
Social Secret Sharing in Cloud Computing Using a
New Trust Function

Mehrdad Nojoumian and Douglas R. Stinson
David R. Cheriton School of Computer Science

University of Waterloo
Waterloo, Ontario N2L 3G1, Canada

mnojoumi@cs.uwaterloo.ca, dstinson@math.uwaterloo.ca

Abstract—We first review the notion of social secret sharing
and its trust function. We then illustrate how this construction
can be used in cloud computing to create a self-organizing
environment. In fact, we show distributed secure systems using
threshold secret sharing can be adjusted automatically based on
the resource availability of the cloud providers. Accordingly, we
propose a new trust function with social characteristics in order
to improve the existing social secret sharing scheme.

Keywords: trust modeling, secret sharing, cloud computing.

I. INTRODUCTION

In a secret sharing scheme, a secret ξ is divided into n
shares in order to be distributed among a set of players.
Subsequently, an authorized subset of players collaborate to
reconstruct the secret [1] [2]. In particular, a (t, n)-threshold
secret sharing (TSS) scheme consists of two phases: sharing
and recovery. All computations are performed in a finite field
Zq where q is a prime number:

1) Secret Sharing: a dealer selects f(x) ∈ Zq[x] of degree
t − 1 such that f(0) = ξ is the secret. The dealer then
sends shares f(i) to Pi for 1 ≤ i ≤ n, that is, different
points on the secret sharing polynomial f(x). He finally
leaves the scheme.

2) Secret Recovery: subsequently, any subset ∆ of at least
t players can collaborate to reconstruct the secret by
Lagrange interpolation in the absence of the dealer:

f(0) =
∑
i∈∆

(∏
j∈∆,j 6=i

j

j − i
× f(i)

)
.

Any t players can combine their shares to reveal the secret
but no set of t − 1 parties can learn the secret. An example
of this scheme is provided in Appendix VI-A. In fact, secret
sharing is one of most important primitives used in different
cryptographic constructions, for instance, in secure multiparty
computation (MPC) where various players cooperate to jointly
compute a function based on the secret data they each provide.
As an example, we can refer to first-price sealed-bid auctions
in which the maximum bid is determined while the losing bids
are kept private [3].

For further technical discussions, we first review various
types of adversarial models. We then recall three kinds of
secret sharing schemes.

• Passive versus Active Adversary: in the former case,
players follow the protocols correctly but they are curious
to learn the secret (a.k.a honest-but-curious adversary). In
the latter case, players may deviate from the protocols
(e.g., to prevent the secret recovery or reconstruct an
incorrect secret) while trying to learn the secret.

• Static versus Mobile Adversary: the former refers to an
adversary who corrupts the players ahead of time whereas
the latter refers to an adversary who corrupts the players
while the protocol is executing.

• Computational versus Unconditional Security: in the for-
mer case, security of the protocols relies on computa-
tional assumptions (for instance, the hardness of factoring
or discrete logarithm), whereas in the latter case, the
adversary has unlimited computational power.

Next, we show how various secret sharing schemes are
designed to deal with different adversarial models.

In a verifiable secret sharing (VSS) scheme [4], players
can verify the consistency of the shares in both sharing and
recovery phases. The authors in [5] [6] provide the first un-
conditionally secure VSS when t < n

3 with a zero probability
of error. In this setting, each pair of the players are connected
with a secure private channel. To tolerate a higher threshold
t < n

2 , the authors in [7] [8] assume the existence of both
private channels and a broadcast channel. This protocol has a
negligible probability of error. To simplify these constructions,
the authors in [9] [10] propose verifiable schemes based on
symmetric bivariate polynomials in an unconditionally secure
setting. These protocols also assume the existence of private
channels and a broadcast channel where t < n

4 .
The notion of proactive secret sharing (PSS) is proposed

in [11], where the shares of the players are updated without
changing the secret. This can be done by adding the shares of a
new polynomial g with zero constant term to the shares of the
original secret sharing polynomial f with constant term ξ. As
a result, the new secret sharing polynomial will be f̂ = f + g
where f̂(0) = ξ. In other words, players frequently change
the secret sharing polynomial to deal with a mobile adversary
[12] who can incrementally collect the shares of the players
while the protocol is executing. An example of proactive secret
sharing is provided in Appendix VI-B.

To assign multiple shares rather than a single share to some
players, weighted secret sharing (WSS) is introduced in [13].
Suppose in a company, the secret key of the safe deposit
box is shared among chief executive officer, director, and two
managers. Let assume these parties receive 4, 3, 2, 2 shares
respectively on a polynomial of degree 5. As a result, the
chief executive officer can open the safe deposit box with the
director or one manager but the other parties can only open it
if they all collaborate. Indeed, weighted secret sharing is used
to prioritize different players in a hierarchy structure.

A. Motivation and Contribution

We illustrate how social secret sharing (SSS) can be applied
in distributed secure systems using cloud computing infrastruc-
tures. Moreover, we intend to improve social secret sharing by
proposing a new trust function.

Therefore, as our contributions, we first explain a scenario
in which this cryptographic primitive can be used to create
a self-organizing protocol in the cloud. In fact, we show a
distributed system can be reconfigured automatically based on
the resource availability of the cloud providers. Subsequently,
we provide a new trust function with social properties in order
to improve the existing social secret sharing scheme.

B. Organization

The rest of this paper is organized as follows. Section II re-
views the notion of social secret sharing. Section III illustrates
a new application of this scheme in cloud computing. Section
IV proposes a new trust function. Finally, Section V provides
concluding remarks.

II. REVIEW OF SOCIAL SECRET SHARING

We now review social secret sharing introduced by No-
joumian et al. [14] [15]. In this construction, the number
of shares allocated to each player depends on the player’s
reputation and the way he interacts with other parties. In
other words, weights of the players are adjusted such that
cooperative participants receive more shares compared to non-
cooperative parties. This is similar to our social life where we
share more secrets with those whom we fully trust and vice
versa. Here is the definition of social secret sharing:

Definition 1: Social secret sharing is a three-tuple denoted
as (Sha, T un,Rec) consisting of secret sharing, social tun-
ing, and secret recovery respectively. The only difference
compared to threshold secret sharing is the second stage, in
which the weight of each player Pi is adjusted according to
his reputation.

A. Assumptions

The following properties are required to construct a social
secret sharing scheme with secret ξ:

1) To recover secret ξ, the total weight of authorized players
Pi ∈ ∆ must be equal or greater than the threshold:

∑
Pi∈∆

wi ≥ t

where ∆ denotes the set of uncorrupted participants.
We later show that this set is further divided into three
subsets B: bad, N : new, and G: good that represent non-
cooperative, new, and cooperative players respectively.

2) On the other hand, the total weight of colluders Pi ∈ ∇
must be less than the threshold, where ∇ denotes the set
of corrupted players: ∑

Pi∈∇
wi < t.

3) Finally, the weight of each Pi is bounded by a parameter
much less than t, that is, wi ≤ m� t for 1 ≤ i ≤ n.

B. Social Tuning (weights adjustment)

In a social secret sharing scheme, players first receive
multiple shares from the dealer. Subsequently, the scheme is
readjusted based on the players’ behavior. We review the social
tuning phase that consists of the following steps. For the sake
of simplicity, suppose we increase or decrease the weights of
the players one by one.

1) Adjustment: based on the players’ availability or response
time, the “reputation” and consequently the “weights” of
all the players are adjusted.

2) Enrollment: to increase the weight of a cooperative
player, say by one, parties jointly collaborate to generate
a new share on the original secret sharing polynomial
for the cooperative player. This procedure is done in
the absence of the dealer. For details, see the enrollment
protocol in [14].

3) Disenrollment: to decrease the weight of a player, say
by one, parties jointly collaborate to update all shares
except one share of the non-cooperative player. That is,
while all shares are updated to be on a new secret sharing
polynomial f̂(x), that share remains on the old secret
sharing polynomial f(x), as a result, the share will not
be valid anymore.

In the next section, we recall the trust function that is used
in social secret sharing for reputation measurement.

C. Trust Function

To measure the reputation of each player in a social secret
sharing scheme, the authors use the trust calculation method
proposed in [16]; this research significantly improves the well-
known solution in [17]. We start with the following definition:

Definition 2: Let T j
i (p) be the trust value assigned by Pj

to Pi in period p. Let Ti : N 7→ R be the trust function
representing the reputation of Pi:

Ti(p) =
1

n− 1

∑
j 6=i

T j
i (p)

where −1 ≤ Ti(p) ≤ +1 and Ti(0) = 0. That is, we calculate
the average of the trust values (personal quantity) in order to
compute a player’s reputation (social quantity) [14].

For instance, let the trust values of P1, P2, P3 with respect
to P4 be T 1

4 (p) = 0.4, T 2
4 (p) = 0.5, T 3

4 (p) = 0.6 accordingly.
As a result, reputation of P4 will be T4(p) = 0.5. In this paper,
only a public value Ti(p) is assigned to each player Pi that
represents his reputation, i.e., Ti(p) = T j

i (p) for all j.
We now briefly review the proposed approach in [16]. As

shown in Table I, three “types” of players (that is, B: bad,
N : new, and G: good) with six possible outcomes are defined,
where α and β determine boundaries on the trust values for
different sets of players. This approach then applies functions
µ(x) and µ′(x) respectively to update reputation of each player
Pi, as shown in Figure 1. Parameters η, θ, and κ are used
to increment and/or decrement the trust value of a player. In
intervals [1− ε,+1] and [−1, ε− 1], functions µ(x) and µ′(x)
both converge to 0 due to our assumption in Definition 2.

We should stress that this function is not just a function of
a single round, but of the “history”. In fact, it rewards more
the better a participant is, e.g., Figure 1: Cooperation, where
Ti(p) ∈ [α, 1− ε], and penalizes more the worse a participant
is, e.g., Figure 1: Defection, where Ti(p) ∈ [ε − 1, β]. In
addition, it provides opportunities for newcomers where we
do not know much about their behaviors, e.g., Figure 1: where
Ti(p) ∈ [β, α].

Trust Value Cooperation Defection

Pi ∈ B if Ti(p) ∈ [−1, β) Encourage Penalize

Pi ∈ N if Ti(p) ∈ [β, α] Give a Chance Take a Chance

Pi ∈ G if Ti(p) ∈ (α,+1] Reward Discourage

TABLE I
SIX POSSIBLE ACTIONS FOR THE TRUST MANAGEMENT

Let `i ∈ {0, 1} where `i = 1 denotes player Pi has
cooperated in the current period and `i = 0 denotes he has
defected. The proposed trust function is as follows where
x = Ti(p− 1), that is, the previous trust value:

`i = 1 ⇒ Ti(p) = Ti(p− 1) + µ(x)

µ(x) =



θ − η
β + 1

(x+ 1) + η Pi ∈ B

θ Pi ∈ N

κ− θ
1− ε− α

(x− α) + θ Pi ∈ G

κ

ε
(1− x− ε) + κ Ti(p) > 1− ε

Each function µ(x) and µ′(x) consists of four linear equations,
each of which is simply determined by points (x1, y1) and
(x2, y2) as follows: y =

(
(y2 − y1)/(x2 − x1)

)
(x− x1) + y1.

`i = 0 ⇒ Ti(p) = Ti(p− 1)− µ′(x)

µ′(x) =



κ

ε
(x+ 1) Ti(p) < ε− 1

θ − κ
β − ε+ 1

(x− ε+ 1) + κ Pi ∈ B

θ Pi ∈ N

η − θ
1− α

(x− α) + θ Pi ∈ G

To ensure that Ti(p−1)+µ(x) ≤ 1 and Ti(p−1)−µ′(x) ≥ −1
when x = 1− ε and x = ε−1 respectively, we need to satisfy
conditions 1− ε+ κ ≤ 1 and ε− 1− κ ≥ −1, or equivalently
κ ≤ ε. This condition is sufficient to ensure that Ti(p) never
exceeds +1 or −1.

Cooperation
κκ

θ

In
cr

ea
se

-1

Trust Value

+1

η

β α 1-ε

Defection
η

Trust Value

θ

D
ec

re
as

e

-1

Trust Value

+1

κ

β αε-1

Fig. 1. Trust Adjustment by µ(x) and µ′(x) Functions

As shown, the “reward” and “penalize” factors are much
larger than “encouragement” and “discouragement” factors.
For instance, by assigning η = 0.01 < θ = 0.05 < κ = 0.09,
various points can be defined and an appropriate trust function
can be constructed via regression.

It is worth mentioning that the authors in [16] also deter-
mine a parameter as the transaction cost to deal with cheap
cooperations and expensive defections. For instance, consider
a scenario in which a player cooperates in regular transactions

for several times in order to gain a high trust value. He can then
defect in a critical transaction to severely damage the scheme.
By considering this transaction cost parameter, a weight for
“cooperation” or “defection” is defined and accordingly the
trust value is adjusted.

III. APPLICATION IN CLOUD COMPUTING

In cloud computing, different commercial providers (such
as Amazon, Google, and Microsoft) offer computing services
to consumers. The major goal is to provide “computing”,
“storage”, and “software” as a service. As a result, consumers
do not need to invest in IT infrastructure on their own. They
can obtain these services from external providers according
to their demands by a pay-per-use model [18], i.e., obtaining
more services in the case of growing demand and vise versa.

A significant challenge in cloud computing is “resource
management” due to the consumers’ expectations in terms
of resource availability, overall performance, etc. In some
settings, enterprises provide valuations to service providers
(i.e., the money they are going to pay if cloud providers satisfy
their demands). The service providers then try to maximize
their own profit, for instance, by prioritizing the consumers’
jobs. All these factors may lead to competition, negotiation,
dynamic allocation, and automatic load balancing. For an
extensive survey on this matter, see [19].

We demonstrate a new method of share distribution over the
cloud in a secure system using threshold secret sharing. The
question is how such systems can be automatically configured
based on the availability of different components. This can
help to better comply with the service-level agreements (SLA)
established between the cloud providers and consumers. We
believe that the challenge can be seen as a cooperative game
between the cloud providers and consumers, that is:

1) For the service providers to comply with the service-level
agreements.

2) For the consumers to receive their services with a high
satisfaction rate.

As an example, we can refer to excessive spike in online
shopping with “Amazon” at the end of the year. It would be
helpful for both consumers and service providers if the system
takes an automatic configuration strategy and relies less on
busier components during certain periods. We illustrate how
this can be accomplished by continuous interactions between
the providers and consumers.

The good news is that, in a distributed secure system
using threshold secret sharing, even if some servers do not
act properly (for instance, due to an adversarial attack or
delay in response time), the system can still accomplish the
task if certain number of components operate appropriately.
Therefore, we intend to show this cooperation can be modeled
by social secret sharing. In other words, the consumers use a
reputation management system to rate different components of
the cloud. Subsequently, the system is reconfigured over the
cloud to guarantee the service-level agreement.

Our model consists of a dealer who initiates a weighed se-
cret sharing scheme, n cloud providers denoted by P1, . . . , Pn,
and many servers interacting with the cloud providers. Let
~r = (r1, r2, . . . , rn) and ~w = (w1, w2, . . . , wn) be the vector
of players’ trust values and the vector of players’ weights
accordingly. The initial values in ~r are going to be zero (i.e.,
all service providers are treated as newcomers), whereas the
initial values in ~w are chosen by the dealer based on a specific
distribution. We first define the following actions where each
player’s action Ai ∈ {C,D,X}:

1) C: for cooperative players where Pi is available at the
required time and he sends correct shares to other parties.

2) D: for uncooperative players where Pi is not available at
the required time or he responds with delay.

3) X : for corrupt players where Pi has been compromised
by an adversary and he may send incorrect shares.

Let assume a secret key ξ is selected in order to accomplish
a secure task whenever it is required. For instance, we can refer
to secure auctions in which bidders submit their sealed-bids to
auctioneers when the auction starts and then the auctioneers
define the outcomes (i.e., the winner and the selling price)
without revealing the losing bids [20].

We can therefore assume that secret key ξ is used by many
auctioneers to start or accomplish several sealed-bid auctions
overtime on behalf of a seller. Considering this secure auction
scenario, a dealer (or a seller) first distributes shares of this
secret among different service providers (or clouds) according
to their initial weights in vector ~w, as shown in Figure 2. He
then leaves the scheme.

w2 = 2w1 = 4

GoogleAmazon
s5 s6

s4

s1 s2
s3

Dealer

YahooMicrosoft

s13
s9 s10

s11

w3 = 3w4 = 1

2

Fig. 2. System Initialization

Subsequently, different servers (or auctioneers) interact with
the cloud providers to perform their tasks in the absence of
the dealer, Figure 3. For instance, from time to time, requests
for these shares are sent to the cloud providers by the servers.
The secret is recovered on these servers and then a secure
procedure (or sealed-bid auction) is accomplished. Finally, the
secret and its corresponding shares are erased from the servers.

w2 = 2w1 = 4

GoogleAmazon
s5 s6

s4

s1 s2
s3

Dealer
Free

YahooMicrosoft

s13
s9 s10

s11

w3 = 3w4 = 1

3

Fig. 3. Weight Adjustment

Based on the service providers’ actions Ai ∈ {C,D} as well
as a trust function, these servers rate each component of the
cloud in terms of its response time; this issue is going to be
more critical in real-time systems where “response time” plays
an important role. Consequently, the weight of each service
provider is changed according to his new trust value. For
instance, as shown in Figure 3, the weights of two components
are going to be updated. To see how amplification or reduction
of a trust value affects the weight of a player, see [16] for
trust-to-share ratio computation.

In the case of corruption Ai = X , the corrupted providers
are first rebooted. They then return to the scheme and are
treated as newcomers. As we illustrated earlier, corrupted
actions (e.g., sending incorrect shares) are detectable by using
a verifiable secret sharing scheme.

In the final phase, the service providers jointly collaborate
to reconfigure the scheme according to new weights, shown
in Figure 4. They initially enroll the new shares by using an
enrollment protocol, e.g., suppose share s14 is enrolled for
the fourth party. Subsequently, shares are updated (except the
shares that are scheduled to be disenrolled) such that they are
transformed to a new secret sharing polynomial, e.g., suppose
share s4 is not updated. Hence, the first player is going to
have three shares afterward.

The benefit of using threshold secret sharing in a distributed
secure system is its “fault-tolerance” and “availability”. For
instance, if one component is compromised by an adversary
or he responds with delay, other participants can carry out the
intented procedure. In the next section, we provide a new trust
function that better fits to our model.

IV. NEW TRUST FUNCTION

We would like to design a new trust function with social
characteristics. The function that we reviewed in Section II
uses the following two properties in order to adjust the trust
value in different cases:

1) Type: parameters α and β are used to categorize the

w2 = 2w1 = 3

GoogleAmazon

s1 s2
s3 s5 s6

Self
Configuration

YahooMicrosoft
s9 s10

s11s13
s14

w3 = 3w4 = 2

4

Fig. 4. Self-Configuration

players in three sets B,N ,G. Accordingly, six scenarios
are considered to increment or decrement the trust value,
as shown in Table I.

2) History: The trust value Ti(p) represents a history of
actions taken by a player Pi so far. For instance, the
“quality” of being a good player ranges from α all the
way to +1, which portrays how good a player is and what
kind of history the player has.

Indeed, this trust function applies an individual evaluation
strategy. We intend to use a social evaluation strategy by
adding the following property to our new trust function:

3) Sociality: the new function takes into account the social
behaviors of other parties each time it is used. In other
words, besides players’ types and histories, this function
considers all players together for trust computation, as
opposed to an individual evaluation technique.

As before, `i = 1 denotes Pi’s cooperation and `i = 0
denotes Pi’s defection. Let δ =

∑n
i=1 `i denotes the total

number of cooperative players. Intuitively, the new function
should satisfy the following “social” conditions:

1) if δ = n, i.e., all players have cooperated, it is not
required to increase the trust value of anyone.

2) if δ = 0, i.e., all players have defected, it is not required
to decrease the trust value of anyone.

3) if δ > n
2 , i.e., majority of the players have cooperated,

cooperation should be rewarded less and defection should
be penalized more.

4) if δ < n
2 , i.e., majority of the players have defected,

defection should be penalized less and cooperation should
be rewarded more.

5) if δ = n
2 , i.e., the number of cooperative players and

non-cooperative ones are equal, cooperation and defection
should be rewarded and penalized with an equal ratio.

Our modified trust function, termed “social trust function”,
is as follows, using the previous µ(x) and µ′(x) functions:

Ti(p) =


Ti(p− 1) + (1− δ

n
)µ(x) if `i = 1

Ti(p− 1)− (
δ

n
)µ′(x) if `i = 0

where δ =
∑n

i=1 `i. By using the same µ(x) function for
trust amplification and reduction in the case of cooperation
and defection, the trust function can be simplified as follows:

Ti(p) = Ti(p− 1) + (`i −
δ

n
)µ(x).

An example of the new social trust function is provided
in Table II for further clarification. Each time the players
“gain” partial of their rewards (e.g., 25%) that is proportional
to the number of “non-cooperative” players. On the other
hand, they “lose” partial of their trust value (e.g., 75%) that
is proportional to the number of “cooperative” players.

δ =
∑n

i=1 `i Cooperation Defection

n Ti(p− 1) no defection

3
4
n Ti(p− 1) + 0.25µ(x) Ti(p− 1)− 0.75µ′(x)

1
2
n Ti(p− 1) + 0.5µ(x) Ti(p− 1)− 0.5µ′(x)

1
4
n Ti(p− 1) + 0.75µ(x) Ti(p− 1)− 0.25µ′(x)

0 no cooperation Ti(p− 1)

TABLE II
COMPUTING Ti(p) WITH DIFFERENT VALUES OF δ

As stated earlier, reputation is a social quantity representing
a player’s type and history. Therefore, it is reasonable to
assume that “cooperation” has more value if majority of the
players are defecting and vise versa. This is similar to human
social life in which cooperation is appreciated more when
most of the people are not cooperating. Intuitively, the same
justification is true for the case of “defection”.

Furthermore, if all the players are cooperating or they all
are defecting, the trust values should remain unchanged, no
matter what types of players with what kinds of histories are
in the society. This can be justified by the uniformity of the
actions and consequently competition elimination.

V. CONCLUSION

An application of social secret sharing in cloud computing
was first demonstrated. Accordingly, a new trust function with
social properties was proposed.

By providing a new model for system management in
distributed secure schemes, we showed how a new line of
research can be opened within cross-interdisciplinary areas.

In fact, using various tools from different disciplines (such as
cryptography, reputation systems, and cloud computing) can
provide a better understanding of the existing models and their
problems. As a result, this may lead to new solutions.

ACKNOWLEDGMENT

We would like to thank Urs Hengartner, Ian Goldberg, and
other members of CrySP lab at the University of Waterloo for
their helpful feedback on this research.

REFERENCES

[1] A. Shamir, “How to share a secret,” Communications of the ACM,
vol. 22, no. 11, pp. 612–613, 1979.

[2] G. R. Blakley, “Safeguarding cryptographic keys,” in National Computer
Conference NCC. AFIPS Press, 1979, pp. 313–317.

[3] M. K. Franklin and M. K. Reiter, “The design and implementation of
a secure auction service,” IEEE Transactions on Software Engineering,
vol. 22, no. 5, pp. 302–312, 1996.

[4] B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch, “Verifiable secret
sharing and achieving simultaneity in the presence of faults,” in 26th
Annual IEEE Symposium on Foundations of Computer Science FOCS,
1985, pp. 383–395.

[5] M. Ben-Or, S. Goldwasser, and A. Wigderson, “Completeness theorems
for non-cryptographic fault-tolerant distributed computation,” in 20th
ACM Symposium on Theory of Computing STOC, 1988, pp. 1–10.

[6] D. Chaum, C. Crépeau, and I. Damgård, “Multiparty unconditionally
secure protocols,” in 20th ACM Symposium on Theory of Computing
STOC, 1988, pp. 11–19.

[7] T. Rabin and M. Ben-Or, “Verifiable secret sharing and multiparty
protocols with honest majority,” in 21st Annual ACM Symposium on
Theory of Computing STOC, 1989, pp. 73–85.

[8] D. Beaver, “Multiparty protocols tolerating half faulty processors,” in
9th Annual International Cryptology Conference CRYPTO, ser. LNCS,
vol. 435. Springer, 1989, pp. 560–572.

[9] D. R. Stinson and R. Wei, “Unconditionally secure proactive secret shar-
ing scheme with combinatorial structures,” in 6th Annual International
Workshop on Selected Areas in Cryptography SAC, ser. LNCS, vol. 1758.
Springer, 1999, pp. 200–214.

[10] R. Gennaro, Y. Ishai, E. Kushilevitz, and T. Rabin, “The round com-
plexity of verifiable secret sharing and secure multicast,” in 33th Annual
ACM Symposium on Theory of Computing STOC, 2001, pp. 580–589.

[11] A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung, “Proactive secret
sharing or: How to cope with perpetual leakage,” in 15th Annual
International Cryptology Conference CRYPTO, ser. LNCS, vol. 963.
Springer, 1995, pp. 339–352.

[12] R. Ostrovsky and M. Yung, “How to withstand mobile virus attacks:
extended abstract,” in 10th Annual ACM Symposium on Principles of
Distributed Computing PODC, 1991, pp. 51–59.

[13] J. C. Benaloh and J. Leichter, “Generalized secret sharing and monotone
functions,” in 8th Annual International Cryptology Conference CRYPTO,
ser. LNCS, vol. 403. Springer, 1988, pp. 27–35.

[14] M. Nojoumian, D. Stinson, and M. Grainger, “Unconditionally secure
social secret sharing scheme,” IET Information Security, Special Issue
on Multi-Agent and Distributed Information Security, vol. 4, no. 4, pp.
202–211, 2010.

[15] M. Nojoumian and D. R. Stinson, “Brief announcement: secret sharing
based on the social behaviors of players,” in 29th ACM symposium on
Principles of distributed computing PODC, 2010, pp. 239–240.

[16] M. Nojoumian and T. Lethbridge, “A new approach for the trust
calculation in social networks,” in E-business and Telecommunication
Networks: 3rd International Conference on E-Business, Best Papers,
ser. CCIS, vol. 9. Springer, 2008, pp. 64–77.

[17] B. Yu and M. P. Singh, “A social mechanism of reputation management
in electronic communities,” in 4th Int. Workshop on Cooperative Info
Agents CIA, ser. LNCS, vol. 1860. Springer, 2000, pp. 154–165.

[18] W. Voorsluys, J. Broberg, and R. Buyya, Cloud Computing: Principles
and Paradigms. John Wiley and Sons, 2011.

[19] J. Broberg, S. Venugopal, and R. Buyya, “Market-oriented grids and
utility computing: The state-of-the-art and future directions,” Journal of
Grid Computing, vol. 6, no. 3, pp. 255–276, 2008.

[20] K. Peng, C. Boyd, E. Dawson, and K. Viswanathan, “Five sealed-bid
auction models,” in the Australasian Information Security Workshop
Conference, AISW’03, vol. 21. Australian Computer Society, 2003,
pp. 77–86.

VI. APPENDIX

A. Example of Threshold Secret Sharing

Example 3: The dealer selects secret sharing polynomial
f(x) = 5 + 3x + 6x2 ∈ Z13[x]. He then distributes the
following shares among P1, P2, P3, P4 and leaves the scheme:

f(1) = 1, f(2) = 9, f(3) = 3, f(4) = 9

At least three players, say P1, P2, P3, can pool their shares to
recover the secret by Lagrange interpolation as follows:

f(0) =
(2

2− 1
)(3

3− 1
)
(1) +

(1
1− 2

)(3
3− 2

)
(9)

+
(1

1− 3
)(2

2− 3
)
(3) = −21 ≡ 5 mod 13

B. Example of Proactive Secret Sharing

Example 4: Suppose the original secret sharing polynomial
is f(x) = 3+4x+7x2 +5x3 ∈ Z13[x]. Players P1, P2, P3, P4

receive the following shares from the dealer accordingly, as
shown in Figure 5:

f(1) = 6, f(2) = 1, f(3) = 5, f(4) = 9

The players securely generate g(x) = 0 + 4x+ 2x2 + 10x3 in
the absence of the dealer with the following shares:

g(1) = 3, g(2) = 5, g(3) = 1, g(4) = 12

Each Pi locally adds his shares together. As a result, the new
polynomial will be f̂(x) = 3 + 8x+ 9x2 + 2x3 with shares:

f̂(1) = 9, f̂(2) = 6, f̂(3) = 6, f̂(4) = 8

old polynomial

= 3

new polynomial

s1 s2 s3 s4

α = 3

g(0) = 0

5

Fig. 5. Proactive Secret Sharing

