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Since the introduction of Bitcoin, numerous studies on Bitcoin mining attacks

have been conducted, and as a result, many countermeasures to these attacks have

been proposed. The reputation-based mining paradigm is a comprehensive counter-

measure solution to this problem with the goal of regulating the mining process and

preventing mining attacks. This is accomplished by incentivizing miners to avoid

dishonest mining strategies using reward and punishment mechanisms. This model

was validated solely based on game theoretical analyses and the real-world implica-

tions of this model are not known due to the lack of empirical data. To shed light

on this issue, we designed a simulated mining platform to examine the effectiveness

of the reputation-based mining paradigm through data analysis. We implemented

block withholding attacks in our simulation and ran the following three scenarios:

Reputation mode, non-reputation mode, and no attack mode. By comparing the

results from these three scenarios, interestingly we found that the reputation-based

mining paradigm decreases the number of block withholding attacks, and as a result,

the actual revenue of individual miners becomes closer to their theoretical expected

revenue. In addition, we observed that the confidence interval test can effectively
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detect block withholding attacks however, the test also results in a small number of

false positive cases. Since the effectiveness of the reputation-based model relies on

attack detection, further research is needed to investigate the effect of this model on

other dishonest mining strategies.
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CHAPTER 1

INTRODUCTION

Since the introduction of Bitcoin [2] in 2009, the popularity of cryptocurrencies has

risen. It has reached the point that in the current markets, Bitcoin and other similar

cryptocurrencies stand side by side with the world’s most dominant national curren-

cies as well as the traditional precious metals such as gold and silver. Today the

total value of Bitcoin is over one trillion dollars [3] and by far it is the most valuable

cryptocurrency. Despite Bitcoin’s fast growth in value and popularity, the exact place

of Bitcoin in the future’s trade and reserve is not clear at this point. However, it is

likely that the impact of the cryptocurrency on business and trade will only increase

in the future. Furthermore, the backbone technology of Bitcoin, namely blockchain,

has found its way into other major industries and it is predicted that the blockchain

platforms and systems will remain important and may eventually dominate in future

industries. [4]

Unlike the traditional currencies that are controlled and regulated by the central

banks, Bitcoin along with the other cryptocurrencies are neither regulated nor con-

trolled by any intermediary entity. The original idea behind Bitcoin is to make an

autonomous and self-regulating cash systems that is open to the public. To accom-

plish this goal, Bitcoin takes advantage of peer-to-peer network technology [5] and

state-of-art cryptographic protocols including public key, digital signature and cryp-

tographic hash functions. The basic assumption is, as long as no single entity controls

50% or more of the total computational power of the network, the system is able to

remain functional and consistent. While this fundamental assumption is backed by

mathematical proofs, it is also widely accepted that a complete immunity to all at-
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tacks is not guaranteed in any system. In the case of decentralized cryptocurrencies, a

number of vulnerabilities and attack scenarios have been studied over the past several

years and are pervasive in the cryptocurrency literature. These vulnerabilities can be

categorized into four different groups as follow:

1. Network attacks such as distributed denial of service [6] and sybil attacks. [7]

2. Transactional attacks such as double spending. [8]

3. Client-side attacks such as wallet theft. [9]

4. Mining attacks such as block withholding [10] [11] and selfish mining. [12] [13]

In this thesis, we exclusively focus on mining attacks. After reviewing many

existing mining attack countermeasures from the literature, we focus on a reputation-

based model that is proposed by Nojoumian et al. [1] This solution is aimed to

combat mining attacks in cryptocurrency platforms. After reviewing the architecture

of the reputation-based model, we present our computer program that simulates the

cryptocurrency mining environment. We specifically design this simulation for the

purpose of evaluating the effectiveness of the reputation-based model.

The rest of this thesis is organized as follows: In chapter 2, we review the existing

mining attack scenarios along with the countermeasures from the literature. In chap-

ter 3, we introduce our computer program and its main components. In chapter 4, we

present the results of our simulation followed by our analysis. Finally in chapter 5, we

conclude this thesis with our final remarks and the future direction of this research.

1.1 OUR MOTIVATION

The reputation-based paradigm is designed to effectively reduce the number of mining

attacks by introducing a reward-punishment based mechanism. The proposed solution
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relies on game theoretical concepts and it is aimed to incentivize the miners to avoid

malicious activities and commit to the honest mining strategies.

The proposed reputation-based model as well as vast majority of the other pro-

posed countermeasures, are based on mathematical analysis and game theoretical

concepts. Even though the theoretical arguments are still scientific and valid, due

to the lack of sufficient empirical data, the real world implications of these theoreti-

cal solutions are not known. When real-world experimentation with a theory-driven

scenario is not achievable, a computer simulation can bring new insights into both

the problem and the hypothetical solution. Therefore, to evaluate the effectiveness

of the reputation-based paradigm on mining attacks, we designed and implemented

a Bitcoin mining simulation environment with the goal of deriving empirical data.

From this empirical data, we then perform data analysis on the results to deduce

whether the proposed solutions are significant and confirm the real world benefits of

the reputation-based paradigm solution.

1.2 OUR APPROACH

For our simulation experiment, we examine the effect of the reputation-based model

on block withholding attacks. As with any punishment-reward scheme, the key ele-

ment that predominantly contributes to the effectiveness of the scheme, is the attack

detection success rate. For various mining attacks, different detection solutions are

available in the literature. Since our goal for this simulation is not to examine any

particular attack detection solution, we choose to implement the block withholding

attack scenario due to the relative simplicity of its detection method. Other mining

attacks such as selfish mining and eclipsing are more sophisticated thus their detection

methods are more complex. The complex nature of these attacks and their detection

methods requires a more sophisticated simulation environment. This should be the

subject of future research projects.
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1.3 THE FUNDAMENTAL CRYPTOCURRENCY CONCEPTS

1.3.1 Blockchain

Blockchain is a linked sequence of ledgers known as blocks. Each block contains many

transaction records that are secured using a cryptographic hash function known as

SHA-256. Each record contains a set of transactional data including the amount,

payer’s ID, payee’s ID and transaction’s timestamp. Each block also contains its own

unique hash value as well as the the preceding block’s hash value. The first block in

the blockchain is known as the genesis block. Since each block’s hash is related to the

hash from the previous block through SHA-256 algorithm, any modification to one

block’s content will make the hash of the subsequent block invalid and this continues

all the way to the last block. The cryptographic relationship between the content of

each block and its hash value, makes it very difficult for a malicious entity to tem-

per with the content.[14] This feature brings immutability to blockchain and since

each block is connected to its previous block in a chronological order, the information

stored on the blockchain is verifiable and traceable by any entity who has access to

the blockchain network. The combination of immutability and verifiability makes

blockchain an appropriate technology to record the history of transactions. There-

fore, blockchain can provide transparent and reliable information for its clients.[15]

Blockchain is stored and managed through a peer-to-peer (P2P) network system.

This means that all participants of the blockchain network have a local copy of the

whole blockchain. The blockchain transactions are validated and stored by all net-

work nodes and any new block that is added by a node will be distributed to all other

nodes in the network. This feature makes blockchain decentralized and as a result,

there is no need to trust any authority as the platform is self-regulated through a

distributed consensus mechanism.[16] In other words, blockchain brings trust for the

entire system without the need for a trustworthy authority. This also applies even if
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the blockchain clients don’t trust each other.

Figure 1.1: The Structure of Blockchain

1.3.2 Miners and the Proof-of-Work Mechanism

A new block can be added to the last block blockchain in a process known as mining.

The network nodes who participate in mining are referred as miners. Mining is the

process of finding a 64 digit hex hash value that must be smaller than a target value.

This value cannot be calculated or estimated directly. The only way of finding a valid

value is the process of trial and error. A miners simply tries different random hash

values until a valid hash value is found. Since the sample space for a hash value is

enormously large, finding a valid hash value, requires an extremely intensive compu-

tational work.[17] However, once the correct value is found by a node, it can be easily

and quickly verified by other nodes in the network. This intensive computational

process is referred to as proof-of-work (POW). A miner who successfully provides a

POW, generates a new block in the blockchain. Then, the new and unverified trans-

actions are recorded in this new block. The miner who provide POW is also rewarded
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with an amount of freshly mined cryptocurrency.

1.3.3 Mining Pools

Since the mining process is extremely competitive, the expected time intervals be-

tween each POW are very long. This issue becomes more severe as the ratio of the

miner’s hash power to the whole network hash power becomes smaller. Therefore

the miners may need to wait a long period of time until they receive their mining

rewards. Since miners must pay for their power consumption, the accumulation of

the power costs for a long period of time may become too large to be affordable. To

overcome this problem, a group of miners often form a coalition known as a mining

pool. Once a miner from the coalition finds a POW, he will then send the solution to

the pool manager. The pool manager publishes the new block on behalf of the pool

and subtracts the pool’s fee from the reward. The rest of the reward is distributed

among all member miners by the pool manager. Each miner receives a portion of the

reward equal to his hash power ratio to the entire pool’s hash power. The expected

revenue from pool mining is slightly smaller than the revenue from solo mining due to

the pool fee. But mining in pools will reduce the expected time interval between each

reward and as a result, the income from pools is more consistent and predictable than

the revenue from solo mining. For miners who hold a very small portion of the hash

power, it is not economically justifiable to mine solo as the expected time duration

for a reward can be even longer than the miner’s lifetime.
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CHAPTER 2

A LITERATURE REVIEW OF MINING ATTACKS AND THE

COUNTERMEASURES

2.1 MINING ATTACKS

As cryptocurrencies gained more popularity, Mining became more profitable and as a

result, more miners would join the network to participate in the mining competition.

This situation also makes the cryptocurrency platforms an attack target. Mining

attacks are referred to the dishonest and malicious strategies that an individual miner

or a coalition of miners can conduct for the purpose of gaining more revenue at the

expense of honest miners. Game theoretic analyses [18] [19] [20] [6], demonstrate that

there is an incentive for malicious miners to attack the cryptocurrency platform in

many different ways. In section 1, we overview the various types of mining attacks.

In section 2, we review the proposed countermeasures for individual attacks in the

literature. In section 3, we review the reputation-based countermeasures that are

aimed to incentivize the miners to be reputable.

2.1.1 Block Withholding

A miner who is the member of pool A, can practice a block withholding attack [11]

against pool A. An attacker who supposedly is honest and mines for pool A, does not

submit the full POW once he finds it and instead, he withholds the newly generated

block. As a result, the honest members of the pool earn less than what they could

have earned theoretically. By performing a block withholding attack, the attacker

does not contribute in generating revenue for the pool, while he shares the reward
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with the pool if an honest miner submits a POW. The attacker will not be able to

obtain anything directly by withholding a block since he cannot submit the POW

independent from the the mining pool he is registered with. This is due to a protocol

for mining pools that requires only pool administrators to submit a newly generated

block. [21] Therefore, this kind of attack hurts both the attacker and all honest

miners from Pool A. Block withholding attacks can be performed by the malicious

miners for the purpose of sabotage. [11] This is usually originated from a suspect

pool. Eyal [20] used game theoretical analysis to show that “no attack” is not a Nash

equilibrium. This means that two mining pools attack one another for the purpose of

increasing their revenue. Ironically, the consequence of this strategy is the opposite,

both pools gain less if they attack each other. The author in [11] however, presents a

more sophisticated scenario when miner m withholds blocks in favor of another pool,

namely pool B. In this case, there is a secret alliance between miner m and pool B

where, miner m withholds the blocks from pool A and he instead provides the solution

for pool B. In return, miner m receives a percentage of the reward as a bribe from pool

B. To be economically justifiable, this bribe must be greater than the percentage of

reward that miner m receives from pool A. Block withholding attack can be practiced

by one miner repeatedly. It can also be practiced by more than one miner from a

pool. In fact, pool B may have a secret alliance with multiple miners from pool A.

This can result in even more revenue loss for pool A and on the opposite side, pool

B will gain significantly more revenue than its theoretical expected revenue. Bag et

al. [10] shows that there is an incentive for a malicious miner to attack larger pools

while receiving bribes from smaller pools. Block withholding can also be a prelude

to selfish mining attacks.
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2.1.2 Selfish Mining

In the honest mining strategy, if the miner finds a POW, he publishes the newly

generated block publicly. Consequently, all other miners will stop solving the already

solved hash puzzle and they will move on to the next block. Selfish mining is a mining

strategy in which, the selfish miner finds a POW but withholds it from the network so

the newly generated block remains hidden from the rest of miners. Then the attacker

tries to find the next POW when the rest of miners waste their mining power on the

previous block that is already generated. Because there is a potential to increase the

attacker’s profit, there exist an incentive for selfish mining strategy. [12][13]

In the original bitcoin paper, Satoshi [2] stated that the Bitcoin network is secure

as long as the computational power of the honest miners remains the majority. How-

ever according to the more recent studies, the selfish miner can still undermine the

security and the integrity of the cryptocurrency platform even if they don’t control

the majority of the computational power. In particular, Eyal and Sirer [13] show that

in order for a pool to conduct a profitable selfish mining attack, it only needs more

than a quarter of the total computational power. In a different paper, Sapirshtein et

al. [22] analyzed the minimum resource required to conduct a selfish mining attack

namely ‘optimal selfish mining strategy’. This malicious mining strategy will remain

at least as profitable as honest mining strategy therefore, there is an incentive for the

miner to practice the selfish mining strategy.

2.1.3 Stubborn Mining

In general, the selfish mining strategy is used by the attacker to acquire short term

rewards. From the attacker’s point of view, if his private chain is longer than the

public’s chain, he will continue mining on his private chain for the hope of generating

even more blocks. But if the attacker’s private fork, falls behind the public chain, he

disregards his private fork and reverts back to the public chain. Stubborn mining, first
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introduced by Nayak et al. [23], is similar to selfish mining strategy but the attacker

persists on selfish mining even if his private chain falls behind the public’s chain. So

in general a stubborn miner will not give up on selfish mining easily. The authors

argue that the selfish mining strategy is not optimal. It means that by following

the stubborn strategies, the attacker will be able to gain even more rewards than if

he only employs selfish mining strategy. Then the authors introduce three different

stubborn strategies namely, Lead stubborn, Equal fork stubborn and Rail stubborn.

In these strategies, the attacker strategically reveals his hidden individual blocks

based on the current state of the blockchain rather than just revealing his entire

fork at once. This allows the attacker to increase his revenue by up to 25%. The

authors also studied a model in which, stubborn mining is combined with an eclipse

attack, hence the attacker can gain up to 30% more rewards in comparison with the

less advance use of eclipse attack. The profitability of stubborn mining strategies

depends on the duration of the attack and the analysis of the expected revenue. [24]

2.1.4 Eclipsing

Bitcoin’s is a decentralized system that is built upon peer-to-peer network infrastruc-

ture. This network is designed to be open to the public. Unlike the server-client based

network communications, peer-to-peer communication is free from cryptographic au-

thentications. Each peer is identified directly by its IP address and the communica-

tion with other peers is established by using a randomized algorithm. This algorithm

finds 8 random peers from the network and forms long lived outgoing connections.

For the purpose of saving and broadcasting the addresses of other peers, the maxi-

mum number of 117 unsolicited incoming connections are also allowed. Through this

communication, peers can broadcast and receive the latest state of the blockchain in

the network. This network communication protocol can successfully provide an open

and decentralized network environment. But there is a crucial security trade-off. The
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malicious peers can also join the peer-to-peer network with the intention of abusing

honest peers or undermining the security of the network. An attacker can target a

victim node from the network, isolating its connections to only the IP addresses that

are controlled by the attacker. Then the attacker can manipulate what the victim

can see in the network.

Eclipse attack often conducted for different purposes including Delivery-tampering

attacks [25] engineering block races, 0- and N-confirmation double spending, gener-

ating a hidden fork on the network, making the victims to waste their computational

power on old or obsolete blocks [26] and finally, hijacking the victim’s computational

power. The minimum required resources to conduct an eclipse attack has been the

subject of many studies. Marcus et al. [27] presented an eclipse attack model on

Ethereum network that can be imposed by an adversary who controls only two IP

addresses on two computers. Heilman et al. [26] use a mathematical model to demon-

strate an eclipse attack, then to confirm the practicality of this model, the authors

perform it on their own Bitcoin. They conclude that, an attacker with only 32 dis-

tinct IP addresses or a 4600-node botnet is able to conduct an eclipse attack against

a victim with at least 85% chance of success.

2.1.5 Routing Attack

This attack was first introduced by Apostolaki et al. [28] Routing attack can be

conducted in small-scale targeting individual peers or large-scale targeting the whole

network. The authors describe two kinds of routing attacks. The first kind is called

“Partitioning Attack”. By conducting this attack, the attacker is aimed to disconnect

a set of nodes from the network completely. To do so, the attacker needs to disconnect

all the connections between the victim and the rest of the network. Due to the

complicated structure of Bitcoin network, the initial isolation may not be complete

and the isolated node may still be able to hold some communications with the rest
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of the network. The attacker is able to detect and eliminate these connections until

the victim nodes are completely isolated and the network is partitioned.

The second kind is called “Delay Attack”. The purpose of this attack is to slow

down the propagation of block sending from or received by the victim nodes. In

contrast to partition attacks that requires a perfect isolation, a delay attack can be

conducted by just intercepting a subset of connections between the victim nodes and

the rest of the network. The detection of a delay attacks requires more challenges

than a partition attack.

Routing attack can cause a significant loss to mining pools and individual miners.

By partitioning the network or interrupting the propagation of blocks, the attacker can

force the victim miners to waste their mining power on the blocks that are eventually

discarded. Saad et al. [29] further studies various partitioning attacks on Bitcoin.

The authors show that the Bitcoin network is getting more and more centralized

at the AS-level. Through data collection and analysis, the authors show that the

consensus among Bitcoin peers is non-uniform. As a result, the network is becoming

more vulnerable to partitioning attack. The authors then demonstrate four variations

of partitioning attack: spatial, temporal, spatio-temporal, and logical.

2.1.6 Pool Hopping

The availability of numerous mining pools, allows the miners the opportunity to

switch between pools if they realize they can increase their profit by doing so. Lewen-

berg et al. [18] studied the reward sharing mechanism in mining pools by developing

game theoretic models. They concluded that when the rate of transactions are high,

it can be very difficult or impossible to keep the distribution of the accumulated rev-

enue stable. Therefore, there is always an incentive for some miners to switch between

pools. This pool switching can potentially sabotage the victim mining pools if it is

practiced extensively. [11] A malicious miner constantly leaves and rejoins a mining
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pool based on the expected financial rewards the pool offers. When the mining pool

offers low rewards, the attacker leaves and when the rewards are high, the attacker

rejoins. This leaving and rejoining the mining pool, enables the attacker to receive

more rewards than his expected hash power. On the other side, the honest miners who

mine for the same mining pool consistently, receive less rewards than their expected

hash power.

This situation prevents the victim mining pool to operate effectively and to mine

blocks successfully before their competitors. [30] As a result, the honest miners will

lose money by staying in the victim mining pool and eventually, they have to leave

the pool. Rosenfeld demonstrates in [11] that the current reward system practiced by

mining pools, encourages pool hopping attack in the sense that pool hopping is more

profitable than mining continuously for a pool.

2.2 INDIVIDUAL ATTACK COUNTERMEASURES

In this section, we discuss mining attack detection solutions and countermeasures

that have been studied since the emergence of Bitcoin in 2009. The majority of these

countermeasures and detection methods are aimed to address one of the attack types

that we explained in the previous section.

2.2.1 Countermeasures for Block Withholding

Block Withholding within a mining pool can be detected by relying on the theory of

probability. For every pool, the ratio between the computational power of the mining

pool and the whole network’s computational power represents the probability of find-

ing a POW by that mining pool. If the actual number of POW is significantly bellow

the theoretical number of POW, there is a high possibility that the pool is under

block withholding attacks. Even though it is not difficult to detect such an attack,

finding the source of the attack could be challenging. [31] Rosenfeld [11] suggests a
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trickery that can be employed by the pool manager to dupe a dishonest miner into

withholding a supposedly POW. Pools can catch dishonest miners by incorporating

this method at the expense of dedicating a portion of their computational power on

a task that does not produce any revenue.

As discussed earlier, withholding a POW alone does not benefit the perpetrator.

Often this kind of attack is just the tip of the iceberg. Block withholding might

be the sign of a deeper and more complicated adversary activity. Since the block

withholding attack can be conducted for different purposes, various countermeasures

have been suggested based on both the incentive of the attacker and the complexity

of the operation.

Bag and Sakurai [32] consider a model in which, a miner from a mining pool

lunches a block withholding attack on a target mining pool. Then the authors inves-

tigate the parameters that could increase the profit of the attacker and finally they

propose a rewarding scheme called “special reward”. The goal of this new scheme is

to discourage the attackers by rewarding them additionally if they find a new block.

In addition an attacker who never submits a POW will be denied from this reward

and as a result, the attacker losses revenue.

Lee and Kim [33] present a method that stops block withholding attacks. In this

method, rather than the attack itself, the detection of the infiltration is the focus.

The authors argue that, a block withholding attack most likely is the subsequent of

an infiltration. Therefore, the attack will be prevented if the infiltration is detected.

A pool that is suspicious of being attacked by another pool, can infiltrate into the

attacker pool to investigate the attack.

Solat and Potop-Butucaru [34] proposed a new algorithm to prevent intentional

block withholding attack. This new algorithm namely, ZeroBlock, incorporates the

expected time measurement to validate newly generated blocks. For every transac-

tion, an expected time is considered and calculated locally by the nodes. The expected
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time depends on the size of the network as well as the difficulty level for solving the

POW puzzle therefore, is predictable. If the adversarial node does not submit the

new block before the calculated expected time, the block will become invalid and

subsequently disregarded by honest nodes. The authors state that, their solution will

prevent an intentional fork creation on blockchain.

2.2.2 Countermeasures for Selfish Mining

When selfish mining first introduced by Eyal and Sirer [13], the authors suggest an

adjustment to Bitcoin consensus that will block selfish mining strategies. The new

adjustment includes an automated mechanism that prevents mining pools from con-

ducting a profitable selfish mining strategy. This mechanism would work effectively

as long as the maximum mining power of the pools is smaller than 25% of the total

mining power. In addition, the prevention of the selfish mining strategy requires at

least two third of the miners to be honest.

As an extension to the countermeasure presented in [13], Heilman [35] presents

a new concept called “Freshness Preferred (FP)”. The new defense increases the

minimum share of mining power from 25% to 32%. The new solution incorporates

the use of an unforgettable timestamp. The author also shows that, it will be difficult

for a selfish miner group to work against the proposed defense mechanism. This is due

to the situation that a member of the selfish mining group is able to anonymously

reveals the fact that the group have compromised the system. This ability gives

the members an incentive to blackmail other dishonest miners. Therefore, it will be

difficult and risky for selfish miners to form a group.

Zhang and Preneel [36] state that the solutions suggested by [13] and [35] are

only effective if the selfish chain is shorter than the public chain and as a result, these

defenses are incapable of combating a resourceful selfish miner. Then, the author pro-

poses another solution that is effective even if the selfish miner’s chain is longer than

15



the public’s chain. This solution is based on revising the fork-resolving policy that

dismisses the blocks that are not submitted on time. Instead, this policy promotes

the blocks that are linked to the competing blocks of their predecessors. According

to the authors, while this solution outperforms the previous solutions suggested by

[13] and [35], it is also backward compatible.

The solution introduced in [34] as a defense against block withholding attack,

is also suggested by the same authors in a different paper [37] as an effective and

practical solution to address selfish mining attacks.

Kokoris-Kogias et al. [38] introduces a new algorithm called “ByzCoin”, which is

claimed to be Byzantine fault tolerant [39]. This algorithm is designed to increase

the security and consistency of the blockchain based systems such as Bitcoin. The

authors suggest that, by equipping Bitcoin with the ByzCoin algorithm, the selfish

mining strategy becomes ineffective. The algorithm resolves forks instantly, making

a private fork a waste of time and resource.

2.2.3 Countermeasures for Stubborn Mining

Nayak et al. [23] state that eclipse attacks and stubborn mining can be detected

by monitoring the stale block rate. Stale blocks are the blocks that contain a valid

POW and transaction data but they are not included in the main chain. [40] The

appearance of stale blocks is probable on a random basis even in the absence of

malicious miners. The difference is, if all miners are honest, the relative rate of stale

block appearance is equal for all miners. If there is a stubborn miner, the rate of stale

blocks would vary depending on the attacker’s strategy and the network parameters.

An attack can be detected by counting the number of stale blocks and comparing it

with the baseline.
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2.2.4 Countermeasures for Eclipsing

Overlay networks in general can be vulnerable to eclipse attacks. There have been

number of studies on eclipse attacks. [41][42][43][44] In these studies, more constrains

and structural changes are suggested to effectively prevent eclipse attacks. Bitcoin on

the other hand, is an unstructured network, which means that each node is connected

to a an arbitrary subset of nodes determined by a randomized algorithm. Many other

studies [45][46][47] are focused on designing a new unstructured network scheme that

is tolerant of Byzantine attacks.

Jesi et al. [48] proposed a new detection mechanism that can identify and blacklist

the adversary nodes. The authors state that their method is effective when large

number of malicious nodes are present in the network. This defense mechanism

however does not fully preserve the open and decentralized structure of the Bitcoin

network.

Heilman et al. [26] study eclipse attacks on Bitcoin network exclusively and

present countermeasures. These countermeasures are inspired by botnet architectures

and are designed to preserve the Bitcoin’s network architecture. The authors suggest

few techniques that can be used to save the IP addresses of the trusted nodes. If the

user is connected to unknown peers, these unknown peers’ IP addresses are saved in

a different variable namely “tried”. The communication between the user and other

peers in the network depends on the trust level that can be changed from time to

time. The authors also mention that the attack has some specific features that makes

it identifiable such as a sudden TCP connections from variety of IP addresses that

send ADDR messages containing “trash” addresses. Once detected, these malicious

addresses will be blacklisted from the network.
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2.2.5 Countermeasures for Routing Attacks

Apostolaki et al. [28] present both short-term and long-term countermeasures against

routing attacks. The short-term measures are compatible with the current protocols

so the early adopters can immediately take the advantage of increased protection.

These countermeasures include: increasing the diversity of node connections, select-

ing peers while taking routing into account, monitoring round-trip time, monitoring

additional statistics, embracing churn, using gateways in different ASes and preferring

peers hosted in the same AS and in 24 prefixes.

The long-term measures on the other hand, require some adjustments to the Bit-

coin protocol including: encrypting Bitcoin communication and/or adopting MAC,

using distinct control and data channels, using UDP heartbeats and finally requesting

a block on multiple connections.

2.2.6 Countermeasures for Pool Hopping Attacks

Belotti et al. [49] propose a solution to detect pool hopping based on the order

of rewarding transactions. To determine whether a miner is practicing a hopping

strategy, it is crucial to focus on his rewarding transactions. This detection strategy

is based on time epoch which refers to a time window that the miner has received

rewards from different mining pools. Time epochs can be determined by analyzing

the Bitcoin transactions in the miner’s wallet. The authors shows that pool hoppers’

rewards are significantly more than the static miners. Also the behavior of pool

hoppers does not necessarily correlates with the value of the cryptocurrency.

Slush pool is the first mining pool that has implemented an optimized rewarding

system for the purpose of pool hopping prevention. In this mechanism, rewards are

given to the miners in proportion to the score they have received in each round. The

scoring algorithm dynamically computes a score for each share based on its submission

time. Rosenfeld [11] discusses a scoring mechanism that is used to compute rewards
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for the members of a mining pool. The proposed algorithm is based on the scoring

mechanism similar to Slush’s implemented method but different in a way that the

scores for each share remains the same.

Salimitari et al. [50] propose a prospect theory which can help a new miner to

find the most profitable pool. The authors state that the best pool for a specific

miner is not necessarily the best pool for all miners. The suggested utility function

can be used to calculate the value function that determines the risk and loss for each

miner according to their hash power and their electricity costs. The main priority

to this method is loss avoiding rather than profit making. The authors evaluate the

accuracy of their theoretical methodology by joining five different pools and mining

for 40 days, then comparing the actual results with the predictions that are provided

by the utility function. The results however show that the predictions are not as

accurate as expected.

Luu et al. [51] propose a new protocol for an efficient decentralized mining pool

called ”SmartPool”. This new protocol can be implemented in the existing cryp-

tocurrency platforms. It is aimed to resolve the problem with centralized mining

pools in Bitcoin and Ethereum by structuring a platform where mining is completely

decentralized. The authors conduct an experiment in Ethereum testnet and conclude

that the protocol is efficient in practice and therefore, ready to be deployed in the

real blockchain networks.

Singh et al. [30] introduce a new prevention scheme namely, smart contract-based

pool hopping attack prevention. The main purpose of this scheme is to secure the

fair relationship between the miners by requiring them to share their computational

power faithfully. This model provides number of benefits including: (1) The pool

manager is able to monitor the action of each miner before they can join the mining

pool. (2) It requires the miners to submit coins as escrow. If a miner try to abandon

the mining pool, his escrow coins are seized as punishment. (3) To facilitate the
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calculation of the exact amount of escrow, a detailed numerical model is provided.

To examine the practicality of the proposed model, the authors implemented a

case study for an IoT smart home based Ethereum blockchain network. The authors

state that there are only a few limitations in this model that need to be addressed in

future research.

2.3 REPUTATION-BASED COUNTERMEASURES

The deployment of a reputation-based paradigm is known to be a robust approach in

controlling malicious activities on various platforms and environments. Particularly

in decentralized platforms, a trust measurement scheme can compensate for the lack

of the moderator entity. Unlike the mentioned mining attack countermeasures, the

reputation-based countermeasures are not aimed to target a particular attack type.

Instead, they are designed to effectively reduce all kinds of mining attacks by incen-

tivizing the miners to be committed to honest mining strategies. In this section we

review reputation-based solutions that are designed to be implemented on top of the

blockchain-based cryptocurrency platforms.

Nojoumian et al. [1] propose a new reputation-based scheme for the POW compu-

tation. The authors rely on game theoretical analyses to demonstrate the effectiveness

of their proposed model. By relaying on a system of reputation, the solution is meant

to encourage the miners to stay away from dishonest mining strategies. Each miner is

assigned a public reputation value and this value reflects how trustworthy the miner

has been so far. The authors demonstrate that, by using this solution, honest mining

becomes Nash Equilibrium. It means that, the miners who are more reputable, have

a higher chance of receiving mining invitations from the pool managers than the ones

who are not trustworthy. As a result, the miners are incentivized to maintain their

reputation continuously. Even if miners can increase their short term revenue by

mining dishonestly, in a long term, it will be in their best interest of miners to remain
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reputable.

Freeman et al [52] proposed a scoring mechanism that relies on a machine learn-

ing algorithm. This mechanism can help users to identify the risky and potentially

fraudulent transactions. The user can interpret the reputability of other users in the

network thus, deciding which users are trustworthy to do trades with. The scoring

system is implemented in three steps. First, the users who have a history of theft

and other malicious activities are blacklisted. In the second step, the honest users are

differentiated from the adversary users. In the third step, based on the classification,

a risk score is calculated. This score would represent the user’s trust factor based on

the involvement in fraudulent transactions.

Carboni [53] argued that a distributed and decentralized feedback-based reputa-

tion system can be implemented on top of the cryptocurrency blockchain. Then the

author proposed a feedback mechanism in which, a cryptographic link is established

between the translations and the services. This link then is recorded in the blockchain.

The author acknowledges that the proposed model is not formally proven to be re-

sistant to various attacks but it is still robust and reasonable when it is compared

against the current feedback paradigm that exists on many popular online platforms

such as eBay.

Zhuang et al [54] proposed a reputation-based consensus mechanism namely,

proof-of-reputation (PoR). In this framework, all nodes have a reputation. This

reputation is developed based on the node’s transaction activities, assets and partic-

ipation. In PoR, the consensus is processed in a round that includes the selection of

the leader node who has the highest reputation. Then the leader node generates and

publishes the block. The verification process is done by other higher reputation nodes

through voting for the block. The top twenty precent of the nodes in the sorted rep-

utation list are considered high reputation nodes. If the sum of the reputation value

of the nodes that voted consent is greater than the sum of the reputation values of

21



the two thirds of the highest reputation nodes then, the block is verified and will

be added to the blockchain. Otherwise, the block is invalid and will be disregarded.

When a new block is added to the blockchain, the reputation value of the nodes are

updated.

Yu et al [55] proposed a reputation scheme namely RepuCoin. The authors claim

that this proposed mechanism can withstand an attack even if the attacker has tem-

porarily obtained more than 50% of the network’s hash power. Also, the proposed

framework is claimed to have throughput of 10000 transactions per second. This is

done through the proof-of-reputation process, but the rate of voting power growth

of the whole system is limited. In this framework rather than hash power, a miner’s

power is their reputation, which is the work the miner has done over the entire life of

the blockchain.

Sun et al [56] proposed a reputation paradigm scheme for e-commerce blockchain

called RTChain. In this system, the nodes’ transactions and consensus activities affect

its reputation value. RTChain is expected to provide the highest throughput need of

e-commerce. In addition, the authors claim that the proposed framework is resistant

against the majority of known attacks such as selfish mining, double spending, and

eclipse attacks. The authors provide their evaluation for their prototype and and

demonstrate that the proposed framework meets the requirements of e-commerce

and is deployable.
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CHAPTER 3

THE IMPLEMENTATION OF THE REPUTATION-BASED MINING

PARADIGM

In chapter 2, we discussed various kinds of mining attacks as well as many proposed

countermeasures from the literature. In this chapter, we introduce our mining sim-

ulation program. First, we demonstrate the architecture of our simulation followed

by an in-depth explanation of the parameters, the algorithms, and the settings we

incorporated in our simulation. Then in chapter 4, we provide the different scenarios

in which, we run our simulation program along with the results for each scenario.

3.1 AN OVERVIEW OF THE REPUTATION-BASED MODEL

The reputation-based model includes a set of pool managers M(i,pi) who form mining

coalitions for 1 ≤ i ≤ I, where 0 ≤ pi shows the profit that pool manager has

accumulated so far; a set of miners m(jk,rk) who perform mining, for 1 ≤ j ≤ J and

1 ≤ k ≤ K where −1 ≤ rk ≤ 1 represents the reputation value of a miner.

In the current Bitcoin framework, each miner is given a unique identity i In the

reputation-based model, along with i, each miner is also given a public reputation

value. The value of rk shows how reputable the miner has been so far and rk is

updated in specific time intervals based on the miner’s commitment to honest mining

within that time period. Honest mining denoted by H will result in an increase in

and likewise Dishonest mining denoted by D will result in a decrease in rk.

In the reputation-based model, the pool managers evaluate their pool members after

a certain period of time. They send invitations to miners based on their reputation
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value. The reputable miners are more likely to receive invitations compared to the

miners who are not trustworthy. The miners who have received multiple invitations

will have the option to join the pool they prefer whereas, the miners who have not

receive any invitations cannot participate in pool mining.

The reputation-based model relies on the detection success rate. This means, the

goal of the reputation-based model is only accomplished if effective attack detection

solutions are incorporated into the mining scheme. Also, the reputation-based model

must be immune to re-entry attacks. This means that the dishonest miner cannot

exit out of the system and come back with a new reputation value. To accomplish

this goal, the proposed model utilizes the approach of rational trust modeling [57]. In

this model a permanent reputation parameter is linked to the identity of the miner

and it will be preserved over time. This ensures the system is immune to re-entry

attack.

Figure 3.1: The Architecture of the Reputation-Based Setting [1]
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3.2 THE ARCHITECTURE OF THE SIMULATION

The core of our simulation program is consisted of a set of miner entities, a set of

pool manager entities, a set of interaction procedures, a random number generator

engine and a result database creator.

Each entity has its own unique set of parameters which, we will explain in the

next section. The values for entity parameters are generated by the random number

generator engine. The probability distribution specification for each parameter is

defined inside a separate module namely, the setting module.

The interaction procedures are divided into three modules: the pool joining mod-

ule, the game module, and the attack module. These modules also rely on a number

of parameters. The value for each parameter is either generated randomly by the

random number generator engine, or defined as a constant inside the setting module.

The miner entities are contained inside a list data structure as a singleton object.

The same is true for pool manager entities. The number of miner entities are dynamic

throughout the game and it is effected by various conditions and procedures which

we will explain in the section 4. The number of pool managers however, is constant

and predefined inside the setting module. The architect of our simulation program is

shown in Figure 3.2.

As shown in Figure 3.2, the simulation environment events and entity settings are

derived from both pre-defined values and randomly generated values. Also the prob-

ability distribution property for random variables are derived from the pre-defined

parameters. The result database includes the following simulation data from the

simulation:

1. The complete set of all simulation entities including miners and pool managers

with all their data.

2. The snapshot of each mining round that includes the simulation’s statistical
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data up to that round.

3. The list of all pool with their statistical data

4. The complete list of all block withholding events with the involved entities.

Figure 3.2: The Architecture of the Simulation Program

3.3 THE SIMULATION PARAMETERS AND ALGORITHMS

We design our mining simulation to be as realistic as possible. We consider many pa-

rameters, conditions and random events. There are several global variable parameters

for our simulated mining game including: the total hash power of the system, the price

of the cryptocurrency, mining profitability, and time intervals between each POW.

26



Also the entities, including the miners and the pools, are programmed in a way that

each entity has its own unique set of parameters and characteristics. This approach

mimics the real environment where a number of various parameters would affect the

outcomes for both the entire system and the individual entities. In this section, we

define the fundamental parameters and algorithms for our simulation program.

3.3.1 The Miner Parameters

The miners in our simulation are a set of entities who participate in the mining game

to gain profit. Each miner is given a number of constant parameters as follow:

1. Hash Power: The hash power for the miners are generated randomly and the

values are distributed normally with predefined mean, standard deviation, min-

imum and maximum.

2. Dishonesty Factor: It is a value between 0 and 1 that defines the probability that

the miner commits to a dishonest behavior given that there is an opportunity.

The larger this value, the more probable that the miner commits to a dishonest

strategy. This value is normally distributed it is defined by constant mean,

standard deviation, minimum and maximum.

3. Power Cost Rate: Each miner is given a power cost rate that is normally dis-

tributed with fixed mean and standard deviation. Investment: The value is

derived from the value of hash power. It represents the amount of investment

that the miner has dedicated to mining. In the real world, this can cover the

costs for mining computers and other necessary equipments and facilities that

are essential to mining.

4. Loss Tolerance Threshold (LTT): It is a negative profit threshold. If the miners

profit becomes less than or equal to LLT, the miner stops mining and will no

longer stays in the system. This value derived from value of investment: LTT =
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−p×I where, p is a normally distributed random variable with predefined mean

and standard deviation.

5. Target Profit Threshold (TPT): Is a positive profit threshold and the opposite of

LLT. If this value is reached, the miner will stop mining and will no longer stays

in the system. This value is also directly related to the value of the investment:

TPT = q×I where q is a normally distributed random variable with predefined

mean and standard deviation.

6. No target profit: This is a boolean value and if it is true, the miner ignores

Target Profit parameters and continues mining even if Target Profit threshold

is reached. This value is generated randomly with a constant probability.

7. Pool Fee Sensitivity: A Boolean parameter that defines whether the miner

chooses a pool that charges the lowest fee or not. If this value is ‘false’, the

miner joins a random pool and discards the fee differences between the available

pools. The probability for this value is constant.

Since the mining game is essentially an economic activity, each miner is also given

a set of variables that are updated by the interaction procedures throughout the

simulation lifetime. These parameters are includes:

1. Actual number of provided POW: The total number of POW that the miner

has provided throughout the game.

2. The Expected Number of POW: The number of POW that the miner is expected

to provide based on the theoretical probability.

3. Revenue from Solo Mining: When a miner participate in solo mining, the sum

of his revenue earned from solo mining, is saved inside this variable.

4. Revenue from Pool Mining: When a miner mines for a pool, the sum of his

revenue earned from pool mining, is saved inside this variable.
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5. Dishonest Revenue: The dishonest revenue is the sum of the amount of bribe

that the miner has received from the suspect pools for committing block with-

holding attack against his own pool.

6. Power Costs: Mining requires power costs and the miner pays for the power cost

as he mines. This cost is directly related to the amount of hash power the miner

holds. This variable saves the total power costs that the miner has paid. This

cost is calculated for each round based on the duration of the round. Unlike the

revenue, the costs are calculated based on the power cost rate in dollar units.

7. Profit: This variable is the sum of all earned revenue minus the total costs. Since

the revenue is calculated in the cryptocurrency unit, the amount of the profit

depends on the current price of the cryptocurrency and it changes whenever the

price of the cryptocurrency changes.

3.3.2 Pool Joining Utility Function

Miners can mine solo or they can join a pool and and share the rewards. Theoretically,

the amount of the revenue that miner m earns remains the same whether miner m

mines solo or mines for a pool. The only difference is the average time duration

between each reward. If miner m mines solo, he will receive the full amount of

reward once he provide a POW. If miner m mines for a pool p, miner m will receive

a percentage of the reward every time miner m or another miner from p provides

POW. The amount of this reward is significantly less than the amount of reward

earned from solo mining however, the frequency of earning this reward is equally

higher than the reward from solo mining. Therefore, within a sufficient long period

of time, the expected revenue for miner m remains the same regardless of solo mining

of mining for a pool. The miner m can determine the expected number of rounds it

would take to provide a POW. Let i be the current round and i+ k is the round that

the miner m is expected to provide a POW. The expected profit at round i + k is
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calculated as follow:

E [Pi+k] = Pi −
∆C

p(x)
(3.1)

In the above equation, Pi denotes the profit until mining round i , ∆C is the average

power cost per round and p(x) is the miner’s hash power ratio to the whole network’s

hash power. If E[Pi+k] ≤ LTT , then there is a high probability that the miner’s

profit will fall bellow LTT before miner m can earn any reward. Therefore, the miner

will join a pool to reduce the expected number of mining rounds for each reward thus

reducing the risk of falling bellow LTT.

3.3.3 The Pool Manager Parameters and Settings

In our simulation, a pool manager is an entities that contains a subset of miners.

Once a member miner provides POW, the pool manager takes the pool’s share and

then distributes the rest of the reward among the member miners based on their hash

power ratio to the whole pool’s hash power. Similar to a miner entity, a pool manager

entity is given a set of constant parameters as follow:

1. Pool Fee: A normally distributed random variable that defines the percentage

of the reward that the pool takes before it distributes the reward among the

member miners.

2. POW Reward Percentage: This is the extra reward for the miner who provide

full POW for the pool. The value is normally distributed with fixed mean and

standard deviation.

3. Honesty: A boolean value that defines whether the pool commits to a dishonest

strategy or not. If this value is ‘false’ the pool never attempts to attack other

pools. This value is generated randomly with a constant probability.

Also, a pool manager entity is given a set of variables that holds the result of the

mining outcome for the entity as following:
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1. Actual number of POW: The total number of POW that that all the miners

from the pool have provided throughout the game.

2. Expected number of POW: The theoretical number of POW that is based on

the probability that is defined by pool’s hash power and the total network hash

power ratio.

3. Honest Revenue: The total amount of the revenue the pool earned from the

regular mining activity of the member miners.

4. Dishonest Revenue: The total amount revenue that the pool earns from the

POW that the non-member miners from other pools provide.

5. Bribe Costs: The total amount of the bribe the pool has paid to non-member

miners for block withholding attack.

Unlike miners, the number of pool managers in our simulation is constant and it is

set to Eight. Therefore, each miner has the option to mine solo or join any of these

eight pools.

As we explained earlier, each pool manager is given a constant fee rate. Pool man-

agers subtract their fee from the reward before distributing it among miners. In our

simulation, the miners select pools based on a non-uniform probability distribution

that is defined by the pools’ fee rate. This means that the pools with a lower fee

rate are more likely to be joined by the miners than the pools with a higher fee rate.

The pool managers also update the reputation value for all member miners period-

ically. In the following sections we explain the reputation calculation fundamentals

and procedure.

3.3.4 Miner Population Functions and Parameters

The miner’s population is a variable throughout the life of the simulation. The

simulation starts with a fixed population and population growth is determined by
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a set of sigmoid functions. Note that the mentioned functions only contribute to

the growth of the population. The decline in the population is the result of miners

falling bellow their LTT thus leaving the system. The growth rate is controlled in

two phases.

1. Phase 1: For 0 < t < λ the population is defined by a sigmoid function as

follow:

P (t) =
PM

1 + e−α(t−θm)

In the above equation PM is the maximum population, θm is the time that the

population reaches exactly PM/2 and α is the steepness in growth. PM , θm, α

and λ are all predefined parameters.

Since the population in our simulation increases over time, the program must

determine the population growth at the end of each mining round. This ensures

that the appropriate number of miners are added to the current population as

the simulation progresses. To determine the growth rate for the population at

time t, we can use the derivative function assuming dt is a very small time value:

dx = P ′(t) dt

Now let assume the population is P (t1) at time t0 and we need to determine

how many new miners must be added to the population at time t1. Since t1 > t0

and the population function is continuous, we can use the following procedure

to calculate the population change at time t1

∆P =
n∑
i=0

P ′(t0 + i dt) dt

where

n =
t1 − t0
dt
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and

P (t2) = P (t1) + ∆P

2. Phase 2: t ≥ λ For the population growth is calculated using the following

function:

∆P =
PM

1 + e−1β(P (t)−PMθr)

The above formula is related to the price function which will be explained in

the next paragraph. This function controls the population of miners by using

parameters from the revenue function. Therefore, when the ratio between the

rewards and the costs are high, the mining is profitable and more miners will

join the system so the population will increase. As this ratio decreases, the

growth becomes smaller and once it passes zero and become negative no new

miner will join the system. If miners keep leaving the system, the population

will decrease.

3.3.5 Mining Game

The outcome of the mining game in our simulation is determined by a probabilistic

algorithm. The probability distribution of the random variable that is generated by

this algorithm, is similar to the probability distribution of a real mining environment.

Let M = {m1,m2,m3, ...,mn} be the set of all miners and H = {h1, h2, h3, ..., hn} be

the set of the corresponding hash powers. The hash power for the total network is:

TH =
n∑
j=1

hj

where n = |M |

The value of hj/TH defines the probability that miner mj provides a POW at

round i. To simulate the mining game, we generate a random number that is uni-

formly distributed in the range [1, TH ] and by the pseudocode in Algorithm 1, a
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random miner can be selected. Note that since the value of TH may change for each

round, the probability of providing a POW for each miner also changes.

Algorithm 1 The Mining Game Procedure

1: procedure MiningGame(M,H)

2: let l be a random number between 1 and TH

3: Let M ′ be the list containing a random permutation of all elements in M

4: let H′ be the list containing all elements in H corresponding to M ′

5: sum = 0

6: for j = 1 to n do

7: sum = sum+H ′j

8: if sum ≥ l then return M ′
j

After each round of the game, the mining power costs are updated for all miners.

The time between each mining round is calculated randomly using a pre-defined

normal distribution property. Next, the costs for round i is calculated and added for

all miners. This cost value is calculated based on each miner’s power cost rate and

the time duration of round i.

In our simulation, the number of cryptocurrency rewards per Blocks is defined as

constant and the price of cryptocurrency is a variable that is calculated immediately

after the end of each round using the following formula:

p =
C̄(r + 1)

µ

Where, µ is the number of cryptocurrency reward per new block and C̄ is the sum of

the costs for all miner per second for the last round:

C̄ =
1

T

n∑
i=1

Cmi
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r is the current cost-reward ratio that is calculated using the following sigmoid func-

tion:

r =
γ

1 + e−1β(P (t)−PMθr)
− γ

2

In the above function the value of r is always bounded between −γ/2 and γ/2. θr

is the time that makes r = 0 and it is predefined. The values for γ, β and PM are

predefined as well.

3.3.6 Continuous Random Number Generator

A typical random number generator can generate random numbers within a defined

range. However, a sequential set of numbers generated by a typical random number

generator are expected to be discrete. This means that, the numbers are expected

to fluctuate randomly and the rate of change between any two sequential values is

indeterminate. This type of random number generator is not suitable in many cases.

For example, the price of a currency always fluctuates, but the fluctuation is not

completely random. When it is shown as a graph, it often resembles a smooth and

continuous line. To simulate such a property, a continuous random number generator

is required.

For this simulation, the continuous random number generator is based on the

trigonometric function as follow:

f(t) = r sin
(θπ

2
(t− a)

)
− b

In this function, r is the range for change (amplitude), θ is the time duration until

the function reaches the next extrema (a quarter of phase) a and b are offsets. The

range for the value of r must be defined so the output of the function always stays

within this defined range. Likewise, to avoid extreme low or high frequencies (the

rate of change), the range for θ must to be defined as well.
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This function can generate value for any given t (time in second). In order to

generate smooth and random movements, the value of r and θ are generated using

an ordinary random number generator and the values for a and b are initially set to

zero (For the first function f1(t), r = r1, θ = θ1, a = 0, b = 0). This ensures that the

function will return 0 for t = 0. Then, using the derivative function f ′(t), the point

for function’s next extrema is calculated. Let E1 =
(
t1, f(t1)

)
be such a point. For

all t ≤ t1 the algorithm will generate values using function f1(t). Once t > t1, the

algorithm generates a new function f2(t) with new random values for r and θ. This

time, the values for a and b are calculated in a way that the extrema point of the

previous function f1(t) is also the point that makes the derivative of the new function

f2(t) equal to zero. This ensures that f2(t) is connected to f1(t) at the junction point

E1 so the continuity of random values is preserved.

Next, the extrema for f2(t) is calculated and the algorithm will continue gener-

ating numbers using f2(t) as long as t ≤ t2. Once t > t2 The mentioned process of

generating a new function repeats. The continuous random number generator is used

to modulate certain parameters and variables of our simulation. For each desired

parameter or variable, a unique instance of the continuous random number generator

object is created. Once the value of the parameter or variable is calculated, hen it

is modulated by the designated continuous random number generator object. This

scheme results in creation of numbers that are only partially random. The level of

randomness can be controlled by increasing or decreasing the range of modulation:

m(y) = y + y.f(t)

The modulated parameters and variables in our simulation are the following:

1. Cryptocurrency Price: Once the new price is calculated, it is also modulated

using the modulator algorithm. This will make the price changes slightly ran-

dom.
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Figure 3.3: An output example of the Continuous Random Number Generator when

f(t) is bounded between −0.1 and 0.1

2. Maximum Population: This parameter is predefined for the simulation however,

it slightly change by the modulator every time a new calculation takes place.

3. Zero Point for the Reward-Cost Ratio: Similar to the Maximum Population,

this modulation adds a slight randomness to the Reward-Cost ratio parameter.

3.3.7 Attack Setup

In our simulation, the block withholding attack always originates from a dishonest

pool. As mentioned earlier, there are 8 pools in our system; 3 pools are dishonest and

5 pools are honest. A dishonest pool only attacks a honest pool. This setting will

result in a more appropriate data set for the purpose of highlighting the effects of a

block withholding attack on the revenue of honest and dishonest entities separately.

The block withholding attack is conducted in two phases as follow:

1. Initialization: Let D be the set of dishonest (suspect) pools and H be the set
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of honest (victim) pools. After each round, a random dishonest pool d from D

and a random honest pool h from H is selected. Then pool d will try to find a

malicious miner from pool h. d searches for a malicious miner who also has a

high hash power. If such a malicious miner is found, then the entities are set

and the initialization is successful. Otherwise the initialization will terminate.

2. Process: Let m be the malicious miner from pool h who is committed to with-

holding one or more POW from pool h and instead, provides POWs for pool d

for k times. Once miner m finds a POW, it is delivered to pool d and in return,

pool d will pay miner m a percentage of the POW reward as bribe. This activity

is repeated for k times under the condition that m finds a total k POW.

In this model, pool d would distribute the reward among its member miners the same

way that it would have distributed it if the reward was earned honestly. The values for

k and the bribe percentage are random based on a set of defined normal distribution

properties.

3.3.8 Attack Detection

The attack detection method for a block withholding attack is relatively simple and

relies on basic statistical analysis. As mentioned in part 4.2, the probability that

miner m provides a POW in round i is simply hm/THi , where THi is the total hash

power at round i. Consequently, the expected number of POWs after playing n

number of rounds can be calculated as follow:

E[x] =
n∑
i=1

hm
THi

The difference between E[x] x and may be significant for small values of n, but for a

sufficiently large n, it is expected that E[x] ≈ x . Therefore, after a sufficient number

of rounds, the pool manager can perform a statistical test on the individual miners to
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determine whether the difference between their actual and expected POW is signifi-

cant or not. If the difference is indeed significant for one or more miners, particularly

for miners with higher hash power, the pool manager can conclude that the pool is

under a block withholding attack. To examine whether the difference between their

actual and expected POW is statistically significant, we use the confidence interval

(CI) test. First we calculate the ratio between E[x] and x as follow:

x̂ =
E[x]

x

Then the confidence interval is calculated as follow:

CI =

(
x̂− zc

√
x̂(1− x̂)

x
, x̂+ zc

√
x̂(1− x̂)

x

)
For this experiment, different confidence levels such as 0.95 , 0.98 or 0.99 can be

used. A lower confidence interval will result in a higher attack detection rate, but the

drawback is that the number of false positive cases are expected to increase. There-

fore, for this simulation we select 0.98 confidence level which provides the optimal

results.

3.3.9 The Trust Function

The original idea for our trust function was first proposed in [58][59]. Our trust

function is used to calculate the level of reputability for the player p. The reputation

value is denoted as r and it is calculated for the player p after each round of game.

For player p initially, r0 = 0. This means that in the beginning, the reputability of

player p is not known since p has not played yet. At each round i, the player p can

either cooperate or defect. The cooperation will be rewarded by an increase in the

reputation and the defections will be punished by a decrease in the reputation. The

range for the reputation value is [−1, 1] where, -1 is the lowest and 1 is the highest

possible reputation values.
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Our trust function is designed to maintain the reputation history of player p by

updating and saving only few parameters. In our method, a defection not only causes

a decrease in the reputation value, but it also causes a decrease in the growth rate

of the reputation when player p chooses to cooperate in the future. In other words,

when player p increases the number of times he has defected, he will have to spend

exponentially more time cooperating in order to compensate for the reputation loss.

After few defections, as player p cooperates repeatedly and consecutively, the growth

rate of his reputation will increase until it is restored to the original value. Even when

the growth rate is restored to its original value, if player p defects again, the reputation

value as well as the growth rate will drop dramatically and further defections will

exponentially cause more negative impact. In conclusion, our reputation calculation

procedure is defection sensitive and it is aimed to incentivize the players to avoid

defections if they are willing to stay in the system for a long period of time. To

maintain the reputation for player p, our reputation function requires to update and

maintain the following parameters:

1. The Total Number of Defections: Denoted as α and it is initially 0. It increments

every time player p defects.

2. The Trust Deficit Value: Denoted as λi where i represents the round and λi ≥ 0.

Initially λ0 = 0 then the value of λi increases every time the player p defects.

Unlike α, the value of λ will decrease as the player cooperates but the decrease is

at lower rate than the increase. The rate of decrease has an inverse relationship

with α.

3. The Trust Variable: Denoted as x and xi is the value of the trust at the end of

round i. Initially xo = 0 then, the value of xi is calculated at the end of each

round.

The complete procedure for calculating the reputation for player p at the end of round
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i is given. Note that the first step of the calculation is to determine whether player

p has cooperated or defected at round i. Then, the calculation must follow the order

given bellow.

1)

αi =


αi−1 + 1 , Li = 0

αi−1 , Li = 1

2)

λi =


λi−1 + ln(e+ λi−1) , Li = 0

λi−1 − logeαi+1(1 + λi−1) , Li = 1

3)

xi =


xi−1 −

(
ln(e+ λi)

)e
, Li = 0

xi−1 + (e− 1)−λi , Li = 1

4)

ri =


−1 , ri−1 ≤ ε− 1 and Li = 0

1 , ri−1 ≥ 1− ε and Li = 1

2
1+e−γxi

− 1 , otherwise

In the above procedure, Li = 1 denotes that the miner has cooperated in round

i and Li = 0 denotes that the miner has defected in round i. γ is a constant and

positive steepness parameter. Larger values for γ results in a higher steepness for

the function. ε is a small positive and constant parameter. 1 − ε and ε − 1 set

an upper and a lower bound for the calculation of the reputation. Therefore, when

1 − ε ≤ ri−1 < 1 and the player p has cooperated in round i, the function returns

1 and When −1 < ri−1 ≤ ε − 1 and the player p has defected in round i, the func-

tion returns -1. This procedure prevents the divergence of x and consequently, x will

always remain within the proximity of the usable range of the Sigmoid function. In
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our trust calculation procedure, we used e as a constant as well as the base for the

logarithm function for the calculation of λ and x. However, for further adjustments

and tweaks, this constant parameter may be changed.

3.3.10 Using the Trust Function to Calculate the Reputation of Miners

The proposed trust function is used to calculate the reputation value for miners.

There are many different ways to implement the trust calculation procedure inside

the cryptocurrency framework. In our simulation, the trust function is managed by

the pool managers. This means that, the trust function only affects the miners who

are the member of a pool. Therefore, the reputation of solo miners remains zero

as long as they don’t join a pool. In our simulation, the pool managers perform

a block withholding detection investigation after a number of mining rounds. This

number is a random variable that is uniformly distributed within a defined range.

Since the block withholding detection method relies on the confidence interval test,

the quantity of samples is the key to accuracy. larger number of samples will result

in a more reliable test. Therefore, we select a fairly large number as the low bound

for the probability distribution range.

In the previous section we defined i as the number of round for simplicity. In

our implementation however, the value of i represents the detection cycle that can

contain any number of rounds within the probability distribution range. Therefore the

reputation value for all miners from pool p will be updated by the pool manager once

a new detection cycle takes place. The pool manager simply compares the number

of actual POW against the number of expected POW for all member miners. Next,

the reputation value for each miner is updated accordingly. The reputation updating

procedure is given in Algorithm 2.

In the pseudocode shown in Algorithm 2, xj denotes the actual POW and E[xj]

denotes the expected POW since the last detection cycle for miner Mj. CI is the con-
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Algorithm 2 Updating Miners’ Reputation

1: procedure updateReputation(M, i)

2: for j = 1 to n do

3: if xj < E[xj] and xi /∈ CI then

4: set Li = 0 for Mj

5: else

6: set Li = 1 for Mj

fidence interval that we introduced in section 3.4.8 and denotes the current detection

cycle. In other words, the pool manager compares the actual POW and the expected

POW for all member miners for the period between the detection cycle i − 1 and i.

If the condition given in Algorithm 2 is true for miner Mj then, the pool manager

identifies miner Mj as attacker.

3.3.11 Attack Utility Algorithm

Nojoumian et al [1] showed that when an attack detection mechanism as well as an

appropriate punishment measurements exist in a system, attacking is no longer Nash

equilibrium. Therefore it is expected that the players act rationally and they avoid

dishonest behaviors. When miner m is given an attack opportunity, he can determine

whether it is in his best interest to commit to the attack or not. The key to this

determination is the rate of attack detection. Miners are incentivized to be honest

as more dishonest miners in the system are detected and punished. In this case the

punishment is a lower level of reputation and possible chance of losing mining in

mining pools. The miner’s long term utility function that is used in our simulation

is based on this concept. Therefore, the rate of detection defines the extend that the

miners act honestly. The pseudocode for attack utility is given in Algorithm 3.

In the pseudocode given in Algorithm 3, r is the attack detection ratio where,

0 ≤ r ≤ 1 and d is a dishonest parameter that is unique to the miner where, 0 < d < 1
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. The higher the value of d, the more probable that the miner will accept the attack

offer.

Algorithm 3 Attack Utility

1: procedure AcceptDishonestRevenue(dishonestReward, r)

2: if dishonestReward+ profit ≥ targetProfit then return TRUE

3: α = a random number between 0 and 1

4: t = (1− r) 1
d

5: if α < t then return TRUE

6: return FALSE

3.4 SUMMARY

In this chapter we introduced our simulation program. We demonstrated the archi-

tecture of our design and we explained the main parameters, algorithms and protocols

we incorporated into our simulation. This simulation program is designed to examine

the effectiveness of the proposed reputation-based model. To do so, we simulated a

block withholding attack scenario in which, a suspect pool hires miners from a victim

pool to conduct block withholding attack against the victim pool. This will cause an

increase of revenue for the suspect pool and a decrease in revenue of the victim pool.

We explained the detection method for block withholding attacks and we introduced

our trust function that the pool managers use to update the reputation value for

miners. In the next chapter we demonstrate the results of our simulation.
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CHAPTER 4

THE ASSESSMENT OF THE REPUTATION-BASED MINING

PARADIGM

In this chapter first, we explain the modes in which, we perform our simulation pro-

gram then, we demonstrate the results for each scenario using graphs and tables.

Finally we compare all results and conduct a statistical analysis to measure the dif-

ferences between each simulation mode. This will enable us to determine the impact

of the reputation-based model on block withholding attacks.

4.1 THE SIMULATION MODES

In order to evaluate the effectiveness of the reputation-based paradigm, we need to

make a comparison between the reputation-based and the non-reputation-based min-

ing environments. We also require a third scenario where no attack takes place.

This simulation mode resembles the ideal environment where no dishonest activity

takes place. The results from this mode will provide a reference point for the eval-

uation of reputation-based model. The data similarity between Reputation mode

and No Attack mode, demonstrates a high level of success and effectiveness for the

reputation-based paradigm.

We run the simulation program for 250,000 rounds of mining in each mode and the

data for each mode is recorded individually. The probability distribution attributes

for all random parameters are the same for all three modes. For example, the value

for the hash power is generated randomly for all miners. These random hash power

values are distributed normally and the defined mean and the standard deviation
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parameters are equivalent in our three modes. This will ensure that the distribution

of hash power in all three modes are statistically similar. This setting is true for all

other random parameters in our simulation. Therefore the differences between the

results in each mode is guaranteed to be influenced by the reputation-based paradigm

in the system and not the consequence of randomness. In addition, the settings for

each pool including the pool’s fee rate and the state of honesty or dishonesty are

equivalent in all three modes.

1. Non-Reputation Mode: This mode resembles the current setting of the Bit-

coin network where, there is no mining attack detection scheme and reputation-

based paradigm are in place. In this setting, attacking is Nash Equilibrium since

there is no potential consequence for block withholding attack. Miners are al-

ways engaged in attack if the opportunity is available. In this mode, the miners

can join pools freely and the pool managers always allow any miner in the net-

work to join their pool. The actual distribution of rewards among miners is

expected to be significantly different from the theoretical probability distribu-

tion because the dishonest miners gain more rewards while the honest miners

loose.

2. Reputation Mode: In this mode, all miners are given a reputation value that

is initially zero and is periodically updated by their pool managers based on their

level of their commitment to honest mining. In Reputation Mode, attacking is

not Nash Equilibrium. If pool manager M detects an attack conducted by

miner m, pool manager M will apply a defect function on the reputation value

of miner m and subsequently expels miner m from the pool. The short-term

utility function is the same as it is in the Non-Reputation mode. The long-term

utility function. however, considers the long-term consequences of committing

an attack and is used whenever an opportunity for an attack exists. The miner

will determine whether the attack is profitable in the long term. In this mode,
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Table 4.1: The Differences Between the Simulation Modes

Non-Reputation Reputation No Attack

Pool Joining Mechanism Free With Invitation Only Free

Implemented Attack - Block Withholding -

Attack consequence No Consequence

- The reputation value will be

effected negatively

- The attacker miner will be

expelled from the pool

-

Utility Functions Pool Joining Pool Joining, Attack Pool Joining

the miners can only join a pool if they received an invitation from that pool.

The actual distribution of rewards among miners is expected to be different

from the theoretical probability distribution, but not as drastically different as

in the Non-Reputation mode.

3. No Attack Mode: This mode represents the ideal situation where all miners

are committed to honest mining at all times. This settings in mode are similar

to the other two modes with the exception that block withholding opportunities

are not available to the miners thus no attacks will take place. The pool joining

mechanism in this mode is identical to Non-Reputation mode where miners

join pools based on a probability distribution that is defined by the pools’ fee

percentage. The actual distribution of rewards among miners is expected to be

the closest to the theoretical probability distribution.

4.2 THE RESULTS

In this section we provide the results of our simulation program in all three modes

explained in in the previous section. First we provide a summary of the results in

tables and figures and then we present the statistical analysis for the results.
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4.2.1 The Summary of the Results

The summary for 250,000 rounds of mining in each scenario is shown in Table 4.2.

Note that the values for distributed rewards and costs are shown in dollar. The

reward values are calculated based on the price of cryptocurrency at the end of round

250,000 and the changes in price over time for all 3 scenarios are shown in Figure

4.2 The value for miners’ costs is the accumulation of all miners’ costs until the last

mining round.

The active miners are the miners whose profit value is still above LTT and the

inactive miners are the miners whose profit value fell bellow LTT at some point during

the game and as a result they have left the system. All the statistical results that

are shown in tables and graphs, include the data for both active and inactive miner

groups. The number of block withholding cases indicate the number of times an

individual attack case is processed. For each attack case, the miner who attacks may

withhold blocks more than once. The number of block withholding instances for each

attack is set when the attack is initialized.

The results for each pool in shown in Table 4.3 to 4.5. Note that the percentage of

hash share for each pool shown in Table 4.3 to 4.5 and Figure 4.3, varies throughout

the life of the simulation. The given results represent the distribution at the end

of round 250,000. The hash power distribution in Non-Reputation and No Attack

modes are very close, but it is slightly different in Reputation mode. This is due

to the fact that the pool joining mechanism in Reputation mode is invitation based

and explains the slightly higher percentage of solo miners in the Reputation mode.

The pool joining mechanism in No Attack and Non-Reputation modes are the same

therefore, the insignificant differences between the two modes must be the result of

randomness in the simulation.

The differences between the actual number of POWs and the expected number of

POWs for each pool shown in Figure 4.4, indicates a significant difference between
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Table 4.2: The Summary of Simulation in Each Mode after round 250,000

Description Non-Reputation Reputation No Attack

Time in Seconds 154,092,032 154,090,378 154,332,223

Total Hash Power 61,270,349 67,394,318 67,822,864

Number of Active Miners 20,744 22,801 22,938

Number of Inactive Miners 9,298 7,257 8,042

Percentage of Pool Miners 93.7% 93.1% 94.4%

Price of the Cryptocurrency $1,168.28 $1,375.37 $1,237.23

Total Distributed Rewards among All Miners $5,840,080,000 $6,870,660,000 $6,186,100,000

Total Power Costs for All Miners $6,312,700,000 $6,290,500,000 $6,374,900,000

Percentage of Miners with Positive Profit 31.3% 49.9% 36.4%

Total Block Withholding Cases 1,128 557 0

Detected Block Withholding Cases 0 382 0

False Detected Block Withholding Cases 0 23 0

Table 4.3: The Summary of Pools after Round 250,000 in Non-Reputation Mode

Pool BYT-728 KRM-664 MME-935 RLC-061 SJN-888 UFR-774 VPK-703 WSQ-559

Hash % 19.7% 4% 3.56% 4.74% 5.45% 16.6% 17.3% 17.1%

E-POW 41,509 10,153 8,712 8,729 10,608 37,499 39,670 38,802

A-POW 45,838 8,275 7,003 12,877 14,805 34,044 36,749 35,845

Table 4.4: The Summary of Pools after Round 250,000 in Reputation Mode

Pool BYT-728 KRM-664 MME-935 RLC-061 SJN-888 UFR-774 VPK-703 WSQ-559

Hash % 21.98% 2.76% 2.8% 3.3% 3.99% 17.3% 17.1% 16.97%

E-POW 47,251 7,063 7,027 7,298 8,680 40,070 37,988 38,635

A-POW 48,336 6,750 6,718 8,672 10,044 38,755 37,124 37,749

Table 4.5: The Summary of Pools after Round 250,000 in No Attack Mode

Pool BYT-728 KRM-664 MME-935 RLC-061 SJN-888 UFR-774 VPK-703 WSQ-559

Hash % 17.99% 4.26% 4.8% 3.22% 4.84% 18.12% 18.38% 18.28%

E-POW 39,232 9,064 9,553 7,340 10,682 39,318 40,173 39,909

A-POW 39,266 9,004 9,545 7,330 10,756 39,257 40,019 39,860
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Figure 4.1: The Change of Total Hash Power

Figure 4.2: The Change of Cryptocurrency Price
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Figure 4.3: The Distribution of Hash Power Among Pools in Each Simulation Mode

each mode. The high values for the Non-Reputation mode are the consequences of

block withholding attacks where the actual number of POWs are much higher than

the expected number of POWs for all suspect pools. The opposite is true for all victim

pools. We observe that in the Reputation mode, this similar pattern still exists but at

a much lower magnitude. In contrast, the small differences between the actual POW

and the expected POW in the No Attack mode, is the natural result of the probability

outcome and it does not follow any pattern. Figure 4.5 demonstrates the number of

block withholding attacks in groups of 50,000 rounds. In both modes the number

of attacks are in decline for the first 100,000 rounds. At first glance this pattern

may seem unusual, but a deeper analysis demonstrates that as the number of miners
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Figure 4.4: The Differences Between Actual and Expected Number of POW for all 8

Pools After 250,000 Rounds of Mining

Figure 4.5: The Number of BW Attacks in periods of 50,000 rounds

increase in the system, the probability that a single block withholder miner provides

a POW decreases. This pattern is followed by a decrease in the success rate of block
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Figure 4.6: The Attack Detection Ratio in the Reputation Mode

Figure 4.7: The Accumulation of Bribe Paid to Miners by the Suspect Pools

withholding attacks. Figure 4.1 shows that the total hash power of the system reaches

its peak at approximately round 100,000. While the attack initialization rate remains

relatively constant, this pattern perfectly correlates with the decline in the number

of attacks until round 100,000.
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Figure 4.8: Average Revenue Per Round for All Miners from Suspect Pool BYT-728

Figure 4.9: Average Revenue Per Round for All Miners from Suspect Pool BYT-728

Figure 4.10: Average Revenue Per Round for All Miners from Suspect Pool BYT-728
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Figure 4.11: Average Revenue Per Round for All Miners from Victim Pool KRM-664

Figure 4.12: Average Revenue Per Round for All Miners from Victim Pool MME-935

Figure 4.13: Average Revenue Per Round for All Miners from Victim Pool UFR-774
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Figure 4.14: Average Revenue Per Round for All Miners from Victim Pool VPK-703

Figure 4.15: Average Revenue Per Round for All Miners from Victim pool WSQ-559

Figure 4.6 demonstrates the ratio between the detected attacks and all attacks

in the Reputation mode. The bar heights in Figure 4.5 correlate with the attack

detection success ratio shown in Figure 4.6. It is evident that as the detection ratio

increases, the number of attacks also decrease. From a different perspective, Figure

4.7 demonstrates that as the number of attacks decrease, the growth rate of the total

amount of bribes received by the block withholding miners drops.

The basic statistical analysis for the revenue of all miners are presented in Table

4.6. The first row of the table demonstrates the square error between the actual

POW and the expected POW for all miners in each mode. The rest of table shows
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Table 4.6: The summary of the Calculated Statistics for Miners

Description Non-Reputation Reputation No Attack

Square Error for Actual POW and

expected POW for All Miners
26.3 10.1 8.1

Mean 139.2 143.8 132.1

Median 11.7 11.1 10.7

Revenue for All Miners from

all Pools (Including Dishonest

Revenue) Standard Deviation 222.9 222.8 209.7

Mean 107.5 123 131.8

Median 9.2 9.7 10.5
Revenue for All Honest Miners

from the Victim Pools
Standard Deviation 162.2 184.9 209.2

Mean 141.8 46.4 -

Median 105.6 39.8 -

Dishonest Revenue for Block

Withholder Miners from the

Victim Pools Standard Deviation 109 35.7 -

Mean 168.4 149.7 132.8

Median 13.7 12.2 10.8
Revenue for All Miners from the

Suspect Pools
Standard Deviation 256.7 232.7 10.8

the values for mean, median and standard deviation for all miners, honest miners

from the victim pools, dishonest miners from the victim pools and the miners from

the suspect pools respectively.

The scatter plots presented in Figure 4.8 through 4.15, show the distribution of

the revenue for individual miners throughout the life of the simulation. The scatter

plots are presented for miners from each pool individually. These plots highlight the

changes in revenue for the whole group of miners in all 3 modes. The straight line in

these plots represents the the linear trend in No Attack mode. The same line on the

other two modes highlights the revenue shift resulting from block withholding attacks

conducted by dishonest miners.

4.2.2 The Analysis of the Results

1. The effect of the Reputation-based model on the distribution of POW: As

demonstrated in Figure 4.5 to 4.7, the number of block withholding attacks
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are reduced as the detection ratio increases and consequently, the dishonest

revenue for the entire network reduces. In addition, Figure 4.4 showcases the

difference between the actual and the expected number of POWs for all pools

and how the revenue for all pools becomes more stable and predictable. As

the attack detection success ratio improves, the miners are more incentivized

to commit to honest mining strategies. As it is shown in Figure 4.6, the attack

detection success ratio is stabilized around round 100,000. This is due to the

fact that as the number of mining rounds increases, the predictability of poten-

tial attacks improves. This stability also has a relationship with the selected

confidence intervals. A large number of trials are required for an effective and

precise attack detection.

2. The effect of the Reputation-based model on the distribution of Revenue: The

statistical measurements presented in Table 4.6, show that the reputation-based

model significantly improved the revenue of honest miners significantly. It is also

evident that the dishonest revenue is significantly decreased by the reputation-

based model. However, when we observe the measurements for all miners, it

shows slight fluctuations in the median and mean values and no significant

change in the standard deviation. This indicates that the reputation-based

model does not significantly change the statistical attributes for the revenue of

the whole system. When we compare the No Attack mode with the other two

modes, it is evident that the distribution of revenue is slightly more balanced

in the No Attack mode as its standard deviation value is smaller. Note that the

large standard deviation values for the revenue are predominantly the result of

an unbalanced distribution of hash power among the miners. In our simulation,

a small percentage of miners own a relatively large percentage of the total hash

power. This will directly cause an unbalanced distribution of revenue among

miners regardless of block withholding attacks
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In figure 4.8 to 4.15 it is observable that the reputation-based model significantly

improves the predictability and reliability of the revenue distribution for both

suspect and victim pools as the actual distribution of revenue among miners

resembles a similarity between Reputation and No-Attack modes. On the other

hand, the revenue distribution in the Non-Reputation mode is predominantly

above the straight line for the suspect pool and below the straight line for the

victim pools.

3. The False Attack Detection Observation: As it is shown in Table 4.2, there are

23 false positive attack detection cases. In these cases, the miners are falsely

detected for block withholding attacks where they had committed no attack.

The difference between their expected and actual POW was only a result of

chance. We can reduce this effect by increasing the test confidence parameter

and by increasing the number of trials per interval. However, this will negatively

effect the detection success rate and the number of undetected attacks will

increase. Practically, it is not feasible to rely on this statistic-based test with

100% certainty of not having false positives. If such a goal is desired, other

attack detection methods are needed in conjunction with the probability-based

methods.

4.3 SUMMARY

We performed our simulation program in 3 different modes namely, Non-Reputation,

Reputation and No-Attack mode, and each mode consisted of 250,000 rounds of

mining. The results show that the Reputation-based model can significantly reduce

the number of block withholding attacks and consequently, the distribution of revenue

among miners becomes more predictable and reliable. We showed that the statistical

method used for the detection of a block withholding attack can result in a small

percentage of false positive cases and other detection methods need to be incorporated
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in order to resolve this issue. Further research is needed in order to examine the

effectiveness of the reputation-based model on other mining attacks such as selfish

mining and eclipsing.
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CHAPTER 5

CONCLUSION AND THE FUTURE DIRECTION

In this thesis we discussed the mining attacks their available countermeasures. We re-

viewed the proposed reputation-based model that is designed to incentivize the miner

to commit to honest strategies. Then, we presented our mining simulation in order

to evaluate the effectiveness of the proposed reputation-based model. We designed

our simulation in a way that resembles the real mining environment. We did this

by considering various variable parameters such as total hash power and price of the

cryptocurrency and we programmed miners and pool managers in a way that each

individual had a unique set of characteristics. We implemented block withholding

attacks in our simulation to determine if the reputation-based model could reduce

the number of block withholding attacks. The reputation-based model is designed to

effect all kinds of mining attacks, however, for our experiment we implemented block

withholding attacks due to their simplicity relative to other attacks. We performed

our simulation program in 3 different modes namely, Non-Reputation, Reputation,

and No-Attack mode and each mode consisted of 250,000 rounds of mining. The

results show that the Reputation-based model can significantly reduce the number of

block withholding attacks and consequently, the distribution of revenue among min-

ers becomes more predictable and reliable. We showed that the statistical method

used for the detection of a block withholding attack can result in a small percentage

of false positive cases. In order to increase the reliability and performance of attack

detection, other detection methods need to be incorporated. Even though our ex-

periment demonstrate that the reputation-based model can effectively decrease the

number of block withholding attacks in mining pools, it is not known how it will
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perform against other mining attacks. Since many mining attacks such as selfish

mining, routing attacks, and eclipsing are more complex in nature, a more sophis-

ticated mining simulation is needed to conduct a similar experiment to the one we

performed in this research. In addition, the reputation-based model relies heavily on

the effectiveness of the attack detection methods. In order to achieve a comprehen-

sive reputation-based solution, reliable and effective attack detection solutions for all

kinds of mining attacks are required. The future research projects should focus on

these developments and improvements.
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