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Abstract—As a result of the exponential growth in technology
and computing in recent years, autonomous systems are becoming
more relevant in our daily lives. As these systems evolve and
become more complex, the notion of trust in human-autonomy in-
teraction becomes a prominent issue that affects the performance
of human-autonomy teaming. Prior studies indicate that humans
have low levels of trust in semi and fully autonomous systems.
In this survey, we review a wide range of technical papers and
articles and go over the related experimental techniques in the
literature of trust. We also explain limitations that are present
in existing research works, and discuss open problems in this
domain. It’s apparent that trust management is critical for the
development of future artificial intelligence technologies.

Keywords—Trust management, autonomous systems; human-
robot interaction; self-driving cars; autopilot systems.

I. INTRODUCTION

The rapid growth of technology has resulted in automa-
tion of many daily tasks humans had to perform themselves
just decades ago. From industrial robots used in factories
to autopilot systems, automation continues to aid humans
with repetitive, tedious, and monotonous tasks. Every day,
automation introduces newer and more sophisticated concepts
and automated systems in different areas of our lives including,
but not limited to, our homes, daily commute, workplace, etc.

As automated systems evolve and levels of complexity rise
overtime, their presence in various daily activities of humans
leads to the development of new notions in human-autonomy
interaction, e.g., trust, satisfaction, frustration, to name a few.
Studies have indicated that one of the primary challenges for
successful integration of advanced autonomous systems and
artificial intelligence technologies in human civilization will
be the management and development of mutual trust [1].

The possible misuses and abuses that humans would bring
into automation technologies is another prominent issue in this
domain. According to [2], users can become overly dependent
on an automation technology, attempt to use functions that
are out of the scope of the system, or not monitor the
system properly. These are due to trust or distrust in these
technologies. This highlights the importance of educating those
who intend to purchase an autonomous technology, mainly
with respect to proper use of these technologies.

Furthermore, the usage of information that is given to users
with respect to an autonomous system is also important. In
[2], human subjects were given information sources regarding
usage of an autonomous system with faulty behavior. This
study revealed that, when more errors occur, the participants
will not use the information provided to them due to lack of
trust. Therefore, a proper trust management approach helps the
users to utilize such information even in the presence of errors.

Finally, consideration should be given to safety of au-
tonomous systems. Indeed, users tend to be unaware of func-
tions that an autonomous vehicle is capable of carrying out,
often due to the over complexity that appears throughout the
system. The authors in [3] state that safety would increase
with simplification and possible training through an interface
between autonomous systems and drivers.

We are therefore interested to further discuss on trust
in autonomous systems. In section II, we will discuss the
definitions of trust and autonomous systems. In section III,
we will provide a comprehensive analysis and explore the
related literature. We will go over experimental techniques
proposed by researchers in this field to understand human-
autonomy trust management. Finally, in section IV, we will
go through the limitations in the current literature and provide
our concluding remarks.

II. BASIC DEFINITIONS

A. Autonomous Systems

The definition of an autonomous system continuously
changes [4]. Merriam-Webster dictionary defines autonomy
as “The quality or state of being self-governing; especially,
the right of self-government.” The concept of autonomy has
existed for thousands of years in many different areas including
philosophy, sociology, and politics. It is worth mentioning that,
the second part of the autonomous term, i.e., nomos, means
law in Greek. Therefore, an autonomous system is an entity
that creates its own laws [5]. A more specific definition would
be, intelligent machines that are capable of performing tasks
by themselves and without explicit human control [6].

Although automation was introduced to human civilization
many years ago and it is widely utilized after the indus-
trial revolution [7], autonomous systems and industrial robots
are relatively new technologies that were introduced merely
decades ago. In this survey, our primary focus will be on
autonomous and semi-autonomous robots or machines, self-
driving cars, and autopilot systems. These are highly ad-
vanced forms of automated technologies. Furthermore, these
autonomous systems have high levels of self-awareness and
are capable of independently performing various tasks.

B. Trust and Its Measurement

Trust is a term that has many different definitions in
various contexts such as psychology, sociology, economics,
and computer science. Currently, there is no uniform definition
of trust [8]. Prior research indicates that there are over 300
definitions in various research areas, and in the context of
human-autonomy interactions, there are too many definitions
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and notions of trust. These notions include measurement of
trust [4], computational models of trust [9], and human-
inspired models of trust [10], to name a few. The formal
definition of computational trust can be defined as follows [11]:

Definition 1: Let T j
i (t) be the trust value assigned by Pj

to Pi in period t. Let Ti(t) : N 7→ R be the trust function that
illustrates how trustworthy Pi is, i.e., a mapping from natural
(cooperative or non-cooperative action) to real numbers:

Ti(t) =
1

n−1

n

∑
j 6=i

T j
i (t),

where −1 ≤ Ti(t) ≤ +1 defines the upper and lower bounds
of trust value, and Ti(0) = 0 determines the initial trust value,
which is assigned when interaction starts.

Indeed, this formal definition illustrates that trust can be
quantified and measured. Accordingly, actions or behaviors can
be modified. The ultimate goal in technological systems is to
have a quantifiable model of trust so that the system can be
responsive to human trust.

Oxford dictionary defines the notion of trust as “A firm be-
lief in the reliability, truth, or ability of someone or something
[12].” If we consider this simple definition, in our context,
the definition of trust would be: a strong human belief in the
reliability, truth, or ability of an autonomous system. Some
examples of trust in autonomous systems include trust in
robots, machines, self-driving cars, autonomous airplanes and
software agents.

III. TRUST BETWEEN HUMANS AND AUTONOMOUS
SYSTEMS

In this section, we review the related studies in four cate-
gories in order of publication date. The classification includes
trust in human-robot or human-machine interaction, trust in
self-driving cars, and trust in autopilot systems.

A. Trust in Human-Machine Interaction

Muir [13] provided an analysis on trust in human-machine
interaction from a psychological perspective. The author illus-
trated how trust is evolved when Decision Support Systems
(DSS) are used. DSS are computer programs that assist an
individual or an organization when making decisions. These
decisions include ranking important documents, buying and
selling stocks quickly, choosing a target market, and many
other important decisions [14]. Since DSS have a high impact
on some critical decisions, the user’s trust in such systems
becomes a crucial factor when designing decision support
systems. The author initially analyzed the psychological trust
models among humans and then developed a human-machine
trust model. In this model, the concept of trust calibration
is introduced in which the user has the responsibility of
calibrating their trust based on the reliability of the decision
support system. The author suggested that there are certain
factors and design goals that should be considered in order to
better calibrate trust when designing decision support systems.
These factors are as follows:

1) Aiming to improve the user’s perception of trustworthi-
ness of decision support systems: This would require

the users to understand how a DSS works, and also, to
become familiar with the predictability of the system’s
decisions. The author recommended that this can be
achieved by putting each user on a trial period of using
a DSS to improve the user’s perception. A candidate
solution would be the use of a simulation environment
so that the user can freely explore the DSS without any
fear or concern related to wrong or dangerous decisions.

2) Modifying the decision support systems’ criterion of trust-
worthiness: In order to achieve this, the DSS has to
provide a history of efficiency and good performance. It
was recommended that the users have access to statistical
data such as the system performance.

3) Continuous identification and fixing the causes of poor
trust calibration: In order to improve the trust between
humans and machines, the system (or developers) should
detect bad trust calibrations and fix them. This study
indicated that some of the main causes of low trust might
be due to incorrect expectations of the users. Thus, the
calibration training for the users is crucial.

Another fascinating study, which examined the role of
trust in decision support systems and autonomous aids, was
conducted by Madhaven and Wiegmann [15]. Since the role
of DSSs and autonomous aids for making critical decisions
has been significantly increased overtime, this paper proposed
a framework by which human trust in autonomous aids can be
increased overtime. The proposed trust framework utilizes the
psychological traits that affect trust among humans. It uses
these traits to provide a set of instructions for the DSS so
that human trust is increased. The outcome of this research
contributed to the identification of several important psycho-
logical factors such as favoritism (human vs. robot partners)
and subjective bias in users, which affect human-robot trust
relationship. These variables are critical for the development
of decision support systems as well as autonomous systems
that interact with humans.

Factory automation is another line of research in this
domain. Lee and Moray [16] executed an experiment to
characterize variation of operator’s trust during an interac-
tion with a semi-automatic pasteurization plant. The authors
investigated the relationship between changes in operators’
control strategies and trust. In the same line of research and
based on [17], Muir [18] conducted two experiments to test
the influential variables in human-machine trust, and provided
experimental analysis on the theoretical trust model proposed
a few years earlier. The results of these experiments indicated
that the perception of competence of an autonomous system
relates to the amount of trust a user may have in the system. For
example, if a user detected that the system might be incapable
of doing its job, i.e., incompetence, they would manually
take control of the system, as a result, their trust would
drastically decrease. Another finding of this study indicated
that the amount of monitoring the autonomous system will
decrease if the level of trust in the system increases. The
author suggested that the findings in this research could be
used by industry professionals to determine which properties
of autonomous systems could have vulnerabilities that might
display incompetence and lower human trust. By doing that
and predicting the patterns of human trust, they would be able
to increase the overall effectiveness of the autonomous system.
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Dassonville et. al. [19] investigated the issue of trust within
the context of a teleoperation system, which is a type of system
in which human operators control a machine/system from a
distance. The authors first analyzed the role of trust in human
relationships and then extended this study to human-machine
systems. They also conducted experiments on the role of self-
confidence in human-machine interactions. A teleoperation
system is simply composed of three components as follows:

1) Master universe: The master universe is the environment
in which the operator resides in. An example of this
would be a military drone operator sitting in a container
in the middle of a desert and controlling a strike drone
somewhere far away in a combat zone.

2) Slave universe: Similarly, the slave universe is the envi-
ronment in which the machinery or the system operates
through the operator’s commands. This universe is com-
posed of hardware and a group of sensors.

3) Space between the master universe and the slave universe:
The space between the master universe and the slave
universe contains data transmission (e.g. Internet), fast
computers, and decision control systems.

In this study, a simulated experiment was performed by
having an operator to use a joystick (master universe) that was
connected to a computer (space in between) to control a cursor
on the screen (slave universe). This experiment was conducted
on two student populations of literature studies and scientific
studies. The study discovered that the first population appeared
more self-confident in operating the machine, however, both
groups had similar levels of trust in the system.

In [20], Moray and Idnagaekri analyzed how trust in au-
tonomous systems leads to a lower level of human supervision.
They discovered that as human subjects become more reliant
on the system, a decrease in constant monitoring occurs. This
study also scrutinized the situation in which participants overly
trusted a targeted autonomous system, which could lead to
malpractice in some cases.

The authors in [21] conducted a study based on effects of
continuous and discrete malfunctions within autonomous sys-
tems. The study had two parts. The first section tested human
participants based on continuous and discrete faults separately,
whereas the second part intertwined two malfunction types.
These experiments found a significant decrease in trust after
five continuous failures. However, there was no significant
reduction in trust after one discrete malfunction. The results
of this study demonstrated how trust was dissipated and how
users relied on autonomous systems based on previous faults.

Dzindolet et. al. [22] performed an experiment to improve
trust in autonomous systems. This study involved participants
detecting a soldier camouflaged in an area. They had the option
of manually guessing whether the soldier was there, or have
assistance from an automated aid. The first study measured
human trust in the system before any interaction with the
system. The results indicated that the operator would trust
the system that had higher approval ratings and fewer errors.
The second study compared the number of mistakes the user
made to the number of errors produced by the system. To
accomplish this, two separate groups were selected. One group
had a system that made twice as many errors as the user, and

the other system made half as many errors as the user. The
result demonstrated that those who had more errors were more
inclined to stick to their decision.

Finally, Merritt [23] examined the importance of consider-
ing differences in human behaviors in the context of human-
automation interaction. The author conducted an empirical
study by providing an experiment related to X-ray screening.
Subjects were asked to use a simulation software to detect
dangerous items such as weapons in luggage. They were given
the options of scanning the x-ray image manually and flagging
it if they spot anything suspicious, or have a fictional au-
tonomous system, called Automatic Weapons Detector (AWD),
to examine the image and, consequently, report any issues.
This study found that the individual differences in subjects
affect the value of trust in autonomous systems, even if the
characteristics of the autonomous system is constant. This
study suggests that future researchers should consider human
characteristics when designing experiments for trust analyses
and measurements.

The summary of this section’s results is shown in Table I.

B. Trust in Human-Robot Interaction

Murphy et. al. [24] investigated the use of autonomous
rescue robots in combat situations as well as cases where
victims were unable to be reached, for instance, victims stuck
in earthquake rubble. In this study, the purpose of the rescue
mission was to find the victims, check for vital signs, and help
the victims until they are rescued. The study discovered that
the success of these robots simply depend on victims’ trust. In
other words, it was crucial that the victims allow the robot to
help and collect data for an optimal recovery and assistance,
which could be achieved if a high level of trust was established.

Human trust also depends on the failure rate of the au-
tonomous systems. For instance, a study of commercially avail-
able ruggedized robots operating under field conditions showed
a Mean-Time-Between-Failures (MTBF) of 12.26 hours and an
availability rate of 37% [25]. This finding indicates that if the
robotic systems reduce their failure rates, their reliability will
increase, and subsequently, the confidence in their performance
will increase. It is apparent that, due to recent advancements
in technology, the mean-time-between-failures has been de-
creased in autonomous systems even outside of the robotics.

Parasuraman and Miller [26] investigated the concept of
trust and etiquette in the domain of Human-Robot Interaction
(HRI). Given that respect and etiquette highly affect the level
of trust in many human-to-human social interaction scenarios,
the authors argued that these factors also have impacts on
perception of humans with respect to autonomous robots. In
this study, etiquette is described as a set of prescribed and
proscribed behaviors that permits meaning and intent to be
ascribed to actions. This study also conducted an experiment
related to the role of etiquette in HRI. Human subjects
used a flight simulator software, called Multi-Attribute Task
(MAT), and communicated with the autonomous system using
different communication styles such as interrupting the user,
being impatient, etc. The empirical evidence obtained by this
experiment showed that etiquette affects human trust as well
as the reliability of autonomous robots.
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TABLE I. TRUST IN HUMAN-MACHINE INTERACTION

Reference Summary Approach Concentration

[13] User has the responsibility of calibrating their trust based on the
reliability of the decision support system

Analytical Trust calibration in decision support sys-
tem

[15] Introduced an advanced framework to improve trust overtime Trust framework Decision support systems

[16] Changes in operators’ control strategies and their connections to trust Simulated semi-automatic pasteuriza-
tion plant

Control strategies for autonomous sys-
tems

[18] If a user detects the system might be incapable of doing its job, they
would manually take control of the system

Simulated semi-automatic pasteuriza-
tion plant

Incompetence of autonomous systems

[19] Investigated the role of self-confidence and trust in teleoperation
systems

A joystick and a computer Trust and teleoperation systems

[20] Theoretical trust models and past experiments were explored and
summarized

Survey-based Human-machine interaction

[21] Demonstrated the changes in trust based on past failures Simulated pasteurization plant Malfunctioning and its impact on trust

[22] Trust is a critical factor in automation reliance decisions Slides and graphs were shown to test
human subjects

Automation reliance

[23] Different people have various levels of trust toward an autonomous
system despite of its constancy

X-ray screening simulation User perceptions of trust

Fig. 1. Autonomous and semi-autonomous robots used in battlefields [28].

Stormont [27] showed a low level of trust in HRI. The
author investigated the factors that affect trust between humans
and robotic systems. He discovered that one of the reasons for
such a low level of confidence in autonomous systems is due to
their low level of reliability. The author also discovered that un-
predictability is another factor affecting trust between humans
and autonomous systems. He argued that, in various hazardous
circumstances such as battlefields - as shown in Figure 1 -
and rescue missions, the unpredictability of robots becomes
a significant problem for human supervisors. Although the
autonomous nature of robots and their quick decision making
are known as positive traits, the problem arises when life and
death of humans will depend on the choices of a robot. Indeed,
questions such as “Should life and death decisions be made by
an autonomous system?” have been in the center of attention
by many researchers. The same study executed a simulation
of robots assisting firefighters in a hazardous fire situation.
The simulation showed that, even though firefighters did not
initially trust these robots, their reliance and trust in the robots
increased as the mission progressed and they became tired. As
a result, they finally let the robots to extinguish the fire.

The authors in [29] investigated how culture and appear-
ance might have an impact on trust. The team sampled partic-
ipants from China, Germany, and Korea to analyze different
cultural backgrounds. The participants were asked to interact
with a robot that knew the culture of participants’ countries.
The results were scaled based on likeability, engagement, trust,
and satisfaction. The outcomes demonstrated that the robot

appeared differently to each participants, thus showing the
need for increased concentration in different areas. Producers
may use this information to create their robots more unique
to specific regions and cultures to improve trust and demand
within the communities.

Hancock et. al. [30] provided a comprehensive analysis of
factors affecting trust in human-robot interaction. This study
classified factors affecting trust in HRI into three different
categories, i.e., human, robot, and environment, as shown in
Figure 2. Human-related factors include training, expertise,
situational awareness, and demographic information. Similarly,
robot-related factors are behavior, dependability, reliability,
level of automation, failure rates, false alarms, transparency,
and attribute-based factors such as location, personality, adapt-
ability, robot type, and anthropomorphism (having human
traits). Finally, environmental factors include teamwork, cul-
ture, communication, shared mental models, task type, task
complexity, and multi-tasking. This paper discovered that robot
performance has the highest impact on human trust.

Yagoda and Gillan [31] proposed a new mechanism for
measuring the value of trust in the context of HRI. This
measurement was based on multiple factors such as team
configuration, team processes, context, task, and system. The
proposed trust measuring mechanism was developed using two
experiments. The results of these two studies were combined
to create a new HRI trust measuring tool.

Penders et. al. [32] investigated HRI in “no-visibility”
conditions, which means the human subjects might be visually
impaired or blind. Therefore, they would have to trust the robot
completely. This study analyzed the interactions of visually im-
paired people with their guide-dogs and examined the variables
that could be utilized in the design and behavior of robots for
improvement of human trust. These variables include human
dominance, cooperation overtime, and accountability. It is
worth mentioning that Castelfranchi and Falcone [33] inves-
tigated how “control” affects trust negatively. Their research
discovered that human trust will decrease if a participant is
forced to take control of an autonomous system. We do believe
that this is a prominent issue that should be considered in no-
visibility conditions.
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Fig. 2. Trust factors identified by Hancock [30].

Wang et. al. [34] investigated the human-robot trust in the
context of underwater semi-autonomous robots. To increase
the performance of a submarine robot, the operator’s trust
in capabilities of the submarine robot must be established
and sustained. This study proposed a trust model that mainly
deals with recording the robot’s past performance, the human
performance, and the fault rates of humans and robots. A semi-
autonomous robot, known as YSI EcoMapper AUV, was tested
in this study. The authors show the effectiveness of this trust
model through a simulation-based approach.

An essential aspect of improving human trust with respect
to robotic systems is the real-time measurement of the emo-
tional response of human subjects. If the artificial intelligence
technologies can learn and interpret the emotional states of
human, they will be able to adjust themselves accordingly
to be responsive to those emotional states. Hu et. al. [35]
provided a trust sensor model that utilizes psychophysiological
measurements of human subjects. The objective of this project
was to find out if psychological factors of humans captured
through sensors, such as Electroencephalography (EEG) and
Galvanic Skin Response (GSR), can be used to manage trust
in the context of human-robot interaction. After a series of
experimental studies, statistical analyses and classification,
this study concluded that psychophysiological measurements
could be used to measure trust in humans. However, the
mean accuracy of this claim was 71.57%. Therefore, this
method cannot be used for all humans. The authors believe that
consideration should be give to human subjects’ demographic
information in any experimental study.

Finally, due to technological advancement in recent years,
care-giving robots are becoming popular and common in our
lives. As a result, trust in these robotic systems is a prominent
issue from consumers’ perspectives. In a recent study [36],
[37], the authors measured the levels of trust, satisfaction, and
frustration in the context of care-giving robots by designing
several experiments in which human subjects interacted with
a Baxter robot through a sequence of trust-building or trust-
damaging incidents. In this study, various scenarios were

tested, for example, delivering an object with different speeds,
accidentally dropping the object, etc. The authors discovered
that performance of the assistant robot affects the human trust,
satisfaction and frustration when a sequenced of structured
incidents are considered.

The summary of this section’s results is shown in Table II.

C. Trust in Self Driving Cars

Autonomous driving has been advancing rapidly in the
recent years due to technological advancements in software and
hardware platforms, artificial intelligence, and sensor and radar
systems. Car manufacturers along with high tech companies
(e.g., Tesla, Mercedes-Benz, BMW, Porsche, Volvo, Ford,
Waymo, Uber, etc) have already created commercially avail-
able semi-autonomous cars and fully autonomous prototypes.
They intend to mass produce Self-Driving Cars (SDC) in early
2020s [38]. One major challenge in popularizing self-driving
cars in the US and the world is the average consumers’ high
level of distrust in fully automated vehicles.

Uggirala et. al. [39] analyzed trust in a situation in which
the users were given information about the capacity of the
autonomous vehicle. This study aimed to decrease uncertainty
to optimize system performance by having the users to be
knowledgeable about the functions that the autonomous car
can perform. The participants went through training to become
familiar with the system. Subsequently, they had to judge
whether or not the vehicle would be capable of efficiently
completing certain functions given reference lines. This study
concluded that, when users are knowledgeable about the sys-
tem, their trust in the system increases.

The authors in [40] conducted a study related to the ability
of self-driving cars in snow conditions. In this study, 59 drivers
were chosen to sit in an autonomous simulator cockpit. One
group of drivers were given information about the risks and
uncertainties of the SDC when driving in heavy snow condi-
tions, whereas the other group of drivers did not know anything
about the ability of the SDC. This experiment indicated that the
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group of drivers who were knowledgeable about the risks and
uncertainties did not trust the SDC and preferred to override
the system in order to drive the car manually. However, the
other group didn’t override the autonomous system to drive
the car manually and had more trust in the system.

In [41], Howard focused on factors affecting trust in self-
driving cars. The author examined the attitude of average
consumers towards SDCs. This research discovered that most
consumers have positive feelings toward the ease of use
that comes with self-driving cars. In the context of fully
autonomous vehicles, users wouldn’t have to feel frustrated
when driving in heavy traffic or finding parking in busy areas.
One can imagine that, at some time in the future, commuters
will be able to take naps or watch movies while the car drives
them to wherever they desire. The author also discovered that
most individuals have concerns regarding the cost, liability,
and the potential loss of control in SDCs. Income and gender
are other variables that affect the consumer attitude towards
SDCs. For example, subjects with higher levels of income were
more concerned about liability, but subjects with lower levels
of income were more concerned about loss of control.

Carlson et. al. [42] conducted a statistical analysis in the
domain of autonomous vehicles and autonomous diagnostic
systems. They created an online survey and asked human
subjects about various scenarios related to self-driving cars
and usage of IBM Watson in critical medical situations (e.g.,
to determine types of cancer). It was discovered that most
test subjects had concerns regarding the past performance of
the car, reliability, errors, software/hardware failures, and the
liability of the car manufacturer. Similarly, it was discovered
that top factors that affect trust during the usage of IBM
Watson in critical medical situations are accuracy and past
performance. The result of this study indicated that, regardless
of the domain, most people tend to prioritize safety, efficiency,
and failure rates when deciding to trust an autonomous system.

Kyriakidis et. al. [43] created an international questionnaire
related to the public opinion of automated driving. Ques-
tions consisted of concerns, acceptance, and willingness to
purchase a self-driving car. Among 5000 participants from
109 countries, most subjects agreed that fully automated cars
have the potential to be very popular among consumers by
2050. However, the majority of subjects were concerned about
safety, malicious activities/hacking, and legal issues related
to autonomous vehicles. The authors also found that most
of the educated subjects had more income and were located
in developed countries. This class of human subjects were
uncomfortable with the self-driving cars transmitting data to
external sources. They were also concerned about the mali-
cious usage of the transmitted data.

The authors in [44] explored the possibilities of developing
trust in self-driving cars using techniques that are currently
available. This study argued that SDCs aim to make our lives
easier and reduce the number of accidents. However, in many
situations such as unpredictable hazards and intense weather
situations, human driver’s reactions are superior and needed.
Testing was discovered to be a critical aspect of determining
if the car is trustworthy enough to be on the road or has the
potential to develop its trust overtime. Self-driving cars utilize
machine learning and image processing techniques to provide
functions like detection of pedestrians or stop signs. It was
argued that many people require a very high accuracy in the
functions of their SDCs (close to 100%), but machine learning
algorithms cannot produce such accurate results.

Butakov and Ioannou [45] suggested that the levels of
comfort and trust of users will increase if the design and
dynamics of autopilot systems in cars are closer to what they
are in regular vehicles. In this study, the authors analyzed and
presented a methodology that allows custom modification of
autopilot modes such as adaptive cruise control and automatic
lane change systems based on individual preferences.

TABLE II. TRUST IN HUMAN-ROBOT INTERACTION

Reference Summary Approach Concentration

[24] Success of the rescue robots depend on trust of the victim whom they
are assisting

Survey-based Rescue robots

[25] If robotic systems reduce their failure rates, their reliability will
increase

Simulator based on robot behavior Improving trust by reducing failure rates

[26] Etiquette affects human trust as well as the reliability of autonomous
robots

Flight simulator Impact of etiquette on trust

[27] Unpredictability of robots affects trust Computer simulation based on a fire-
fighting scenario

Military and hazardous environments

[29] The appearance of a robot affects human perception and trust Lego Mindstorm NXT robot pro-
grammed

Trust and cultural differences

[30] The performance of robots has the highest impact on trust in the
context of human-robot interaction

Survey-based Human-robot interaction

[31] Created a trust measuring tool for human-robot interaction Subject matter experts Trust measurement

[32] To enhance trust in human-robot interaction, a number of design
choices need to be made

Visually impaired person and a guide
dog

Improving trust in human-robot interac-
tion

[33] Control on autonomous systems increases or decreases trust depending
on the circumstances

Cognitive analysis Trust and artificial intelligence

[34] If humans trust a robot, its performance will increase YSI EcoMapper autonomous underwa-
ter robot

Trust and semi-autonomous robots

[35] Psychophysiological measurements can be used by artificial intelli-
gence to measure human trust

Human subject study involving 31 hu-
mans using EEG and GSR

Psychophysiological measurements and
trust

[36][37] Performance of a robot directly affects trust, satisfaction and frustration Human subject study involving 10 sub-
jects using an assistant robot

Trust, satisfaction, and frustration
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Payre et. al. [46] conducted an experiment and analyzed
how alternating levels of trust would affect a driver’s reaction
time. The main objective of this experiment was to measure
time for the Manual Control Recovery (MCR) when emergency
situations arise in fully autonomous cars. These cars are
certified and eligible to be used by drivers with a standard
driver license. Nonetheless, the drivers are still accountable
for their vehicles, regaining MCR in the case of emergency,
and being in the driver’s seat with their seat-belt buckled at all
times. This study demonstrated that higher trust levels in fully
autonomous cars resulted in slower reaction times, which can
create a hazardous environment for drivers. This experiment
can help companies become more aware of problems that over-
trusting can cause.

Akash et. al. [47] presented a gray-box modeling approach
that has the capability of capturing different variations of hu-
man behavior related to human-machine trust. In an experiment
involving 581 human subjects, the authors utilized a computer
simulation platform by which human subjects were shown
an obstacle detection system (as used in self-driving cars)
and were asked if they trust or distrust the image processing
algorithm used in the system. The study discovered that human
trust significantly decreases in faulty scenarios. An observation
of this study was that the amount of trust in the system
slightly increases after around 8 to 10 trials when a negative
experience has already lowered their trust. Additionally, this
study investigated the effects of national origins, culture,
and gender on the level of trust. The results indicated that
Americans usually have less trust in autonomous vehicles
compared to people from other nationalities such as Mexicans
and Indians. This finding matches previous discoveries in this
domain. The overall conclusion of this study suggests that a
perfect autonomous system should be able to collect data (e.g.,
psychological factors, demographic information, etc.) from its
users and use that data to maintain and improve trust.

Finally, Daziano et. al. [48] investigated the willingness
of consumers to purchase self-driving cars by conducting an
online experiment over 1260 human subjects all around the
world. After analyzing the data, it was estimated that the
average household tends to pay about $3,500 more for partial
automation, and $4,900 for full automation when purchasing
a new vehicle. This research also found that the preferences
of consumers with regards to different levels of automation
(i.e., low, semi, full) highly varies. A significant portion of
participants even preferred to pay more than $10,000 extra
for fully automated vehicles. Based on the information from
this study, we can observe a pattern in consumers’ behavior,
which suggests that the public interest in self-driving cars is
increasing rapidly. We believe that this public interest will
spike in the near future as issues such as trust between humans
and self-driving cars as well as reliability of autonomous
technologies are resolved.

The summary of this section’s results is shown in Table III.

D. Trust in Autopilot Systems

In the final part of our survey, we mainly focus on human
trust in systems with autopilot capabilities.

de Vries et. al. [49] showed how planned routes in manual
and automatic modes affected trust. This experiment had a

group of participants to plan a route and then choose to
complete it manually and automatically ten times each. The
study proved that automatic failures had more negative impacts
on trust compared to manual failures. Participants were more
likely to forgive themselves for the error they had committed
than the failures that happened during automatic mode. The
results demonstrated a bias towards participants trust in manual
mode as opposed to automatic mode.

In [50], the authors conducted research on human trust
with respect to air traffic management systems. They provided
guidelines and strategies for improving trust in autopilot sys-
tems overtime. They argued that air traffic control operators
currently utilize many automated and semi-automated com-
puter tools and more usage of fully automated systems is
anticipated in the near future. Thus, the operators will have
to trust components of autonomous (or fully autonomous) air
traffic management systems, for instance, radar systems and
communication tools. The procedure to improve the afore-
mentioned issue can be formed through multiple development
phases as follows:

1) Developing systems by experienced air traffic controllers.
2) Providing high-quality simulations.
3) Providing training for the controllers.
4) Transitioning period for the controllers.
5) Keeping the old technology for the case of failures.

Jiang et. al. [51] discovered that there is a direct correlation
between the specific type of errors that occurs and operators’
trust in the autonomous system. In this study, the participants
were monitored throughout a week. The first day was solely
based on training to recognize errors and functions of the
system. During the rest of the trial, the team examined how
participants felt about false alarms, given by high-risk systems.
The results demonstrated that there was a significantly greater
decrease in trust towards systems that continuously outputted
false alarms.

In an experimental study [52], the authors investigated the
methods in which human subjects were able to judge the
performance of complex autonomous systems. To accurately
investigate this, the participants were put through training that
would train them on measuring the accuracy and performance
of airplanes. The participants were then asked to analyze an
airplane’s performance and rate it as friendly or hostile based
on the measured speed, altitude, range, and time in the air. The
results of the study were relatively accurate post training, and
they demonstrated that the judgments became accurate when
participants learned what they were looking for in complex
autonomous systems.

Finally, Winter et. al. [53] investigated distrust of humans
with respect to autonomous airplanes. In this study, human sub-
jects were asked if they prefer to be on a commercial airplane
with two pilots (a pilot and a co-pilot), an airplane with a pilot
in the cockpit and a co-pilot working remotely, or an airplane
with both pilots controlling the aircraft remotely. The authors
expressed that the human subjects would have a high degree
of discomfort if they were on a fully autonomous commercial
airplane with both pilots just overseeing the movements and
controlling the airplane remotely. They also mentioned that the
subjects would have a high degree of distrust when only one
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TABLE III. TRUST IN SELF-DRIVING CARS

Reference Summary Approach Concentration

[39] When users are knowledgeable about an autonomous system, their
trust in the system increases

The participants went through training
to become familiar with the system

Training and education

[40] Drivers who are knowledgeable about risks, when driving in snow
conditions, do not trust self-driving cars

An autonomous simulator cockpit Knowledge about risks and uncertainties

[41] Consumers have positive feelings toward the ease of use that comes
with self-driving cars

Survey-based Factors affecting trust in self-driving
cars such as gender and income

[42] Past performance, reliability, errors, software and hardware failures
will affect trust

Online survey Impacts of safety, efficiency, and failure
rates on trust

[43] Self-driving cars will be popular, however, users are concerned about
safety, hacking, and legal issues

Survey-based The future of self-driving cars and major
concerns

[44] Unpredictable hazards are still an issue that needs to be resolved N/A Self-driving cars and safety

[45] Level of trust increases if the design and dynamics of SDC are closer
to what they are in regular vehicles

Data collection from an experimental
self-driving cars

Autopilot personalization

[46] Over-trust is an issue and can potentially cause hazardous situations Visual channels and 10 screens in order
to analyze reaction time of users

Educating consumers on the proper time
to regain manual control over vehicle

[47] A model to capture the dynamic variations of human trust Experiment involving 581 subjects Dynamic trust and impacts of demo-
graphic information

[48] Consumers are willing to pay significantly more for autonomous
features

Experiment involving 1260 subjects Consumer behavior

pilot was in the cockpit. This study also discovered that the
human trust in autonomous airplanes is related to the culture of
humans. For example, the test subjects from India felt more
comfortable if they were on a fully autonomous aircraft as
opposed to subjects from the United States. The authors found
that this difference could be due to the collectivist Indian
culture as opposed to the Individualist American culture.

The summary of this section’s results is shown in Table IV.

IV. CONCLUSION AND FUTURE DIRECTION

In this survey, we thoroughly reviewed the existing litera-
ture of trust in autonomous systems. We went over technical
papers/articles that examined trust between humans and robots,
machines, self-driving cars, and autopilot systems. Many of
the reviewed studies provide new discoveries as well as rec-
ommendations to manage and improve trust between humans
and fully or semi-autonomous systems. The literature on trust,
however, is still very broad and does not address concrete trust
issues that are currently present, for instance, how all existing
discoveries can be translated to computational trust models that
are understandable to machines. New research directions and
novel methodologies can potentially provide a solid platform
to develop well-performing autonomous systems.
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