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ABSTRACT

Author: Arash Golchubian

Title: Utilizing a Game Theoretical Approach to Prevent Collusion and
Incentivize Cooperation in Cybersecurity Contexts

Institution: Florida Atlantic University

Thesis Advisor: Dr. Mehrdad Nojoumian

Degree: Master of Science

Year: 2017

In this research, a new reputation-based model is utilized to disincentivize collusion

of defenders and attackers in Software Defined Networks (SDN), and also, to disincentivize

dishonest mining strategies in Blockchain. In the context of SDN, the model uses the

reputation values assigned to each entity to disincentivize collusion with an attacker. Our

analysis shows that not-colluding actions become Nash Equilibrium using the reputation-

based model within a repeated game setting. In the context of Blockchain and mining,

we illustrate that by using the same socio-rational model, miners not only are incentivized

to conduct honest mining but also disincentivized to commit to any malicious activities

against other mining pools. We therefore show that honest mining strategies become Nash

Equilibrium in our setting.

This thesis is laid out in the following manner. In chapter 2 an introduction to

game theory is provided followed by a survey of previous works in game theoretic network

security, in chapter 3 a new reputation-based model is introduced to be used within the

context of a Software Defined Network (SDN), in chapter 4 a reputation-based solution

concept is introduced to force cooperation by each mining entity in Blockchain, and finally,

in chapter 5, the concluding remarks and future works are presented.
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CHAPTER 1

INTRODUCTION

Network security is essential in today’s age of constant threat from hackers all around the

world. As our world has become more connected through the advent of Internet connected

devices and the introduction of the Internet-of-Things (IoT), the avenues of attack which are

exploitable by a malicious player have increased as well. The damage that these attackers

cause to the systems we use each and every day have an extremely high cost and that cost

is often unrecoverable. The recent high profile Equifax breach, where the private financial

data of at least 143 million Americans was compromised [4], is one example of a loss which

will have years of impact on the lives of those that were affected. There are numerous

organizations that work around the clock to combat these attacks including government

agencies like the United States Computer Emergency Response Team (CERT), and private

companies such as Symantec, McAfee, and Kaspersky. It is through the efforts of such

organizations that society is able to enjoy the benefits of a connected world. Juniper Research

estimated the annual cost of criminal data breaches will reach a mind bending two trillion

dollars by 2019 [5]. Some government entities are reporting equally astonishing numbers;

the state of Utah’s government has reported that the facilities operated by the government in

the state experience upwards of 300 million attacks per day.

These attacks do not stop at attempts to steal information, in October of 2016 a large

scale Distributed Denial of Service (DDoS) attack on the Dyn Domain Name Servers (DNS)

cause the United States’ east coast to temporarily loose access to major websites such as

Twitter and Reddit [6]. This attack was aimed at the infrastructure of the Internet and took

advantage of security flaws which existed in some IoT devices such as video recorders and

digital cameras [7].
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Figure 1.1: Zero-Day Vulnerabilities by Year [8]

The endless struggle between the security research teams and engineers who patch the

software and the hackers that are becoming more clever with every attack has not been going

well for the defenders. By 2015, the number of Zero-Day exploits used by hackers had

reached fifty four [8]. In more recent years, the use of zero-day vulnerabilities has become

less common with more attacks hiding in plain site [9].

As the challenges in keeping a network secure have become ever greater in the face of

an increasing number of attempted hacks, the field of network security has begun to turn

its attention to game theoretic approaches to provide a mathematical framework for the

quantitative analysis of the inherent security within network systems. These methods are

helpful in quickly analyzing thousands of different strategies to mitigate on going attacks.

Additionally, and perhaps more importantly, game theoretic methods are being used to

modify the strategies employed to lower the benefits an attacker may get from successfully

breaching a network reducing the incentive for network attacks.

In this thesis two collusion problems will be studied by utilizing game theoretic tech-
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niques. The first is collusion between Software-Defined Networking (SDN) defenders and

attackers, and the second is collusion between miners in a Bitcoin mining pool. Both of

these problems are studied and a reputation based, game theoretic model is applied to force

cooperation amongst players.

The rest of this thesis is organized as follows. In section 1.1 a survey of previous works

in game theoretic network security is presented. Chapter 3 introduces a solution to defender

and attacker collusion problems within the context of an SDN. Chapter 4 shows how to

incentivize honest mining in Blockchain by using a reputation-based trust model. Chapter 5

contains concluding remarks and ideas for future study.

1.1 AN INTRODUCTION TO GAME THEORY

Game theory is a branch of mathematics concerned with the study of mathematical models

used for competitive and cooperative games when the players involved are rational. These

games are commonly used to discuss many different subjects such as politics, economics,

and military situations. The use of game theoretic games to model strategies are older

than the modern day mathematical field by centuries. The earliest reference to such a

mathematical analysis can be traced to Waldegrave’s Problem originally known as Problme

de la Poulle or the Problem of the Pool [10]. This was originally published by Pierre

Rmond de Montmort in 1713 [11] where he discusses corresponding with a gentleman

named Waldegrave about two probability problems involving card games. This is the first

appearance of a mixed strategy solution to a two player game. In a 1787 essay, Vices of the

Political System of the United States, Madison [12] discusses the political and tax system of

the united states by using rational arguments and games which are similar to those found in

modern day game theory.

Modern Day Game theory did not exist as a unique branch of mathematics until a

publication by John Von Neumann in 1928 [13] formalized the idea of a game and provided

a proof for the famous Minimax theorem. He later expanded on these ideas in his book

3



Theory of games and economic behavior [14] which he co-authored with the German

economist Oskar Morgenstern. This book set the fundamental framework for analyzing

and solving two-person zero-sum games. However, the work done by Von Neumann and

Morgenstern was only sufficient for analysis of cooperative games.

In his PhD dissertation [15], John Nash introduced the equilibrium ideas which are

general enough to handle both cooperative and non-cooperative games. This equilibrium

theory is now known as the Nash equilibrium and is central to almost all cooperative and

non-cooperative game theoretical analyses. Nash further expanded on his ideas in several

publications between 1950 and 1953 [16, 17, 18].

1.1.1 The Prisoner’s Dilemma

The most basic academic case that is studied in game theory is the prisoners dilemma; first

framed and discussed by Merrill Flood and Melvin Dresher while working for the Rand

Corporation. This research was in an attempt to use game theory in setting a global nuclear

strategy [19]. In this game we imagine that there are two suspects who are assumed to be

partners in a crime. The police separate the two suspects and give both of them the same

choices. If one confesses and the other does not, then the person who confesses is set free,

while the other is sent to jail for three years. If both players stay silent then they will both

go to jail for one year. If they both confess, then each will serve 2 years. The game theoretic

approach to solving for what is known as a dominant strategy is to place the outcomes into a

matrix and calculate the utility of each choice given different conditions. We set the utility

for being set free at +1, a one year sentence will be given a utility of 0, a two year sentence

will be given a utility of -1, and a three year sentence will be given a utility of -2.

The game is now analyzed from the perspective of prisoner 1 and keep in mind that

prisoner 2 would have an equivalent outcome since this game is symmetrical. Prisoner 1

will think about what prisoner 2 could do. 1) prisoner 2 confesses. According to the above

matrix, prisoner 1 would be better off confessing since that will result in a 1 year sentence.

4



P1

P2
C : Quiet D : Confess

C : Quiet (0,0) (−2,+1)

D : Confess (+1,−2) (−1,−1)

Table 1.1: Prisoner’s Dilemma - Payoff Matrix

2) prisoner 2 stays silent. Again according to the matrix it would be better for prisoner 1 to

confess since that would set him free. What prisoner 1 discovered is that it doesn’t matter

what prisoner 2 does because it is always better to confess. This is known as a dominant

strategy and it along with Nash equilibrium are fundamental principals when discussing and

analyzing games of strategy.

Player 1’s Best Choice

P1

P2
C : Quiet D : Confess

C : Quiet (0,0) (−2,+1)

D : Confess (+1,−2) (−1,−1)

Player 2’s Best Choice

P1

P2
C : Quiet D : Confess

C : Quiet (0,0) (−2,+1)

D : Confess (+1,−2) (−1,−1)

Table 1.2: Prisoner’s Dilemma - Perspectives

1.1.2 Game Theory Preliminaries

A game consists of a set of players, a set of actions and strategies (that is, the way of

selecting actions in different rounds of the game), and finally, a pay-off function which is

used by players to calculate their utilities. In cooperative games, the players collaborate and

5



P1

P2
C : Quiet D : Confess

C : Quiet (0,0) (−2,+1)

D : Confess (+1,−2) (−1,−1)

Table 1.3: Prisoner’s Dilemma - Dominant Strategy

split the total utility among themselves. In other words, cooperation is always enforced by

agreements among players. However, in non-cooperative games, the players cannot reach

an agreement to coordinate their behavior, that is, any cooperation must be self-enforcing.

Next, some game-theoretic definitions are briefly reviewed [20] for our further technical

discussions.

Definition 1 Let A def
= A1×·· ·×An be an action profile for n players, where Ai denotes the

set of possible actions for player Si. A game Γ = (Ai,ui) for 1≤ i≤ n, consists of Ai and a

utility function ui : A 7→ R for each player Si. An outcome of the game is then a vector of

actions~a = (a1, . . . ,an) ∈ A.

Definition 2 The utility function ui illustrates the preferences of player Si over different

outcomes. We say player Si prefers outcome ~a over ~a′ iff ui(~a) > ui(~a′), and he weakly

prefers outcome~a over~a′ if ui(~a)≥ ui(~a′).

In order to allow the players Si to follow randomized strategies (where the strategy

is the way of choosing actions), we define σi as a probability distribution over Ai for a

player Si. This means that he samples ai ∈ Ai according to σi. A strategy is said to be

a pure-strategy if each σi assigns probability 1 to a certain action, otherwise, it is said

to be a mixed-strategy. Let ~σ = (σ1, . . . ,σn) be the vector of players’ strategies, and let

(σ ′i ,~σ−i)
def
= (σ1, . . . ,σi−1,σ

′
i ,σi+1, . . . ,σn), where player Si replaces σi by σ ′i and all the

6



other players’ strategies remain unchanged. Therefore, ui(~σ) denotes the expected utility

of Si under the strategy vector ~σ . A player’s goal is to maximize ui(~σ). In the following

definition, one can substitute an action ai ∈ Ai with its probability distribution σi or vice

versa.

Definition 3 A vector of strategies ~σ is a Nash Equilibrium if, for all i and any σ ′i 6= σi, it

holds that ui(σ
′
i ,~σ−i)≤ ui(~σ). This means no one gains any advantage by deviating from

the protocol as long as the others follow the protocol.

Definition 4 Let S−i
def
= S1× ·· · ×Si−1×Si+1× ·· · ×Sn. A strategy σi ∈ Si (or an

action) is weakly dominated by σ ′i ∈Si (or another action) with respect to S−i if:

1. For all ~σ−i ∈S−i, it holds that ui(σi,~σ−i)≤ ui(σ
′
i ,~σ−i).

2. There exists a ~σ−i ∈S−i s.t. ui(σi,~σ−i)< ui(σ
′
i ,~σ−i).

This means player Pi can never improve its utility by playing σi, and he can sometimes

improve it by not playing σi. A strategy σi ∈Si is strictly dominated if player Pi can always

improve its utility by not playing σi.

1.1.3 Classifications

Games are split into two main groups. The fist is a non-cooperative game where there are

no binding agreements; the second is a cooperative game where binding agreements are

allowed. This section will discuss the differences between these two top level types.

Non-Cooperative Games

Non-cooperative games are those in which there are no external forces or authorities to

ensure that players remain honest. Instead these games rely upon ensuring that players have

the proper incentive to remain honest, and the disincentive to keep them from defecting.

These games are often solved by finding the Nash equilibrium where the players cannot

7



force a better outcome by changing only his/her own strategy. An example of such a game

is the doctrine of Mutualy Assured Destruction (MAD). The name and acronym are credited

to John Von Neumann who was a cold war strategist and known as the father of game theory

[21]. The MAD doctrine states that because the Soviet Union and the United States both had

enough nuclear weapons to completely annihilate each other, neither side had any reason to

either disarm, or to escalate the standoff because if one were to fire, the other had no choice

but to fire causing ones own demise.

Cooperative Games

Cooperative games have an external enforcer which ensures that players cooperate. The

majority of cooperative games have a goal of predicting the coalitions which would be

formed rather than the individual actions of players as is the goal with non-cooperative

games [22, 23]. Cooperative games are not commonly used in field of security research and

hence have a very limited scope within this survey.

8



CHAPTER 2

SURVEY OF GAME THEORETIC NETWORK SECURITY

In this chapter a survey of previous works concerning the application of game theory to

the field of network security is provided. This chapter categorizes the publications into

six categories: Intrusion Detection, Sensor Networks, Attacks on Network Infrastructure,

Attacker Defender Models, Coalitions, and Risk Assessment. The results of this chapter

appear in [1].

2.1 GAME THEORY AS APPLIED TO NETWORK SECURITY

Network security has been thoroughly studied since the dawn of the computer age. The

first network worm was released in 1987, before the popularization of computers and the

Internet[24]. The first introduction of game theoretic methods to the analysis of computer

and information security was made by the thesis of David A. Burke [25]. By expanding on

the works of game theorists and nuclear strategists, Burke created a basic framework for

applying game theory to the field of information warfare. The pyramid presented in Figure

2.1 illustrates the breakdown of Burke’s classifications.

While Burke’s efforts laid the foundation of applying game theory to information

security over the Internet, it was not directly towards the analysis of network security. The

Application of game theoretic approaches to this effort did not occur until 2002 when Akella

et al. [26] introduced game theoretic approaches to the analysis of TCP. In this publication,

the authors explored the effects of selfish behavior of network end-points on the stability

of the Internet. It was suggested that while the older Internet technologies, at that time,

are largely unaffected by selfish players, the newer Internet technologies and routers are

9
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susceptible to these types of attacks and would be negatively impacted by selfish nodes.

The current network security related research which involves game theory can be broken

down into six categories: Intrusion Detection, Sensor Networks, Attacks on Network

Infrastructure, Attacker Defender Models, Coalitions, and Risk Assessment. The majority of

current research is on non-cooperative zero-sum games, however there are very interesting

topics being pursued by various researchers which use Markov, Bayesian, Stackelberg, and

Cooperative games.

2.1.1 Intrusion Detection

Alpcan and Basar [27] produced an intrusion detection system (IDS), in a network of

sensors, by using game theory to model the IDS behavior in a two person, nonzero-sum

game. This work was further expanded upon by the same authors in 2004 [28], where they

used the previously introduced framework to produce a game theoretic approach to intrusion
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Intrusion Detection

Alpcan and Basar [27] Kodialam and Lakshman [31] 

Agah et al. [32] Alpcan and Basar [28]

Patcha and Park [33] Alpcan and Basar [29]

Bloem, Alpcan, and Basar [30] Liu, Comaniciu, and Man [34] 

Laszka and Schwartz [77] Tsiropoulou et al. [54]  

Sensor Networks

Agah, Das, and Basu [37] Agah, Basu, and Das [39]

McCune et al. [38] Agah, Basu, and Das [40]

Ma, Cao, and Ma [41] Yang, Mu, and Cai [42]

Reddy [43] Wang, Chatterjee, and Kwiat [44]

Attacks on Network Infrastructure
Rao et al. [45] Altman et al. [47] 

C ̧eker et al. [48] Nasr and Houmansadr [46]

Attacker Defender Models

Chen [49] Nguyen, Alpcan, and Basar [50] 

Kordy et al. [51] Luo et al. [53] 

Kallas et al. [55] Noureddine et al. [54] 

Coalitions Li and Lyu [56] Gholami et al. [57, 58]

Risk Assessment Carin, Cybenko, and Hughes [60] Xiaolin et al. [59]

Figure 2.2: Classification of Research

detection in access control systems using both finite and continuous-kernel non-cooperative

games. They further expanded on these works by using a 2-player zero-sum stochastic

security game to extend this framework to a stochastic and dynamic one [29]. In 2006,

Bloem, Alpcan, and Basar [30] arrived at the Automatic or Administrator Response (AOAR)

algorithm by modeling the interactions between attackers and the IDS. It was also shown that

the IDS performed better with the AOAR algorithm under all tested conditions. The authors

did not provide a formal framework for this work and only presented the implementation.

There are several works which focus on the application of game theoretic models for

the improvement of existing IDSs or to create specialized IDS for particular applications.

Kodialam and Lakshman [31] used a game theoretic framework to optimize the attack

strategy for injecting packets into a network and then optimized a sampling scheme using

a game theoretic framework to maximize the chances of detecting the intruding packets

while minimizing the sampling rate. Agah et al. [32] compared a game theoretic approach

to a Markov Decision Process and a metric driven method. The authors show that the game

theoretic approach significantly increases the odds of detecting an intrusion. Patcha and

Park [33] introduced an IDS for use in Mobile Ad-hoc Networks by using a game theoretic

model based on Bayesian games. Liu, Comaniciu, and Man [34] used Bayesian game theory
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to produce an IDS for wireless Ad-hoc networks which minimized the power consumption

while maximizing the detection rate. Laszka and Schwartz [35] presented a game theoretic

model used for calculating security-breach probabilities and then shows that if all users

are homogeneous there exists an equilibrium at which all honest players choose the same

security level. This equilibrium is also shown to be unique for a fixed number of malicious

players. The authors further showed that the security level is a decreasing function of the

total number of malicious users.

IoT and the emergence of low powered connected devices such as Radio Frequency

Identification (RFID) and Near Field Communication (NFC) have created a new and exciting

avenue of research for security researchers. There is little research performed on the

application of game theoretic models to RFID networks. Tsiropoulou et al. [36] uses a game

theoretic approach to incentivize intruder nodes to behave in a more social manner. The

authors used the theory of supermodular games to optimize the game and find the Nash

equilibrium point of the Interference Mitigation Risk Aware (IRMA) problem discussed in

the paper.

2.1.2 Sensor Networks

Securing a sensor network requires the application of a different set of techniques due to

limitations in processing power, battery capacity, memory, and other resources [37]. The

application of game theory to this field has been in an effort to produce more effective means

of securing sensor networks while working within the constraints of the limited resources. In

2004, Agah, Das, and Basu [37] introduced a new method for clustering sensor nodes based

on cooperative game theory. The proposed method is able to reduce the number of clusters

and message passings compared with distance based clustering approaches. McCune et al.

[38] presents a new method for broadcasting base stations to detect the failure of a node in

receiving a message. The authors called this newly introduced method the Secure Implicit

Sampling (SIS) and used a game theoretic approach in evaluating the scheme against an
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optimized attacker.

Agah, Basu, and Das [39] presents a game theoretic framework for the prevention of

Denial of Service (DoS) attacks by using an intrusion detection mechanism and forcing

cooperation by imposing punishment on malicious nodes. In 2006, Agah, Basu, and Das

[40], proposed two new game theoretic schemes for the prevention of DoS attacks. Ma,

Cao, and Ma [41] used a non-cooperative game theoretic framework to enable a cluster head

node to make the decision of activating the IDS. This is in an attempt to make the system

more efficient by turning on the IDS only when needed and hence making it’s application

more suitable for WSNs. Improving upon the ideas introduced by Agah, Basu, and Das [40],

Yang, Mu, and Cai [42] produced a new security scheme in which compromised nodes are

considered to be rational and the payoff strategy is designed to force cooperation. Reddy

[43] proposed a new framework for the detection of malicious nodes in the forward data

path using a zero-sum game. Wang, Chatterjee, and Kwiat [44] employs a game theoretic

approach to show that malicious nodes and regular nodes can co-exist if the malicious nodes

cause less damage than they are contributing.

2.1.3 Attacks on Network Infrastructure

In Rao et al. [45] the authors examine attacks on both cyber components such as servers,

routers, and switches as well as attacks focused on the physical infrastructure needed to

maintain the cyber infrastructure functioning such as cooling and power systems. The

authors analyze the attack-defense model using a Boolean attack-defense model. In this

Boolean model, the attacker chooses to attack either the cyber components, or the physical

components but not both. This is regardless of the attacker having knowledge that both parts

are necessary to maintain the cyber physical system functioning. The authors further explore

the game-theoretic scenarios by taking the probabilities of an attack on each part and its

chances of success into account. These however only provided a basic analysis of cyber

infrastructure and the authors suggest that they be extended by 1) explicitly modeling the
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cyber and physical components, 2) bounding the total costs of reinforcements and attacks.

In Nasr and Houmansadr [46] the authors investigate the usefulness and effectiveness of

decoy routing and Routing Around Decoys (RAD) attack. This publication examines two

real-world models of decoy routing deployments. The first model is a central model much

like Tor and a distributed deployment in which decoy deployment is decided upon by the

autonomous systems based on economic interests. They examine the use of decoy routing

by optimizing the placement of decoys through the use of game-theoretic modeling and

finding optimal censorship actions for each case. Altman et al. [47] studied a parallel link

network in which the controller is malicious. The authors used a game theoretic framework

and show that there are not any saddle points since the cost is convex for both the minimizer

and maximizer. The max-min problem is then solved using a water-filling algorithm and a

new algorithm, which the authors name water-distributed algorithm, is proposed for finding

a solution to the min-max problem.

DoS attacks are a amongst some of the older, and most common, types of attacks

on network and cyber infrastructure. DoS attacks are launched with the aim of blocking

legitimate traffic from getting to and from a server. Çeker et al. [48] uses a signaling game

with Perfect Bayesian equilibrium to study the strategies that can be used to mitigate DoS

attacks.

2.1.4 Attacker Defender Models

In his 2007 thesis, Chen [49], used game theory to optimize the strategy an administrator

should use when defending against an importance scanning worm. Nguyen, Alpcan, and

Basar [50] introduced models for the analysis of attack and defense strategies in situations

where there is imperfect information. Kordy et al. [51] showed that attack-defense trees, an

expansion of attack trees which was popularized by Schneier [52], and two-player binary

zero-sum extensive form games are equivalent and can be used interchangeably. Luo et al.

[53] produced a multi-stage intrusion defense system by optimizing the classical attack tree
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approach at each stage. This produced an improvement in the total loss the system suffered

from each attack. Noureddine et al. [54] used game theory to produce a response engine to

respond to an attacker moving laterally through an enterprise network in an effort to prevent

the breach of sensitive network nodes. In Kallas et al. [55], the authors develop an optimized

consensus algorithm which is capable of making a correct detection even in the presence

of corrupted measurements. The publication also addresses scenarios in which the attacker

knows what the defender’s strategy is and will attempt to stay below the detection threshold.

2.1.5 Coalitions

Li and Lyu [56] presents a new game theoretic framework for the application of coalition

games to wireless network security. The authors also provide an algorithm for coalition

formation and show that the convergence to coalition formation is achieved very quickly and

that the coalitions can be of significant size. In Gholami et al. [57, 58] a social Stackelberg

security game (SSG) is observed by using Amazon’s Mechanical Turk. SSGs are games

where the defender is in a leadership position and the attacker is a follower of the defending

player. In other words, the defender makes the first move and then the attacker makes a

move based on the leaders action. While this social defender/attacker scenario is not directly

related to the field of networking, the results are quite interesting in that they reveal a method

for disincentivizing collusion through the introduction of an imbalance in defense resources.

The authors are able to show that when an imbalance is introduced into the defense strategy,

it will disincentivize the attackers from forming collusive attacks because it places one

attacker into a better position than the other attackers and hence the attacker refuses to

collude.

2.1.6 Risk Assessment

The assessment of security threats on a network is of great importance and has been

thoroughly studied in the field of cyber security research. However, the application of
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game theory to this field is rare and the field could benefit from further research. In 2008,

Xiaolin et al. [59] proposed a model for risk assessment on a systemic basis by using Markov

game theory. The authors provided a method to provide remediation schemes to minimize

the total risk of the system. While this publication provides a basic framework for the

application of game theory to risk assessment in network security, it does not provide any

specifics for different types of security risks such as worms, viruses, Trojans, etc. Another

aspect which can be considered is the economics of cyber security. Carin, Cybenko, and

Hughes [60] used game theory in conjunction with a Markov decision process to produce a

new method for cyber security risk assessment called Quantitative Evaluation of Risk for

Investment Efficient Strategies. The authors were mainly concerned with defining strategies

for protection investment of intellectual property within complex systems.
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Figure 2.3: Classification of game theory proposed by [61]

16



2.2 PREVIOUS SURVEYS

Hamilton et al. [62] identified the areas of game theory relevant to information warfare, and

presented an example of these techniques in action. Roy et al. [61] reviewed the existing

game theoretic solutions which are designed to enhance network security and presented a

taxonomy for classifying the proposed solutions. Their proposed classification is shown

in Figure 2.3. Some of the limitation of the research in that time was: (a) the stochastic

game models at that time only consider perfect information and assume that the defender is

always able to detect attacks; (b) the stochastic game models at that time assume that the

state transition probabilities are fixed before the game starts and these probabilities can be

computed from the domain knowledge and past statistics; (c) the game models at that time

assume that the player’s actions are synchronous, which is not always realistic; (d) Most

models were not scalable with the size and complexity of the system under consideration.

Security Application Based on Game Theory in WSNs

Preventing DoS Attacks

Non-
cooperative 
Game [39]

Cooperative 
Game [37]

Repeated Game 
[103] [42]

Intrusion Detection

Non-
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Markov Game 
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Strengthening Security

Auction Theory 
[40]

Coalitional 
game [56]

Coexistence with 
Malicious Sensor 

Nodes

Signaling Game 
[44]

Figure 2.4: Taxonomy Based on Game Theory for WSNs Security [63]

Shen et al. [63] presented a survey of security approaches based on game theory in

WSNs. According to different applications, they proposed a taxonomy, which divides

current existing typical game-theoretic approaches for WSNs security into four categories:

preventing DoS attacks, intrusion detection, strengthening security, and coexistence with

malicious sensor nodes.

Liang and Xiao [64] classified the applications of game theory in network security into

two categories: (1) Applications for analysis of network attack-defense, (2) applications
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security [64]

for network security and dependability measurement. They also classified the modeling of

game theoretic approaches to network security into two categories including cooperative and

non-cooperative games and discussed the limitations of existing game theoretic approaches.
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2.3 SUMMARY OF REVIEWED WORKS

The following table summarizes the classification of publications reviewed in this survey.

Papers Categories Non-Zero Sum Zero Sum Stochastic Bayesian Complete Information Perfect Information

C
oo

pe
ra

tiv
e

[37] [56] Sensor Networks, Coalitions

N
on

-c
oo

pe
ra

tiv
e

[41] [42] [45]
Sensor Networks, Attacks on

Network Infrastructure
X X

[65]
Attacker Defender Models,

Moving Target Defense
X X

[53] Attacker Defender Models X X X X

[33] [30] Intrusion Detection X X X

[34] Intrusion Detection X X

[27] [32] [28]

[39] [40] [53]

[46] [36] [35]

Intrusion Detection, Sensor

Networks, Attacks on Network

Infrastructure

X

[59] Risk Assessment X X X X

[29] Intrusion Detection X X

[43] Sensor Networks X X

[31] Intrusion Detection X X X

[49] Attacker Defender Models X X

[60] Risk Assessment X X

[38] [47] [51]

[55] [54] [58]

[57]

Sensor Networks, Attacks on

Network Infrastructure, Attacker

Defender Models, Coalitions

X

[44] [48]
Sensor Networks, Attacks on

Network Infrastructure
X

Table 2.1: Summary of Literature
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CHAPTER 3

DISINCENTIVIZING COLLUSION BETWEEN SDN DEFENDERS AND

ATTACKERS

In this chapter the concept of a reputation-based trust model is applied to the problem of

attacks within SDNs where the network switches are taken over by an adversary and used to

disrupt network flow by colluding with the attackers and not following the instructions of

the controller. We show that by employing a socio-rational model within a repeated game

setting the defenders (switches) are incentivized not to collude with attackers. The results of

this chapter appear in [3].

3.1 INTRODUCTION

SDN has enjoyed tremendous popularity growth in the last few years. Everyday, more

networks are migrated to use the SDN instead of traditional networking technologies

because of its numerous advantages such as manageability, flexibility in network design and

scalability [66]. This is partially driven by the demand for better, faster and more complex

content delivery for today’s advanced web applications. More importantly, the SDN has

started to be used for securing the networks by integrating ideas from Moving Target Defense

(MTD) and Network Function Virtualization (NFV) paradigms [67]. The MTD provides

a different perspective to secure the networks, which is one of the major issues in today’s

highly connected cyberspace. For this reason, government organizations such as CERT

as well as private security companies, such as Symantec, McAfee and Kaspersky, spend

hundreds of thousands of man-hours researching and mitigating security vulnerabilities

in Internet-connected devices. A recent projection by Juniper Research estimates that the
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annual cost of data breaches will reach to two trillion dollars per year by 2019 [5].

The MTD paradigm simply applies continuous changes to the underlying network

infrastructure in order to make it harder for the attackers to launch attacks. It heavily relies

on the capabilities of the SDN. Furthermore, it utilizes the SDN controller and switches to

apply certain changes such as route mutation, port and address mutation, service relocation,

and configuration updates [68, 69]. Using such mechanisms, the MTD can be an effective

means to thwart the DDoS attack, which is very difficult to be handled by traditional

techniques. In all these approaches, the SDN controller and switches are assumed to be

trusted and not to be compromised by the attackers. It is important to note that within the

context of SDN, the term “route” is not reserved to routers as it is in a traditional network.

In SDN, the term route refers to the control flow operation that is ordered by the SDN

controller to determine the route packets take through the network and a route mutation

refers to an order issued by the SDN controller to change the flow of packets to a different

node of the network.

However, the assumption that the controller and switches are trusted may not be true

in many cases. One threat vector of importance is the exploitation of weaknesses in the

security of switches [70]. If compromised, a single switch can help the attacker to control

the flow of traffic on the entire network by modifying the behavior of the switch. As a result,

the switch will not respond (in an expected manner) to the instructions that are sent by the

SDN controller. This can be exploited by the attacker to bring the network to a crawling

halt. In particular, these types of vulnerabilities can be used to disrupt or inhibit the defense

mechanisms against DDoS attacks such as Crossfire attacks that target a network area for

taking down the network links [71, 72].

Moreover, the attacker can use vulnerabilities within a switch to change the control flow

procedures. The affected switch would be reprogrammed by the attacker to ignore route

mutation orders issued by the controller. As a result, the attacker can find permanent links.

This can be further exploited to redirect the switch traffic to particular destinations with the

21



aim of aiding the attacker in pursuing the DDoS attack. In our setting, these actions are

referred to as collusion of the SDN elements with the attackers.

With the aim of mitigating the effects of such attacks and fully enjoying the benefits of

SDN-based MTD approaches, we propose a game-theoretical solution concept in which the

defenders (switches) are incentivized not to collude with the attackers. We first illustrate

our model and its components. Subsequently, we utilize a socio-rational approach [73, 74]

to provide a new anti-collusion solution that shows cooperation with the SDN controller is

always Nash Equilibrium.

The rest of this chapter is organized as follows. Section 3.2 briefly reviews the literature

of game-theoretical approaches to SDN security. Section 3.3 illustrates our game-theoretical

solution with its assumptions and analysis. Finally, Section 3.4 provides concluding remarks

and future works.

3.2 LITERATURE REVIEW

3.2.1 Game-Theoretical Approaches to SDN Security

Recently, several game-theoretical approaches have been proposed for SDN security with

emphasis on the SDN controller assignment [75, 76, 77] as well as the MTD [78]. Wang

et. al. [75] proposed a novel two-phase dynamic SDN controller assignment mechanism

to minimize the average response time of the control plane. The assignment between

controllers (with various capacities to serve requests) and switches (with different request

demands) is considered as the stable matching problem in the first phase. The solution

quality from the first phase (the mapping between switches and controllers that guarantees

the worst-case response time for each switch) is then improved by leveraging the coalitional

game theory. A group of switches that are assigned to a controller can be seen as a coalition

and they can negotiate to change their coalitions to improve the response time.

In [76], Chen et. al. proposed a zero-sum game-theoretical solution for the controller

load-balancing. In this model, controllers are the players and SDN switches are the com-
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modities that are traded among the players who intend to maximize their profits (e.g., by load

balancing). An overloaded controller selects a switch and then sends an announcement (i.e.,

the existing load of the selected switch) to its nearby controllers so that they can compete to

be the new master controller of the selected switch.

In [77], an optimal multi-controllers placement is considered as a multi-objective opti-

mization problem that minimizes the latency and communication overhead between switches

and a controller. It also ensures the load balancing among controllers. A cooperative Nash

bargaining game theory is used to find the trade-off between two conflicting objectives.

These two objectives are considered in order to find a unique solution that satisfies the Pareto

efficiency between both players.

Finally, in [78], Jafarian et. al. model the interaction between a defender (that proactively

defends against DoS attacks through a random route mutation mechanism) and a DoS

attacker as a static game of complete information. In this model, an attacker is aware of

the flow properties (for instance, source and destination, size and duration, transmission

starting time) and its strategy is to attack a number of routes during the flow transmission.

The defender’s strategy is to use a number of routes for the flow transmission. The aim of

each player (that is, defender and attacker) is to determine its Nash Equilibrium strategy by

taking into account the opponent strategy and the cost of its own strategy.

3.2.2 SDN-Based MTD

The static nature of existing network attributes (e.g., IP address and route to certain network

hosts) enables attackers to perform the network reconnaissance without any time constraint.

The network-based MTD has been intensively studied to obfuscate attackers’ reconnaissance

efforts by changing the network attributes randomly and periodically in order to make

it harder for the attackers to collect useful information, that is, to increase the attackers’

overheads significantly while minimizing the legitimate users’ overheads. The emerging

SDN has been employed for efficient and cost-effective network-based MTD operations [68,
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69, 79, 72, 78, 80, 81]. However, the roles of the SDN switch and SDN controller are varied

among the proposed SDN-based MTD approaches.

In proactive MTD-based address mutation approaches (in which the real address of a

moving target network host remains untouched and a short-lived virtual address is associated

to that host dynamically [68, 69, 79]), the SDN switch can be used as the address translator

between these real and virtual addresses [69, 79]. On the other hand, the SDN controller

has more complex tasks. In [68], while there is no additional function for the SDN switch,

the SDN controller acts as a generator of the synthetic MAC and IP addresses, and also,

informs the server application to create Network Address Translation (NAT) rule to map

the synthetic and real addresses. In [69], the SDN controller has the following roles:

coordinating mutation across the SDN switches, determining the optimal set of new virtual

addresses for hosts using Satisfiability Module Theories (SMT) solver, and finally, handling

the DNS updates. In [79], besides proactive and reactive IP-address randomizations, the

SDN controller is responsible to learn the topology and also assign a random flow to the

traffic because the IP-address randomization is still prone to traffic analysis.

Proactively modifying the traffic flow through route mutation is also performed in

[78, 72]. Besides performing route mutation, the SDN controller in [78] is responsible to

determine the optimal defender strategy by finding the Nash Equilibrium of the game and

also the qualified routes for this strategy by using the SMT solver. In [72], route mutation is

utilized to increase the attacker’s cost of finding persistent links. The SDN controller is used

to create traceroute profiles by monitoring the ICMP traffic, and performs route mutation in

response to the identified traceroute accordingly. In [80], the SDN is employed to monitor

the transport layer traffic (e.g., TCP) and generate random TCP responses and payloads for

the illegitimate TCP scanning traffic to prevent operating system fingerprinting. In [81], the

SDN is employed to modify the detected network scanning traffic flow to a shadow network

that provides a response to this network scanning attempt.

In all of these approaches, the SDN controller and switches are assumed to be trusted
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and no collusion is considered between the SDN elements and the attackers. In this chapter,

we will drop such an assumption to propose a game-theoretical model to address collusion

between the switches and attackers.

3.3 GAME-THEORETICAL CONSTRUCTION

Game-theoretical paradigms are mostly used to model interaction between attackers and

defenders [82, 64]. In these models, a two-player game is proposed in which attackers

and defenders try to maximize the utility that they can gain. For instance, the defenders

can provide value to the system and, as a result, gain utility by enabling features, shifting

the attack surface, and reducing the attack surface measurement. On the other hand, the

attackers can benefit if features are disabled or the attack surface measurement is increased.

In majority of existing models, an attacker and a defender play the game by selecting

different actions from their action profiles in each round of the game (for instance, the

defender can modify the system in order to shift the attack surface or the attacker can

manipulate the system in order to disable some features). After each selection, the system

moves to a new state and the players receive their rewards based on a reward function, also

known as utility function.

3.3.1 Model Description

Our model is constructed upon the SDN-based MTD [72] that strives to provide route muta-

tion defense against the link-map creation at the reconnaissance stage of the crossfire attack

[71]. It is a powerful attack that degrades and cuts off network connections of selected server

targets, e.g., a link-flooding DDoS that attacks links surrounding a target. Reconnaissance

phase is the first and the longest step in which the attacker strives to find persistent links

that can be candidates for the targeted link-flooding DDoS attacks. The persistent link is a

link that always presents whenever an attacker performs the reconnaissance, as opposed to

transient links. By performing the route mutation, when a suspected reconnaissance attempt
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is detected, an attacker is expected to receive a transient link instead of a persistent link.

Our model consists of an SDN controller that assigns a flow rule to every switch based

on the selected route mutation strategy and n switches that act as defenders. On the other

hand, we have a group of attackers that try to collude with switches so that the following

actions are considered as defection in our setting:

1. They do not perform the route mutation; therefore, the attacker can find persistent

links.

2. They send their traffic to certain links in order to help the attacker to launch the DDoS

attack.

The following two scenarios are considered for collusion: a single switch is not trusted

and colludes with the attacker, or multiple switches are not trusted and form collusion with

an attacker. We consider the later case as it is the general case of the first scenario. Note that

game-theoretical paradigms are usually used to model interaction between defenders and

attackers. Here, we specifically intend to model collusion between defenders and attackers.

In our new game-theoretical model, we first consider a 2-player game between two

defenders (i.e., switches) that may/may not collude with an attacker by not performing

the route mutation or sending the traffic to certain links. These two actions are part of the

players’ action profiles and they will be considered as defection, denoted by D . As such,

cooperative actions, denoted by C , are considered to be performing the route mutation or

sending the traffic to different links.

3.3.2 Our Solution in a Nutshell

We consider the following payoff function for two switches similar to the prisoners’ dilemma,

shown in Table 3.3.2. Note that this model can be easily extended to a model with n switches.
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S1

S2
C : Not Collude D : Collude

C : Not Collude (0,0) (0,2)

D : Collude (2,0) (1,1)

Table 3.1: Two Defenders Who Intend to Collude With the Attacker

This model illustrates, if both switches collude with the attacker, they each gain, e.g., $1

utility (i.e., attacker’s $2 budget will be shared between both switches) but if one switch

colludes but the other one doesn’t collude, the colluder will receive $2 from the attacker. As

a result, collusion is Nash Equilibrium meaning that switches always collude because it’s in

their best interest to do so. This is a realistic scenario in which an attacker with a limited

budget tries to compromise components of a network by colluding with defenders.

We tackle the aforementioned problem by considering a socio-rational model [73, 74]

(that is, a repeated game among rational players who have public reputation values where

these values affect players’ utilities overtime) in which:

1. The SDN controller selects a group of switches (a subset of switches based on their

trust values using a non-uniform probability distribution) to protect the targeted system

against potential attacks.

2. The attacker utilizes his budget in order to collude with switches, and consequently,

compromise the system.

In our setting, if a switch colludes with the attacker, it can gain some utility in the current

game (e.g., $1), however, that switch has less chance (lower probability) to be selected by

the SDN controller in the future games due to the reduction of his reputation value, see [83,
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84] for a trust/reputation management system. Therefore, it would be in the best interest

of switches not to collude with the attacker because a non-cooperative switch will lose his

reputation, and consequently, he will lose many future games (e.g., −$3).

3.3.3 Formalizing Our Solution

We utilize a trust management scheme in a repeated two-player game between “two de-

fenders” who try to maximize their utilities through collusion with the attackers. We show

that, by using proper strategies, cooperation (i.e., not-colluding with the attackers) is always

Nash Equilibrium because of a long-term utility that we consider in our game-theoretical

setting. We not only consider a reward function but also use a function to penalize colluders.

We also consider two classes of actions, that is, collude as non-cooperative actions and not

collude as cooperative actions. E.g., disabling features and increasing the attack surface are

actions from the first class.

Our game is repeatedly played for an unknown number of rounds. Each network switch

Si has a public reputation value Ri, where the initial value is zero, i.e., Ri(0) = 0, and

it is bounded as follows −1 ≤Ri(p) ≤ +1; note that p = 0,1,2, . . . denotes subsequent

rounds of the game. Moreover, each switch’s action ai ∈ {C ,D ,⊥}, where C and D denote

cooperation and defection respectively, and ⊥ denotes Si has not been chosen by the SDN

controller in the current game. Finally, each switch calculates two utility functions to decide

whether he should collude with the attacker or not, i.e., a long-term utility function ui and

an actual utility function u′i. Each round of the game consists of the following steps:

1. Let Ψ be a non-uniform probability distribution over types of switches, i.e., good/non-

colluding, bad/colluding and new switches. The SDN controller selects m out of n

switches, where m ≤ n, based on this probability distribution in each round of the

game.

2. Each switch Si computes his long-term utility function ui : A×Ri 7→ R, and then
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selects an action from the action profile A, i.e., whether to collude with the attacker or

not.

3. Each player Si receives his utility u′i : A 7→ R (that is, the real utility that each switch

can gain) at the end of each round of the game according to the outcome.

4. The reputation values Ri of all the chosen switches are publicly updated based on each

switch’s behavior using a reputation system. Note that the SDN controller doesn’t

know if a switch has colluded with the attacker at each round of the game, however,

if a switch deviates from the SDN controller’s instructions (e.g., it does not perform

the rout mutation or sends the traffic to certain links), it will be assumed that it has

colluded with the attacker.

3.3.4 Utility Assumptions

Let ui(~a) denote Si’s long-term utility in outcome~a by considering current and future games,

let u′i(~a) denote Si’s short-term utility in outcome ~a in the current game, let ci(~a) ∈ {0,1}

denote if Si has colluded with the attacker in the current game, and define ∆(~a) = ∑i ci(~a),

that is, the number of switches/defenders who have colluded with the attacker. Let R~a
i (p)

denote the reputation of Si after outcome~a in period p; note that~a and~a′ are two different

outcomes of the game. The following preferences are considered in our setting:

• ci(~a) = ci(~a′) and R~a
i (p)> R~a′

i (p)⇒ ui(~a)> ui(~a′).

• ci(~a)> ci(~a′)⇒ u′i(~a)> u′i(~a
′).

• ci(~a)> ci(~a′) and ∆(~a)< ∆(~a′)⇒ u′i(~a)> u′i(~a
′).

The first assumption states that each switch Si prefers to sustain a high reputation value

overtime despite of colluding or not colluding with the attacker as he can potentially gain a
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higher long-term utility. The second assumption expresses that if a switch Si colludes with

the attacker, he gains a short-term utility. Finally, the third assumptions illustrates that if a

switch Si colludes with the attacker and the total number of colluding parties in~a is less than

the total number of colluding parties in~a′, he gains a higher short-term utility in outcome~a.

3.3.5 Utility Function and Mathematical Analysis

The long-term utility function ui : A×Ri 7→ R calculates the utility that each switch Si

potentially gains or loses by taking into account both current and future games (based on all

three utility assumptions), whereas the short-term utility function u′i : A 7→ R only calculates

the current gain or loss in a given period (based on the last two utility assumptions). Note

that A is the action profile.

Let φi be the reward coefficient that is defined by the SDN controller based on the

reputation value of each switch Si, and let δi(~a) = R~a
i (p)−R~a

i (p−1) be the difference of

two consecutive reputation values. Note that τi = |δi(~a)|/δi(~a) is positive if the selected

action in period p is C and it is negative, if it is D . Also, let Ω > 0 be a unit of utility, e.g.,

$100. To satisfy the stated assumptions in Section 3.3.4, we have the following equations:

|δi(~a)|
δi(~a)

×φi×Ω (3.1)

ci(~a)×Ω (3.2)

ci(~a)
∆(~a)+1

×Ω (3.3)

• Eqn (1) means Si gains or loses φi units of utility Ω in the future games due to his

behavior as reflected in Ri.

• Eqn (2) illustrates that Si gains one unit of utility if he colludes with the attacker in

the current game and he loses this opportunity, otherwise.
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• Eqn (3) results in almost one unit of utility to be divided among all the colluders.

The linear combination of these terms defines the long-term utility function ui(~a), however,

actual utility u′i(~a) only consists of the linear combination of equations (2) and (3).

ui(~a) = Ω

(
|δi(~a)|
δi(~a)

×φi + ci(~a)+
ci(~a)

∆(~a)+1

)
.

Theorem-1: In a (2,2)-socio-rational collusion game, C strictly dominates D when we use

our utility function.

Proof: We compute the utility of each outcome for Si. Let S j be the other defender.

1. If both defenders don’t collude/cooperate, then δi is positive, ci = 0, and ∆ = 0:

(
δi > 0,ci = 0,∆ = 0

)
⇒ u(C ,C )

i = Ω φi.

2. If only Si cooperates, then δi is positive, ci = 0 since Si has not colluded, and ∆ = 1

because only switch S j has colluded with the attacker:

(
δi > 0,ci = 0,∆ = 1

)
⇒ u(C ,D)

i = Ω φi.

3. If only S j cooperates, then δi is negative, ci = 1 since Si has colluded, and ∆ = 1:

(
δi < 0,ci = 1,∆ = 1

)
⇒ u(D ,C )

i = Ω

(
−φi +1.50

)
.

4. If both switches defect, then δi is negative, ci = 1, and ∆ = 2 because both switches

have colluded:

(
δi < 0,ci = 1,∆ = 2

)
⇒ u(D ,D)

i = Ω

(
−φi +1.33

)
.
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If reward factor φi ≥ 1.5, we will have the following payoff inequalities that proves our

theorem:

Si cooperates︷ ︸︸ ︷
u(C ,C )

i (~a) = u(C ,D)
i (~a)>

Si defects︷ ︸︸ ︷
u(D ,C )

i (~a)> u(D ,D)
i (~a) 2

If we assume the reward factor φi is at least 1.5 (note that the minimum value of this

constant is defined based on the model’s parameters), the payoff matrix is as follows, Table

3.3.5:

S1

S2
C : Not Collude D : Collude

C : Not Collude (1.5,1.5) (1.5,0)

D : Collude (0,1.5) (−0.17,−0.17)

Table 3.2: Collusion Game Between Two Defenders in the Socio-Rational
Model

As you can see, cooperation is always Nash Equilibrium. To expand our proof to a case with

n switches/defenders, let Ci (or Di) denote that Si cooperates (or defects), and let C−i (or

D−i) denote that, excluding Si, all the other defenders cooperate (or defect), and finally, let

M−i denote that, excluding Si, some defenders cooperate and some of them defect.

Theorem-2: In a (n,n)-socio-rational collusion game, C strictly dominates D when we use

our utility function.

Proof: We compute the utility of each outcome in six different scenarios. Let n > k ≥ 2.

1. If all the defenders cooperate, or Si and k−1 defenders cooperate, or only Si cooper-
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ates, as a result, δi is positive, ci = 0, and ∆ ∈ {0,n− k,n−1}:

(
δi > 0,ci = 0,∆ ∈ {0,n− k,n−1}

)
⇒

u(Ci,C−i)
i = u(Ci,M−i)

i = u(Ci,D−i)
i = Ω φi.

2. If only Si defects, δi is negative, ci = 1 and ∆ = 1:

(
δi < 0,ci = 1,∆ = 1

)
⇒ u(Di,C−i)

i = Ω

(
−φi +1.5

)
.

3. If Si as well as k−1 defenders defect, and the rest of them cooperate:

(
δi < 0,ci = 1,∆ = k

)
⇒ u(Di,M−i)

i = Ω

(
−φi +

k+2
k+1

)
.

4. If all the defenders defect, δi is negative, ci = 1, and δ = n because no one has

cooperated:

(
δi < 0,ci = 1,∆ = n

)
⇒ u(Di,D−i)

i = Ω

(
−φi +

n+2
n+1

)
.

We simply analyze these scenarios as follows. Let ∗−i be C−i or M−i or D−i. It is easy to

show that:

1.5 >
k+2
k+1

>
n+2
n+1

when n > k ≥ 2.

Similarly, if we assume the reward factor φi is at least 1.5, cooperation (i.e., not colluding

with the SDN controller) is always Nash Equilibrium. As a result, it is always in Si’s best

interest to cooperate no matter what other parties do:

u(Ci,∗−i)
i (~a)> u(Di,∗−i)

i (~a) 2
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3.4 CONCLUSION

We showed that a game-theoretical solution concept can be utilized to tackle the collusion

attack in a SDN-based framework. In our proposed setting, the defenders (i.e., switches)

were incentivized not to collude with the attackers in a repeated-game setting that utilizes

a reputation system. We first illustrated our model and its components. We then used a

socio-rational approach to provide a new anti-collusion solution that shows cooperation with

the SDN controller is always Nash Equilibrium due to the existence of a long-term utility

function in our model.
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CHAPTER 4

INCENTIVIZING HONEST MINING IN BLOCKCHAIN

In this chapter the reputation-based trust model is applied to the problem of dishonest mining

in Blockchain. We show that by applying a trust score to each miner or mining group we

can create a disincentive for selfish behavior and incentivize honest mining practices. The

results of this chapter appear in [1].

4.1 INTRODUCTION

Security games are mainly designed and utilized to model interaction between attackers

and defenders [82, 64]. In these models, two-player games (extendable to any number of

players) are proposed in which both attackers and defenders try to maximize the utility that

each can gain. For instance, the defenders will be able to provide value to the system and,

as a result, gain utility by enabling features, shifting the attack surface, and reducing the

attack surface measurement. Likewise, the attackers will be able to gain utility if features

are disabled or the attack surface measurement is increased.

In the majority of existing security games, attackers and defenders play the game by

choosing various actions from the action profiles based on their strategies in each round

of the game. For instance, the defenders can modify the setting of the targeted system in

order to shift the attack surface whereas the attackers can manipulate the system in order to

disable some features. After each round of the game, the game moves to a new state and the

players receive their rewards based on some utility functions.

One of the fascinating research areas where the security games can be utilized is the

verification of transactions in the context of digital currencies, e.g., Bitcoin [85], or similar
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paradigms. The mining operation is very resource intensive. As a result, players form

different coalitions in order to verify every single block of transactions in return for a reward.

This leads to intense competitions among competitors because only the first coalition that

accomplishes the mining process will be rewarded.

To address what issues this competition may cause, different strategies are analyzed in the

literature. Rosenfeld [86] introduces the block withholding attack where a dishonest player

only reveals a partial solution of the verification problem whenever he has the complete

solution to act in favor of another competing coalition. As a result, the dishonest miner

shares the revenue obtained by the entire coalition without any contribution. Eyal and Sirer

[87] introduce selfish mining where the players of a coalition keep their discovered blocks

private and continue to verify more blocks privately until they get a sub-chain that its length

is threatened. As a result, selfish players receive the reward. Johnson et. al. [88] look at

the malicious activity of the players from another perspective. The authors compare an

honest approach with a dishonest strategy, i.e., players of a coalition can invest to acquire

additional computing resources, or launch DDoS attacks against other competing coalitions.

The authors provide game-theoretical analyses by exploring the trade-off between these

two strategies when two groups of varying sizes are involved. Recently, more attacks were

introduced, e.g., eclipse attack [89] that makes a node invisible in the Bitcoin network, or

stubborn mining as a generalization of the selfish mining [90].

We therefore propose a new reputation-based framework in which miners not only are

incentivized to conduct honest mining but also disincentivized to commit to any malicious

activities against other mining pools, such as block withholding attack, selfish mining,

eclipse attack and stubborn mining, to name a few. We first illustrate the architecture of our

reputation-based paradigm, explain how miners are rewarded or penalized in our model, and

subsequently provide game theoretical analyses to show how this new framework encourages

the miners to avoid dishonest mining strategies.

The rest of this chapter is organized as follows. Section 4.2 provides some preliminary
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materials on digital currencies and game theory. Section 4.3 briefly reviews the existing

digital currency literature where game theory is utilized. Section 4.4 illustrates our model.

Section 4.5 explains how our reputation-based scheme works. It also provides the game

theoretical analysis of our model. Finally, Section 4.7 concludes with final remarks.

4.2 PRELIMINARIES

Now preliminary materials regarding Blockchain and game theory are briefly reviewed.

4.2.1 Digital Currencies: Terminologies and Mechanics

In the digital currency frameworks, specifically Bitcoin, transactions are grouped in blocks

in order to be verified by a subset of nodes in the network, known as miners. The mining

process, named proof-of-work, is computationally intensive with a specific difficulty factor

that is increased overtime as the computational power of hardware systems grows. Therefore,

nodes form mining pools under the supervision of pool managers to accomplish the mining

task. In some technical articles, the mining process of the Bitcoin (or even other digital

currencies) is referred to as the miners’ mathematical puzzle.

The first mining pool that accomplishes the proof-of-work is rewarded a certain amount

of freshly mined Bitcoins as an incentive for miners’ works. That is why this process is also

known as mining. As soon as a block is verified, it is attached to the list of existing verified

blocks, known as Blockchain. Immediately after that, all miners stop the mining process of

the already verified block and start working on the next block.

The high-level idea of the proof-of-work/verification/mining is shown in Figure 4.1.

Each block consists of a block number, a nonce value, list of transactions, the hash value

of the previous block (address of the previous block), and the hash value of the next block

(address of the next block). During the mining process, the miners try to generate a valid

hash value of a block that is less than a threshold (i.e., it starts with a certain number of

zeros). They will conduct this process by trying different nonce values. It’s clear that
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generating a hash value that starts with, say 5 zeros, is harder than a hash value that begins

with 4 zeros; this is what we call the difficulty factor of mining.

Block # 77

Nonce 272931

Transactions

10B Alice → Bob

…

50B Alex → Mary

Previous 000937af19be17

Current Hash 007ae291da311

Block # 78

Nonce 171943

Transactions

10B Sara → Eli

…

50B Eve → Cory

Previous 007ae291da311

Current Hash 009da7537eb68

Block # 79

Nonce Try diff values

Transactions

10B John → Ed

…

50B Dan → Geff

Previous 009da7537eb68

Current Hash Find a valid Hash

Figure 4.1: Blockchain and Mining

The hashing rate hr (also known as mining power) is the total number of hashes that

a miner can calculate during a specific time interval. Therefore, the average time to find

a valid hash value (also known as full proof-of-work) correlates to a miner’s hashing rate.

In fact, the pool manager sends different templates of the current block to his miners so

that they can find a valid hash value by changing the nonce value. If a miner accomplishes

the full proof-of-work, he will then send it to his pool manager. Consequently, the pool

manager publishes the legitimate block on behalf of the entire pool. He will then distribute

the revenue among miners based on their mining powers. Note that new coins are put

explicitly in the block by the miner(s) who created it.

To estimate each miner’s power, the pool manager determines a partial target for each

miner, much easier than the actual target of the system. For instance, instead of calculating a

hash value that starts with, say 5 zeros, a hash value with a single zero is sufficient. Note that

this is just a simple example for the sake of clarification. Therefore, each miner is instructed

to send a valid hash value according to the partial target. This partial target is defined in such

a way that a partial solution can be calculated frequently enough so that the manager can

fairly estimate the miners’ powers because, as we stated earlier, the revenue is distributed

based on the miners’ powers.
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4.3 LITERATURE REVIEW

Even though the concept of Blockchain is relatively new, introduced by an unknown

author or authors in 2008 [85], it has gained considerable attention from the computer

science and economics communities because of its unique approach in decentralizing

verification of transactions related to a digital currency, and its inherent security because

of this decentralized nature. However, the body of work that is focused on the study of

Blockchain through the use of game theoretic methods is limited. In this section, related

research works to game theory and Blockchain are reviewed.

Johnson et. al. [88] study the incentives for a mining pool to carry out a DDoS attack

against another mining pool. The authors scrutinize this problem from an economic point of

view where the incentive for an attack is to increase one’s own probability of successfully

verifying the next block of transactions, and hence, earning the Bitcoin rewards from this

mining operation. They conclude that there is a greater incentive to attack a large mining

pool rather than a small pool. The authors point out that this finding is consistent with

statistics reported by [91] that shows 17.1% of small mining pools suffered DDoS attacks

where as 62.5% of large pools were affected by such attacks. The authors make two other

interesting observations as well, the first being that the ability to mitigate the DDoS attacks

will increase the market threshold for the size at which a pool becomes vulnerable to the

DDoS attack. This makes intuitive sense since the ability to mitigate such attacks will

decrease the utility to the attacker. Secondly, the cost of these attacks will keep small players

out of the DDoS market since the incentive for attacking such a player is relatively low.

Babaioff et. al. [92] look at a different problem that is present in the Bitcoin protocol.

In fact, this problem will intensify once the mining reward is ended in the Bitcoin. In the

current design, the nodes that authorize a transaction are rewarded through two separate

methods. The first is through the generation of new Bitcoins for every new block that is

added to the Blockchain, and the second method is through a transaction fee. The maximum

number of Bitcoins is limited to about 21 Million [93] and the creation of new Bitcoins

39



becomes exponentially smaller until the maximum limit is reached. The transaction fee will

be the only resource to incentivize the miners when the maximum threshold is reached. At

this point, miners are incentivized to keep the information of a possible transaction secret as

there are no new Bitcoins to be mined from the efforts of reversing a hash, i.e., there is only

the transaction fee that is given to the authorizer of the transaction. This incentive to keep

information secret can potentially cripple the Bitcoin system as the time for confirming a

transaction will be long when there is only one node attempting to authorize the transaction.

Kroll et. al. [94] study Bitcoin as a consensus game and consider the economics of

Bitcoin from the mining perspective to determine whether there exists any incentive for

rational players to defect from the mining protocol. The authors show that there is a Nash

equilibrium for which all players cooperate with the Bitcoin reference implementation.

However, there are infinitely many equilibria where the players can behave otherwise. The

authors show that a motivated adversary may be capable of crashing the currency, as a result,

governance structures will be necessary.

Even though the authors in [95] don’t refer to any game theoretic models, they detail

several possible vulnerabilities within the Blockchain protocol that are great candidates for

game theoretic study such as deflationary spiral, the History-Revision attack, and delayed

transaction confirmation. Carlsten et. al. [96] study the issues of Bitcoin and Blockchain

when the last block reward is collected. The authors show that once the consistency of the

block reward is removed from the protocol, leaving only the transaction fees, the incentive

for defection increases.

Luu et. al. [97] scrutinize the block withholding attack on mining pools, introduced

by Rosenfeld [86]. They show that the attack always has incentive when looking at a long

term operation but may not be profitable for short term duration. Eyal [98] studies the

same subject and concludes that when two pools attack each other, it results in a version

of the prisoner’s dilemma, named the Miner’s Dilemma. Lewenberg et. al. [99] introduce

a modification to the Blockchain protocol to allow for inclusion of forked blocks with the
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aim of increasing the rate of operation. The authors then provide a game theoretic model of

the competition for fees between the nodes under the new protocol. Rosenfeld [100], and

Sompolinsky and Zohar [101], as well as the original publication by Satoshi Nakamoto [85]

have considered the probability of a successful double-spending attack in the non-inclusive

protocol. Lewenberg et. al. [99] further analyze the inclusive protocol and determine that it

is as secure as the non-inclusive form.

4.4 REPUTATION-BASED MINING MODEL AND SETTING

As illustrated in Figure 4.2, our model consists of a set of pool managers M(i,pi) who

form coalitions for the proof-of-work computations, for 1 ≤ i ≤ I, where 0 ≤ pi denote

profits that pool managers have so far accumulated; a set of miners/ally miners m( jk,rk) who

perform proof-of-works, for 1 ≤ j ≤ J and 1 ≤ k ≤ K, where −1 ≤ rk ≤ +1 denotes the

reputation value of a miner/ally miners. In our model, miners/ally minors may commit to

malicious activities through direct attacks (e.g., DDoS attack) or collusion attacks (e.g.,

block withholding) to disrupt the proof-of-work computations of certain mining pools. As

such, two actions are considered in the miners’ action profile, i.e., commit to malicious

activity to disrupt computations of mining pools, denoted by D : dishonest mining, or

conduct the proof-of-work honestly, denoted by H : honest mining.

Note that, in the current setting of digital currencies, each miner is defined by a unique

identity j, however, in our proposed framework, each miner is also assigned a public

reputation value rk, where k is the index of this value. In fact, the reputation value reflects

how well the miner has so far performed in the system in terms of mining performance as

well as honest or malicious activities (i.e., a history of behaviors). This public reputation

value rk is updated after a specific period of time based on different criteria, e.g., the ratio of

full proof-of-work over partial proof-of-work, detection of any malicious activity such as

collusion with other miners, selfish-mining, or contribution to a DDoS attack. Moreover,

each pool managers i is also assigned a parameter pi that defines the profit that he has so far
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m(11,+0.5)

m(21,+0.5)

m(31,+0.5)

First Mining Pool

Pool Manager M ( 1 , 250B )

m(42,+1)

m(53,-0.2)

m(63,-0.2)

Miners: m ( j k , r
k

)

1 ≤ j ≤ J : identity

1 ≤ k ≤ K : reputation id

-1 ≤ rk ≤ +1 : reputation

m ( J-2 K-1 , 0 )

Last Mining Pool

Pool Manager M ( I , 75B )

m ( J K , -1 )…

Managers: M ( i , p
i 

)  

1 ≤ i ≤ I : identity

0 ≤ pi : profit

m ( J-1 K-1 , 0 )

Ally Miners

Figure 4.2: Architecture of Our Reputation-Based Setting

accumulated through his pool. As pi reflects how well a manager is performing, it can be

interpreted as his reputation.

In our setting, a subset of miners who highly trust each other (due to partnerships,

personal relationships, common nationality, or even geographical proximity) can form an

alliance, named ally miners, and request a single reputation value rk even though they each

have a separate identity j. This means, while members of a coalition can build reputation

all together through rk by collaborations overtime, they are all responsible for malicious

activities triggered even by a single member of their coalition.

This leads to the notion of neighborhood-watch meaning that each member of an

alliance is incentivized to monitor his allies. For instance, members can agree to execute a

randomized algorithm to monitor each other through various methods, that is, cybersecurity

detection techniques or transparency policies to make sure no one has ever received any

bribe from other mining pools due to any sort of collusion attacks. As a result, the pool

manager doesn’t need to have any concern for every single member of his mining pool.

Furthermore, if a member decides to launch an attack, he may need to convince all his
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coalition members or act solo, which might be caught by his allies through randomized

monitoring before it can even affect the mining procedure.

Once in a while, the pool managers rearrange their groups to form new coalitions for

the proof-of-work. They send invitations (invitation-based) to miners/ally miners based on

a non-uniform probability distribution that is defined by the reputation values rk. In other

words, the miners/ally miners who are more reputable, have a higher chance to be invited to

the mining pools and those who are not trustworthy have a lower chance to get invitations.

The miners/ally miners can also chose to whom they would like to join if they receive

multiple invitations, that is, a mutual merit-based setting for both miners and managers.

As this public reputation system is sustained over time, as a result, it will be in the best

interests of the miners/ally miners to become reputable (or sustain their high reputation)

to maximize their long-term utility. This will incentivized the miners/ally miners to avoid

any dishonest behavior even if it has short-term utility. Note that the underlying reputation

system must be immune against re-entry attack (i.e., cheat and come back to the scheme

with a new identity j). We utilize the proposed idea of rational trust modeling [102] to make

sure our setting is not vulnerable to these sorts of attacks against reputation systems.

Furthermore, in our proposed model, while ally miners are incentivized to form larger

coalitions to gain/sustain a high reputation value and consequently more revenue, they are

not incentivized to admit any new miner to their alliance unless they fully trust the newcomer.

This is due to the fact that a single miner can harm the entire coalition. Moreover, it is worth

mentioning that, although ally miners only have a single reputation identity rk, a miner

cannot commit to malicious activities in a set and then simply joins another alliance because

each miner still has a unique identifier j.

Our proposed model can be seen as a global community where each mining pool

represents a federal authority and each alliance represent a state authority. Therefore, each

alliance is responsible to detect malicious activities inside the coalition in a smaller scale.

In addition, each alliance can be changed in size and also move to a new mining pool
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when the rearrangement is occurred periodically. This approach not only leads to less

managerial overheads for the pool managers but also it creates a framework where practical

implementations of preventive and detective protocols become possible.

4.5 MINING IN OUR REPUTATION-BASED MODEL

Since our approach is designed using a reputation-based paradigm, it’s necessary to utilize a

reputation/trust model that is resistant to the well-known re-entry attack, that is, corrupted

players return to the scheme using new identities. Otherwise, our approach cannot be utilized

properly. We will discuss this in the next section.

4.5.1 Prevention of the Re-Entry Attack

To deal with the re-entry attack in our reputation-based scheme, we utilize the proposed

approach of rational trust modeling [102]. We provide a high-level description as how this

modeling technique works. Suppose there exist two trust functions as follows. The first

function f1(T
p−1

i ,αi) has two inputs, i.e., trust value T p−1
i of player Pi in period p− 1

and action αi (cooperation or defection) selected by player Pi in period p−1. This function

computes the updated trust value T p
i of player Pi for the next round p based on these two

inputs. However, the second function f2(T
p−1

i ,αi, `i) has an extra input value that defines

the player’s lifetime, denoted by `i. This extra input determines how long a player with a

reasonable number of interactions exists in a reputation-based scheme, for instance, our

proposed reputation-based mining framework.

Using the second function, the reputation-based scheme should then be designed in a way

that a player with a longer lifetime can be rewarded (penalized) more (less) than a player with

a shorter lifetime assuming that the other two inputs (i.e., current trust value and the action)

are the same. In this setting, “reward” means gaining a higher trust value/becoming more

trustworthy, and consequently, receiving a higher utility, and “penalty” means otherwise.

In other words, if two players Pi and Pj both cooperate αi = α j = C and their current trust
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values are equal T p−1
i = T p−1

j but their lifetime parameters are different, say `i > ` j,

the player with a higher lifetime parameter, gains a higher trust value for the next round,

i.e., T p
i > T p

j . This helps player Pi to accumulate more utility/revenue in the targeted

reputation-based framework.

To exemplify, consider a situation in which sellers in a reputation-based e-commerce

setting have options to sell the “defective” versions of an item with more revenue or the

“non-defective” versions of the same item with less revenue. If the first sample function

f1 is utilized in the scheme, it might be tempting for a seller to sell the defective items

with more revenue and then returns to the e-commerce framework with a new identity (i.e.,

re-entry attack). However, if the second sample trust function f2 is utilized, it’s no longer in

a seller’s best interest to sell the defective items because if he returns to the community with

a new identity, his lifetime indicator becomes zero and he loses all the credits that he has

accumulated overtime. Consequently, he loses a huge potential revenue that he could gain

because of his lifetime parameter, i.e., buyers always prefer a seller with a longer lifetime

(longer existence with a reasonable number of transactions) over a seller who is a newcomer.

We emphasize that this is just an example of a rational trust modeling. In fact, the second

sample function uses the lifetime parameter `i to enforce trustworthiness and prevent the

re-entry attack. Note that different parameters can be incorporated into trust functions or

reputation systems based on the context (e-commerce, mining in Blockchain, or whatsoever),

and consequently, different attacks can be prevented.

4.5.2 Technical Discussion on Detection Mechanisms

Detection mechanisms are required to reward or penalize miners in our reputation-based

setting. In the next part, we provide some discussions and mechanisms by which non-

cooperative actions by miners (e.g., block withholding, selfish mining, DDoS attack, eclipse

attack, stubborn mining, or upcoming attacks that are unknown) can be detected.

A mining pool can detect if is under a block withholding attack with a relatively high
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accuracy. In fact, calculation of the partial proof-of-work is much easier than calculation of

the full proof-of-work. Therefore, a mining pool can simply estimate its expected mining

power in addition to its actual mining power. As a result, any difference between the

expected and actual mining powers, which is above a certain threshold, can be an indication

of a block withholding attack.

To determine which registered miner is the perpetrator, there are two possibilities. First,

if the mining power of a miner/ally miners is high enough, the ratio of the full proof-of-work

over the partial proof-of-work can indicate whether the miner/alliance is committing to the

block withholding attack. Second, if the mining power is not high, the frequency of success

to find the full proof-of-work is very low, and statistically, we may not be able to define

if a miner is really committing to the block withholding attack. However, the latter case

has a negligible (close to zero) impact on the mining process and can be simply ignored,

i.e., block withholding attack by a single miner/miners with a low mining power cannot

negatively affect the fair mining process.

As suggested by Eyal and Sirer [87] who initially introduced the selfish mining, an

increase in the number of orphaned blocks can be an indication of selfish mining in the

Blockchain. Furthermore, the amount of time taken to release consecutive blocks in the

Blockchain can potentially provide evidence of selfish mining. This issue has been in-

vestigated by several researchers through experimental analysis 1. In other words, two

blocks in close succession should be a very rare incident when miners are honest, and this is

more common when a miner/a group of miners quickly releases selfishly mined blocks to

overcome the honest miners. As a result, it’s not hard to detect which miners are committing

to the selfish mining.

As stated in [89], the eclipse attack has several signatures and properties that make it

detectable, e.g., a flurry of short-lived incoming TCP connections from diverse IP addresses.

Moreover, an attacker that suddenly connects a large number of nodes to the Bitcoin network

1http://scienceblogs.com/builtonfacts/2014/01/11/is-bitcoin-currently-experiencing-a-selfish-miner-attack/
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could also be detected. Therefore, anomaly detection software systems that look for similar

behaviors can be helpful to detect the attacker. Likewise, there are many other techniques in

the security literature that can be utilized to detect the DDoS attack, stubborn mining, etc.

Besides, other methods might be used to detect bribes and illegal money exchanges

among registered miners in the transparent network of Bitcoin (unless they exchange bribes

outside of the Bitcoin network). This is how the government agencies usually detect

money laundering/illegal money exchanges in the traditional banking system. In other

words, detection of these bribes might be an indication of collusion; why miners from two

competing pools should frequently exchange money with a certain amount. This is just

another candidate solution outside of the scope of this thesis.

4.5.3 Colluding Miner’s Dilemma

In this section, we consider a scenario in which two miners (independent or from two

different alliances) have to decide whether to collude with an attacker to disrupt another

mining pool’s effort or not. Two collusion scenarios can be considered, i.e., a single miner

colludes with the attacker, or multiple miners form a coalition with the attacker. We consider

the latter case as it is the general case of the first scenario. It is worth mentioning that game-

theoretical paradigms are usually utilized to analyze interaction between honest parties and

attackers. However, we intend to model collusion between miners and an attacker in the

context of Blockchain’s proof-of-work. In our setting, we initially consider a 2-miner game,

named colluding miner’s dilemma, that may/may not collude with the attacker to disrupt the

mining efforts of a targeted mining pool. We further extend this scenario to a n-miner game

that is played repeatedly among all the miners of the Blockchain network for an unknown

number of rounds.

In the 2-miner setting, shown in Table 4.5.3, if both miners collude with the attacker,

they each gain one unit of utility. In other words, the attacker’s budget will be equally shared

between both miners. However, if one miner colludes with the attacker but the other one
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acts honestly, the colluding miner will receive two units of utility from the attacker. As a

result of this dilemma, collusion is a Nash Equilibrium meaning that miners always collude

because it’s in their best interest to gain a higher utility. This is a realistic assumption where

an attacker with a limited budget tries to disrupts the proof-of-work computation of a mining

pool in favor of another alliance. Note that the budget is limited because mining reward is

fixed in the Blockchain network.

m( jk,rk)

m( j′k′,r′k)
H : Honest Mining D : Dishonest Mining

H : Honest Mining (B0,B0) (B0,BΩ)

D : Dishonest Mining (BΩ,B0) (BΩ

2 ,B
Ω

2 )

Table 4.1: Payoff in Colluding Miner’s Dilemma

We approach the colluding miner’s dilemma by setting a socio-rational model [73, 74]

(that is, a repeated game among rational foresighted players with public reputation values

where these values directly affect players’ utilities overtime) in which:

1. Each pool manager sends invitations to miners to form his mining pool for the proof-

of-work computation. He not only tries to maximize his pool’s revenue but also

intends to protect his pool against any malicious activity. These invitations are defined

based on miners’ trust values using a non-uniform probability distribution.

2. On the other hand, the attacker uses his limited budget to collude with the miners, and

consequently, compromise the proof-of-work computation of a targeted pool.

In this setting, if a miner colludes with the attacker, he may gain some utility in the

current round of the game, however, that miner will be selected by the pool managers with

a lower probability in the future if his malicious activity is detected. This is due to the
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reduction of his reputation value, see [83, 84] for a trust/reputation management system.

Therefore, it will be in the best interest of the miners not to collude with the attacker because

a malicious miner will lose his public reputation, and consequently, he will lose many future

mining opportunities with a much larger gain.

4.5.4 Repeated Mining Game

We use a trust model that is resistant to the re-entry attack in a repeated game setting. The

miners try to maximize their utilities through the proof-of work computation as well as

collusion with the attacker, or any dishonest mining strategies. We show that, by using

our proposed model, cooperation (not-colluding with the attacker or committing to any

malicious activity) is always a Nash Equilibrium because of a long-term utility function

that we consider in our model in addition to a short-term utility function. Our model not

only rewards honest miners but also penalizes colluding/dishonest miners. For the sake of

simplicity and without loss of generality, two classes of actions are defined in our setting,

i.e., dishonest/collude as a non-cooperative action and honest/not collude as a cooperative

action, similar to [3].

The mining game is repeatedly played for an unknown number of rounds. Each miner

m( jk,rk) has a public reputation value rk, where the initial value is zero, and it is bounded as

follows: −1≤ rk ≤+1. In addition, each miner’s action α j ∈ {H ,D ,⊥}, where H and

D denote honest mining and dishonest mining respectively, and ⊥ denotes miner m( jk,rk)

has not been selected by any pool manager M(i,pi) in the current round. Finally, each miner

calculates two utility functions to select his action, i.e., a long-term utility function u j and

an actual utility function u′j. Note that each round of the game consists of a sequence of

block verification, for instance, after verifying a constant number of blocks or after a certain

amount of time.

1. Suppose we have a non-uniform probability distribution over types of miners, i.e.,

honest, dishonest and new miners. Each pool manager M(i,pi) sends invitations to a
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subset of miners based on this probability distribution in each round of the game.

2. Each miner m( jk,rk) computes his long-term utility u j, and then selects a new action

from the action profile, i.e., employ honest or dishonest mining strategies.

3. Each m( jk,rk) receives his short-term utility u′j, i.e., the actual reward that each miner

gains, at the end of each round of the game based on the proof-of-works’ outcomes.

4. The reputation values rk of the selected miners/ally miners are publicly updated based

on each miner’s/alliance’s behavior using a reputation system.

4.5.5 Colluding Miners’ Preferences

Let u j(~a) denote m( jk,rk)’s long-term utility in outcome~a by taking into account the current

and future games, and let u′j(~a) denote m( jk,rk)’s short-term utility in outcome ~a of the

current game. Also, let d j(~a) ∈ {0,1} denote if miner m( jk,rk) has employed dishonest

mining strategies in the current game, and define ∆(~a) = ∑i d j(~a), that is, the total number

of miners who have utilized dishonest mining strategies. Let r~ak(p) denote the reputation

of m( jk,rk) after outcome~a in period p; note that~a and~a′ are two different outcomes of our

repeated game.

Here are the miners’ preferences: di(~a) = di(~a′) & r~ak(p) > r~a
′

k (p)⇒ u j(~a) > u j(~a′),

that is, each miner m( jk,rk) prefers to sustain a high reputation value overtime despite of

employing honest or dishonest mining strategies as he can potentially gain a higher long-

term utility; di(~a)> di(~a′)⇒ u′j(~a)> u′j(~a
′), that is, if a miner m( jk,rk) utilizes a dishonest

mining strategy, he gains a short-term utility from the attacker, and finally; di(~a)> di(~a′) &

∆(~a)< ∆(~a′)⇒ u′j(~a)> u′j(~a
′), that is, if m( jk,rk) employs dishonest mining strategies and

the total number of dishonest miners in~a is less than the total number of dishonest miners

in~a′, the miner gains a higher short-term utility in~a.
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4.5.6 Colluding Miners’ Utilities

In our setting, the long-term utility function ui is computed based on the utility that each

miner m( jk,rk) potentially gains or loses by considering both current and future games, i.e.,

taking into account all stated utility preferences. However, the short-term utility function u′i

is only calculated based on the current gain or loss in a given time interval, i.e., taking into

account the last two utility preferences, as mentioned in Section 4.5.5.

Let ϕ j be the reward factor that is determined by each pool manager M(i,pi) based on rk

of each miner m( jk,rk), and let δ j(~a) = r~ak(p)−r~ak(p−1) be the difference of two consecutive

reputation values. Note that τ j =
∣∣δ j(~a)

∣∣/δ j(~a) is positive if the selected action in period

p is H : honest mining, and it is negative, if it is D : dishonest mining. Also, let Ω > 0

be a unit of utility, for instance, B50. To satisfy the miners’ preferences, we compute the

long-term utility u j(~a) through the following linear combination:

u j(~a) = Ω

(
τ jϕ j +d j(~a)+

d j(~a)
∆(~a)+1

)
. (4.1)

Note that the actual utility u′j(~a) only consists of the second and third terms, that is,

u′j(~a) = Ω(d j(~a)+d j(~a)/(∆(~a)+1)). The first term of the utility function denotes miner

m( jk,rk) gains or loses ϕi units of utility in the future games due to his behavior as reflected

in rk. This is due to τ j that depends on the miner’s reputation value rk. The second term

illustrates miner m( jk,rk) gains one unit of utility if he employs dishonest mining strategies

or colludes with the attacker in the current game and he loses this opportunity, otherwise.

Finally, the last term results in almost one unit of utility to be shared among all the dishonest

miners.

4.6 GAME-THEORETICAL ANALYSES OF OUR MODEL

In this section, we use game theory to analyze our proposed reputation-based mining

paradigm. We first consider a (2,2)-game that is played between two miners in order to

show honest mining always dominates dishonest mining in our setting. We further extend
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this analysis to a (n,n)-game that is played among n miners.

Theorem 1 In a (2,2)-game between two miners, honest mining H strictly dominates

dishonest mining D when we use utility function u j(~a), as defined in Eqn (4.1).

The proof for this theorem is similar to the analysis in chapter 3.

Likewise, if we assume ϕi is at least 1.5 (note that the minimum value is defined based

on the model’s parameters), the payoff matrix is as follows, Table 4.6:

m( jk,rk)

m( j′k′,r′k)
H : Honest Mining D : Dishonest Mining

H : Honest Mining (B1.5,B1.5) (B1.5,B0)

D : Dishonest Mining (B0,B1.5) (B−0.17,B−0.17)

Table 4.2: Game Between Two Miners

As shown, honest mining is always a Nash Equilibrium in our reputation-based mining

paradigm. To expand our proof to a case with n miners, let H j (or D j) denote m( jk,rk)

employs honest mining strategies (or dishonest mining strategies), and let H− j (or D− j)

denote, excluding m( jk,rk), all other miners utilize honest mining strategies (or dishonest

mining strategies), and finally, let M− j denote, excluding m( jk,rk), some miners employ

honest mining strategies and some of them utilize dishonest mining strategies.

Theorem 2 In a (n,n)-game among n miners, honest mining H strictly dominates dishon-

est mining D when we use the utility function u j(~a), as defined in Eqn (4.1).

The proof for this theorem is similar to the analysis in chapter 3.
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4.7 CONCLUSION

In this chapter, we proposed a new reputation-based mining paradigm for the proof-of-

work computation of Blockchain. We first illustrated the problem of dishonest mining,

demonstrated our proposed model, and subsequently, we provided a candidate solution

concept to the aforementioned problem. Note that, by dishonest mining, we refer to any

malicious activity against other mining pools or competitors, such as block withholding

attack, selfish mining, eclipse attack and stubborn mining, to name a few.

Our proposed mining game is repeatedly played among a set of pool managers and

miners where the reputation value of each miner or mining ally is continuously measured

by a trust management scheme that is resistant to the re-entry attack. At each round of the

game, pool managers send invitations only to a subset of miners based on a non-uniform

probability distribution defined by the miners’ reputations. It is worth mentioning that each

round of the game consists of a sequence of block verification, for instance, after verifying a

constant number of blocks or after a certain amount of time.

We showed that, by using our proposed solution concept, honest mining becomes a Nash

Equilibrium in our setting. In other words, it will not be in the best interest of the miners

to disrupt the proof-of-work computation or commit to dishonest mining even by gaining

a short-term utility. This is due to the consideration of a long-term utility function in our

model and its impact on the miners’ utilities overtime.
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CHAPTER 5

CONCLUDING REMARKS AND FUTURE DIRECTIONS

In this thesis two new game theoretic models were introduced based on the notion of

reputation-based trust within a repeated game. In chapter 3 we introduced a game-theoretical

solution concept that can be used to tackle collusion attacks in SDN based networks. In

our solution, a repeated-game setting utilizing a reputation system was used to incentivize

the defenders to not collude with the attackers. We illustrated the proposed model and

it’s components, and then we provided a new anti-collusion solution using a socio-rational

approach. We showed that cooperation with the SDN controller is always Nash Equilibrium

because of the long-term utility function of our model.

In chapter 4 we proposed a new reputation-based mining paradigm for use in the proof-

of-work computation in Blockchain. We discussed several problems that exist within the

Blockchain mining scheme when players are dishonest and proposed a solution to those

problems. In our proposed solution, we setup a repeated game where pool managers and

miners are observed and a trust management scheme which is resistant to the re-entry attack

is used to continuously measure the reputation value of each miner. In our repeated game

setup each round consists of a sequence of block verifications. As in chapter 3, we showed

that using the proposed solution, honest mining becomes a Nash Equilibrium meaning

that it will not be in the best interest of the miners to be dishonest by not adhering to the

proof-of-work computation protocol even though there may be some short term utility in

doing so.

While these methods do not necessarily prevent an attack from being successful, the

rules can be changed to disincentivize such attacks. Each and every attack has a cost, and

there is an expected return for a successful attack. By using our model the expected return is
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reduced to a level which make the return on investment of the attack negative, meaning that

it will cost more to perform the attack than the profit gained.

5.1 FUTURE DIRECTIONS

In the context of Bitcoin/Blockchain we are interested in implementing our proposed game

through a simulation-based approach using real data from the Bitcoin network.

Within the context of SDNs, we are interested in constructing new game-theoretical

paradigms to model cyber deception and collusion risks in SDN-based platforms. Similarly,

we will consider a SDN controller, a set of switches that act as defenders, and a group of

attackers who intend to compromise different parts of the network. The defenders’ goal

will be the protection of the targeted network by utilizing appropriate deceptive as well as

anti-collusion strategies. Subsequently, the defenders will gain utility if they select proper

actions from the action profile in order to deceive the attackers. We intend to provide new

solution concepts in which the attackers are incentivized by extra utility in order to act

according to the defenders’ strategies (i.e., deception). We will construct a two-player game

between “two attackers” and show that, in our model, selection of the deceptive action(s) is

Nash Equilibrium. We will further extend this two-player game to a game with any number

of attackers. In other words, in our future framework, the SDN controller and defenders

deceive the attackers by choosing a certain class of actions that have a higher short-term

payoff. Note that, in the presented work here, we considered a two-player game between

“two defenders” who may/may not collude with the attackers.

5.2 AN EXPANSION OF REPUTATION-BASED REPEATED GAMES

We would like to expand the notion of reputation-based repeated games to analyze and

improve other areas of network security such as WSNs, and wireless Ad-hoc networks.

Using the framework introduced here we could assign trust values to nodes within these

wireless networks to incentivize them to cooperate with the established protocols.
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Another related area of study is state sponsored cyberwarfare. The notion of a reputation-

based repeated game can be adapted to disincentivize these attacks by making the maximum

reward gained by the attack as little as possible.
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