact that the majority of our participants

were unemployed 18-30 year old college students.

4.4 CONCLUSION AND FUTURE WORK

This chapter focuses on understanding fluctuations in the trust levels of passengers of self-

driving cars. The data indicating the trust levels of human subjects were collected using an

advanced self-reporting system after they experienced a VR simulation which consisted of a

series of simulated autonomous driving videos. The results of the experiment indicated that

the humans trust levels change depending on the autonomous driving style. Furthermore,

we discovered that most of the participants were able to moderately rebuild their trust in

the simulated SDC after faulty and erratic behaviors, and passengers are usually distrusting

of the SDC near pedestrians.

After analyzing our collected demographic data, we discovered that certain attributes

such as cultural background, gender, the number of past incidents, trust in social situations,

and the current perception of the autonomous driving technology directly affect they way

people trust the simulated SDC, and the recovery of this trust after trust damaging incidents.

In the next iterations of our research, we will improve our SDC VR simulation scenar-

ios to make them more realistic. There were some minor deficiencies such as the motion
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of the motion simulator going slightly out of sync with the car movements in some parts.

Additionally, some of the participants stated that they cannot see the side mirrors or the

rear-view mirrors in the simulation, and this could have had an impact on their trust levels.

Another area that we would like to improve is introducing segments with hazardous con-

ditions such as heavy rain, storms, and snow to see if they would have a direct impact on

the passengers trust levels. Furthermore, we would like to replace our trust self-reporting

system with automatic detection of trust level via psychological sensors and non-intrusive

devices such as EEG, heart rate sensors, and a facial recognition module.
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CHAPTER 5

CONCLUDING REMARKS AND FUTURE DIRECTIONS

In this thesis, a new approach was introduced for measuring the trustworthiness of au-

tonomous vehicles in real time. This approach employs a new structured data collection

method, an advanced self-reporting trust system, and a realistic VR self-driving car simu-

lator to study the fluctuations of trust levels of the passengers of self-driving cars. To test

this novel approach, an empirical experiment was designed and conducted on 50 human

subjects. The analysis of the experimental results indicated that the autonomous driving

style directly influences the trust of the passengers in the system. For instance, aggres-

sive driving diminishes trust, and defensive, predictable driving increases (builds) trust.

Furthermore, most human subjects indicated signs of rebuilding their broken trust in the

system after experiencing aggressive, and reckless driving scenarios.

We also discovered that certain traits such as cultural background, gender, past trauma,

the psychological state, and the current perception of the autonomous driving technology

by the test subjects have a high degree of correlation with their reported levels of trust in the

simulated system. For instance, we discovered that females have a slower trust recovery

and loss rate, the Hispanic/Latino passengers are more likely to have more trust in the

system, and subjects recent negative trust-related experiences gain or lose their trust faster.

The results of our experiment matched our initial expectations. Thus, we can consider

this innovative data collection approach an adequate and a reliable technique to measure

passengers level of trust and psychological responses when exposed to different driving

scenarios. We believe that the presented approach in this thesis is novel, and can potentially

lay the foundation of a wide variety of future research in the context of trust, HRI, and

autonomous vehicles. With the mass production and commercialization of autonomous
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vehicles in the upcoming years and the high degree of skepticism of the average consumers

in the industry, we believe that this type of research in this domain is more important than

ever before.

Within the context of trust and HRI, we are interested in further research and refine-

ments to our proposed approach, and simulation technology. Automatic collection of

the physiological and psychological responses (via EEG sensors, heartbeat sensors, fa-

cial recognition modules, and others) during the simulated driving scenarios and analyzing

them in real time are some of the primary future research directions that we are planning to

explore in the next iterations of our research [20] [78] [79].

59



APPENDICES

60



APPENDIX A: DEMOGRAPHIC QUESTIONS

Demographic Information

Please do not provide any personal information on this form so that we can keep your identity fully anonymous.

(01) What is your gender?
 Male  Female

(02) What is your age?
 18-30  31-50  51-over

(03) What is your ethnicity origin/race?
 White  Hispanic/Latino  Black/African American
 Asian  Native (American) Indian  Other

(04) What is your education?
 None  High School/College Deg.  Bachelor’s Degree
 Master’s Degree  PhD/Postdoctoral  MD/Other Professional Degrees

(05) What is your marital status?
 Single, Never Married  Married  Domestic Partnership
 Widowed  Divorced  Separated

(06) What is your employment status?
 Unemployed  Employed  Self-Employed
 Household  Unable to Work  Retired

(07) What is your income range?
 No Income  $0 < Income <= $25K  $25K < Income <= $50K
 $50K < Income <= $100K  $100K < Income <= $200K  $200K < Income

(08) In general, how do you categorize yourself?
 Unhappy/Depressed  Happy/Pleased  Moody

(09) How influential are you? (i.e., being able to change attitude/mood or decisions of others)
 Not Influential  Somehow Influential  Very Influential

(10) Is it easy for family members/friends/people to change your attitude/mood/decisions?
 Never Easy  Some Times Easy  Always Easy

(11) Everyone has bad experiences in trusting people. How long ago did you have such a bad experience? 
And for how many times in your life?
 Recently (during last year)  During 1-to-3 Years Ago  Long Time Ago (More Than 3 Years Ago)
 A Few Times  Many Times  Numerous Times

(12) If you lose your trust in someone, how hard is it for that person to rebuild your trust?
 Hard  Somehow Hard  Neutral  Somehow Easy  Easy

(13) What is your trust level toward family members/closed friends/people whom you know very well?
 Distrust  Somehow Distrust  Neutral  Somehow Trust  Trust

(14) What is your trust level toward new people/strangers in the first dyadic encounter?
 Distrust  Somehow Distrust  Neutral  Somehow Trust  Trust

(15) What is your trust level to utilize Artificial Intelligence or Fully Autonomous Technologies?
 Distrust  Somehow Distrust  Neutral  Somehow Trust  Trust

(16) What is your trust level to utilize a Self-Driving Car when this technology becomes available?
 Distrust  Somehow Distrust  Neutral  Somehow Trust  Trust
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APPENDIX B: PUBLICATIONS

The results of this research appear in the following publications:

[1] Originally Published in: Shervin Shahrdar, Luiza Menezes, and Mehrdad Nojoumian.

“A Survey on Trust in Autonomous Systems”. IEEE Computing Conference (CC). London,

UK: IEEE, 2018. Reproduced with permission from IEEE

[2] To be Published in: Shervin Shahrdar, Corey Park, Mehrdad Nojoumian “Real-Time

Trust Measurement in Human-Autonomous Vehicle Interactions Using a VR-Motion Sim-

ulator and a New Structured Data Collection Approach”. Submitted to International Jour-

nal of Human-Computer Interaction, Special Issue: Human-System Cooperation in Au-

tonomous Driving (IJGT) (Accepted With Revision)

[3] To be Published in: Corey Park, Shervin Shahrdar, Mehrdad Nojoumian “EEG-Based

Classification of Emotional State Using an Autonomous Vehicle Simulator”. Submitted

to the 10th IEEE Sensor Array and Multichannel Signal Processing Workshop (Under Re-

view)
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