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Abstract—Rational secret sharing shows that, in a setting with
rational players, secret sharing and multiparty computation are
only possible if the actual secret reconstruction round remains
unknown to the parties. However, in socio-rational secret sharing,
players not only are rational but also are foresighted. In other
words, the secret sharing game is repeatedly played and players
are only invited to each game based on their reputation. This
social reinforcement stimulates the players to be cooperative.
As our contribution, we revisit socio-rational secret sharing and
generalize it from the utility computation aspect. We show that,
in (2, 2) and (t, n) socio-rational secret sharing, it is always in
players’ best interest to cooperate using our new utility function.
Keywords: secret sharing, social secret sharing, socio-rational
secret sharing, rational cryptography, trust management.

I. INTRODUCTION

The threshold secret sharing (TSS) was proposed in [1],
where a dealer distributes shares of a secret among n players
for a subsequent secret recovery. In this scheme, the dealer
initially creates a random polynomial f(x) ∈ Zq[x] of degree
t− 1 such that the constant term is the secret. He then sends
f(i) to player Pi for 1 ≤ i ≤ n. As a result, any group of t
or more players can recover the secret whereas any group of
size less than t cannot gain any information about the secret.

In rational secret sharing (RSS) [2], players are rational
rather than being honest or malicious. This means each player
selects his action (i.e., revealing his share or not revealing it)
based on the utility that he can gain. As illustrated by the
authors, classical secret sharing fails in this setting due to the
failure of the secret reconstruction round. To further illustrate
this, consider the following scenario for a player Pj where
the degree of the secret sharing polynomial is t − 1. If other
players, denoted by Pi for i < t − 1 or i > t − 1, reveal
their shares, nothing changes whether Pj reveals his share or
not. In the former case, no one learns the secret, in the latter
case, everyone learns the secret. On the other hand, if exactly
t− 1 players Pi reveal their shares, Pj can not only learn the
secret with his own private share but also can prevent the other
players from learning the secret by not revealing his share.

In social secret sharing (SSS) [3], players’ shares are
allocated based on their reputation and the way that they
interact with each other. In other words, weights of the players
are adjusted such that parties who cooperate receive more
shares compared to non-cooperative players. This is similar
to human social life where people share more secrets with

whom they really trust and vice versa. In the context of social
secret sharing, the players are either honest or malicious.

In socio-rational secret sharing (SRS) [4], players are
rational similar to standard rational secret sharing. In addition,
they are foresighted and have concerns about future gain
or loss since the secret sharing game is repeated for an
unknown number of rounds. In the proposed scheme, each
player has a reputation value which is updated according to
his behavior each time the game is played. For instance, if
a player cooperates (he reveals his share), his trust value is
increased and he will be invited to more games in the future,
otherwise, his trust value is decreased and he will have less
chance to be invited to the future games.

Note that the existing trust function of [5] is used for trust
management in social and socio-rational secret sharing.

II. RATIONAL SECRET SHARING

Rational secret sharing consists of a dealer D, who creates
a secret sharing scheme with threshold t, and n players. The
protocol proceeds in a sequence of iterations where only one
iteration is the “real” secret recovery round (i.e., the last
iteration) and the rest are “fake” iterations in order to trap
selfish players. At the end of each iteration, the protocol either
terminates or it proceeds to the next round. In fact, in any given
iteration, players do not know whether the current round is
the real recovery phase or a test round. The following steps
illustrate the initial solution to the rational secret sharing game,
where n = t = 3 and shares are revealed simultaneously [2].
See Table I for all the possibilities that may occur.
(a) In each round, D initiates a fresh secret sharing scheme

where each player Pi receives share f(i).
(b) During an iteration, each player Pi flips a biased coin

ci ∈ {0, 1} where Pr[ci = 1] = ρ.
(c) Players compute c∗ = ⊕ci by a multiparty computation

protocol without revealing their private values ci-s.
(d) Now c∗ is known to everyone. If c∗ = ci = 1, Pi

broadcasts his share. Therefore:
(d.1) If 3 shares are revealed, the secret is recovered and

the protocol ends.
(d.2) If c∗ = 1 and 0 or 2 shares are revealed, players

terminate the protocol.
(d.3) In any other cases, the dealer and players proceed

to step (a).
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Rows c1 c2 c3 Public c∗ Shares

1 0 0 0 0 -
2 0 0 1 1 f(3)

3 0 1 0 1 f(2)

4 0 1 1 0 -
5 1 0 0 1 f(1)

6 1 0 1 0 -
7 1 1 0 0 -
8 1 1 1 1 f(1), f(2), f(3)

TABLE I
3-PLAYER RATIONAL SECRET SHARING GAME

To see how this solution works, assume P1 and P2 follow
the protocol whereas player P3 deviates. He may deviate in
“coin-tossing” or in “revealing” his share. Note that each
Pi selects ci independently. The following cases are possible
deviation scenarios:
• It is not advantageous for P3 to bias c3 to be 0 with

higher probability since, when c3 = 0, either no share or
one share is revealed.

• It is also not advantageous for P3 to bias c3 to be 1 with
higher probability since, when c3 = 1, either 0 or 1 share
or all shares are revealed. This may lead to an early secret
recovery but it does not have any effect on P3’s utility.

• If c3 = 0 or c∗ = 0 (Table I: rows 1, 3, 4, 5, 6 and 7),
there is no incentive for P3 to deviate because in these
cases he is supposed not to reveal his share.

• If c3 = 1 and c∗ = 1 (Table I: one of rows 2 or 8 occurs),
then player P3 is supposed to reveal his share. There exist
two possibilities:

1) c1 = 1 & c2 = 1 occur with the following probability:

Pr[c1 = 1 ∧ c2 = 1|c3 = 1 ∧ c∗ = 1]

=
Pr[c1 = 1 ∧ c2 = 1 ∧ c3 = 1]

Pr[c3 = 1 ∧ c∗ = 1]

=
ρ3

(1− ρ)(1− ρ)ρ+ ρ3
=

ρ2

(1− ρ)2 + ρ2
.

2) c1 = 0 & c2 = 0 occur with the remaining probability:

Pr[c1 = 0 ∧ c2 = 0|c3 = 1 ∧ c∗ = 1]

=
Pr[c1 = 0 ∧ c2 = 0 ∧ c3 = 1]

Pr[c3 = 1 ∧ c∗ = 1]

=
(1− ρ)(1− ρ)ρ

(1− ρ)(1− ρ)ρ+ ρ3
=

(1− ρ)2

(1− ρ)2 + ρ2
.

Therefore, if P3 deviates by not revealing his share, either
he will be the only player who learns the secret or the protocol
terminates and he never learns the secret. Let assume P3 gains
U+ if he is the only player who learns the secret, let U denotes
the utility gain for each Pi if all three players learn the secret,
and let U− denotes the utility gain, say $0, for each Pi if
no one learns the secret. It is assumed that U+ > U > U−.

Therefore, a rational P3 will cheat only if:

U+

(
ρ2

(1− ρ)2 + ρ2

)
+ U−

(
(1− ρ)2

(1− ρ)2 + ρ2

)
> U.

If we assign an appropriate value to ρ such that the above
inequality is not satisfied, then P3 has no incentive to deviate
when c3 = 1 and c∗ = 1.

The authors in [2] showed that 3-player game can be
generalized to a game with n players. As we mentioned,
certain assumptions regarding the players’ utility function are
required for rational secret sharing to be achievable. Let ui(~a)
denote the utility of Pi in outcome ~a of the protocol. Suppose
each `i(~a) is a bit defining whether Pi has learned the secret
or not in outcome ~a. We define δ(~a) =

∑
i `i(~a), which

denotes the number of players who have learned the secret.
The assumptions of rational secret sharing are as follows:
• `i(~a) > `i(~a

′)⇒ ui(~a) > ui(~a
′).

• `i(~a) = `i(~a
′) and δ(~a) < δ(~a′)⇒ ui(~a) > ui(~a

′).
The first assumption means Pi prefers an outcome in which he
learns the secret; he prefers ~a since `i(~a) = 1 and `i(~a′) = 0.
The second assumption means Pi prefers an outcome where
the fewest number of other players learn the secret.

III. SOCIO-RATIONAL SECRET SHARING

In a socio-rational model, the secret sharing game is repeat-
edly played for an unknown number of rounds. Each player
Pi has a public reputation value Ti, where Ti(0) = 0 and
−1 ≤ Ti(p) ≤ +1; p = 0, 1, 2, . . . denote different periods
of the game. Moreover, each player’s action ai ∈ {C,D,⊥},
where C and D denote “cooperation” and “defection” respec-
tively, and ⊥ denotes Pi has not been chosen to participate
in the current game. Finally, each player computes two utility
functions to select his action, i.e., long-term utility function
ui and actual utility function u′i. See Figure 1 for details.

A. Utility Assumption

Let ui(~a) denote Pi’s utility by considering current and
future games, let u′i(~a) denote Pi’s utility in the current game,
let `i(~a) ∈ {0, 1} denote if Pi has learned the secret in the
current game, and define δ(~a) =

∑
i `i(~a). Let T ~a

i (p) denote
the reputation of Pi after outcome ~a in period p. The following
assumptions are considered in socio-rational secret sharing:
• `i(~a) = `i(~a

′) and T ~a
i (p) > T ~a′

i (p)⇒ ui(~a) > ui(~a
′).

• `i(~a) > `i(~a
′)⇒ u′i(~a) > u′i(~a

′).
• `i(~a) = `i(~a

′) and δ(~a) < δ(~a′)⇒ u′i(~a) > u′i(~a
′).

The first assumption states that Pi prefers to maintain a high
reputation no matter if he learns the secret or not. The other
two preferences are standard assumptions of RSS.

B. Generalization of Utility Computation

The long-term utility function ui : A × Ti 7→ R computes
the utility that each Pi potentially gains or loses by considering
both current and future games (based on all three assumptions)
whereas the actual utility function u′i : A 7→ R only computes
the current gain or loss in a given period (based on second
and third assumptions).
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Secret Sharing

1) Let φ be the current probability distribution over
players’ types, i.e., good, bad and newcomer. The
dealer D selects n out of N players, where n ≤ N ,
based on this non-uniform probability distribution.

2) D then initiates a (t, n)-secret sharing scheme by
selecting f(x) ∈ Zq[x] of degree t − 1, where
f(0) = α is the secret. Subsequently, he sends
shares f(i) to Pi for the n chosen players and
leaves the scheme.

Secret Recovery

1) Each Pi computes his long-term utility function
ui : A× Ti 7→ R, and then selects an action, i.e.,
revealing or not revealing his share f(i).

2) If enough shares are revealed, f(x) is recon-
structed through Lagrange interpolation and the
secret f(0) = α is recovered.

3) Each player Pi receives his utility u′i : A 7→ R
(i.e., the real payment) at the end of the recon-
struction phase according to the outcome.

4) The reputation values Ti of all the chosen play-
ers are publicly updated based on each player’s
behavior using a trust function.

Fig. 1. Socio-Rational Secret Sharing

Let ωi(~a) = 3/(2−T ~a
i (p)) and τi(~a) = T ~a

i (p)−T ~a
i (p−1)

for the n participating players of the current game. Since −1 ≤
T ~a
i (p) ≤ +1, then +1 ≤ ωi(~a) ≤ +3. Also, let Ω > 0 be a

unit of utility, say $100. To satisfy the stated assumptions in
Section III-A, we have:

Eq.1 :
|τi(~a)|
τi(~a)

× ωi(~a)× Ω

where
|τi(~a)|
τi(~a)

=

{
+1 if ai = C
−1 if ai = D

Eq.2 : `i(~a)× Ω where `i(~a) ∈ {0, 1}

Eq.3 :
`i(~a)

δ(~a) + 1
× Ω where δ(~a) =

N∑
i=1

`i(~a).

• Eq.1 means Pi gains or loses at least 1Ω and at most
3Ω units of utility in the future games due to his current
behavior.

• Eq.2 illustrates that a player gains one unit of utility if
he learns the secret in the current game and he loses this
opportunity, otherwise.

• Eq.3 results in “almost” one unit of utility being divided
among all the players Pi who have learned the secret in
the current game.

The linear combination of these terms with their impact factors
gives the long-term utility function ui(~a), however, actual
utility u′i(~a) only consists of equations Eq.2 and Eq.3.

It is worth mentioning that one can design any function
as long as it satisfies the utility assumptions of a rational
foresighted player. For instance, to consider the number of
players learning the secret, we can define a monotonically
decreasing function f(δ(~a)) : {0, . . . , n} 7→ R.

A utility function Fi(~a) with the following linear combi-
nation of impact factors ρ1 � ρ2 ≥ ρ3 ≥ 1 and functions
f1(Ti(~a)), f2(`i(~a)) and f3(δ(~a)) satisfies the preference of a
rational foresighted player, where
• |f1| is a monotonically increasing function.

• f3 is a monotonically decreasing function.

• |f1(Ti(~a))| ≥ f2(`i(~a)) ≥ f3(δ(~a)) except in a situation
when `i = δ = 0.

Fi(~a) = Ω

(
ρ1f1(Ti(~a)) + ρ2f2(`i(~a)) + `i(~a)ρ3f3(δ(~a))

)
.

f1 :

{
R>0 τi(~a) > 0

R<0 otherwise
f2 :

{
0 `i(~a) = 0

R>0 `i(~a) = 1

f3 :

{
1 δ(~a) = 0

R>0 δ(~a) ∈ {1 . . . n}

Theorem-1: In a (2, 2) socio-rational secret sharing, C strictly
dominates D when we use our new utility function.

Proof: We compute the utility of each outcome for Pi. Let
Pj be the other player.

1) If both players cooperate, then τi is positive, `i = 1 since
Pi has learned the secret, and δ = 2 because both players
have learned the secret:(

τi > 0, `i = 1, δ = 2
)
⇒

u
(C,C)
i = Ω

(
ρ1f1 + ρ2f2 + ρ3f3

)
.

2) If only Pi cooperates, then τi is positive, `i = 0 since Pi

has not learned the secret, and δ = 1 because only player
Pj has learned the secret:(

τi > 0, `i = 0, δ = 1
)
⇒ u

(C,D)
i = Ω

(
ρ1f1

)
.

3) If only Pj cooperates, then τi is negative, `i = 1 since
Pi has learned the secret, and δ = 1 because only player
Pi has learned the secret:(

τi < 0, `i = 1, δ = 1
)
⇒

u
(D,C)
i = Ω

(
− ρ1f1 + ρ2f2 + ρ3f3

)
.

4) If both players defect, then τi is negative, `i = 0 since
Pi has not learned the secret, and δ = 0 because no one
has learned the secret:(
τi < 0, `i = 0, δ = 0

)
⇒ u

(D,D)
i = Ω

(
− ρ1f1

)
.



4

We ignore the common factor Ω. We know |f1| ≥ f2 ≥ f3
and ρ1 � ρ2 ≥ ρ3 ≥ 1.
• First, we have:

u
(C,C)
i = ρ1f1 + ρ2f2 + ρ3f3 > ρ1f1 = u

(C,D)
i .

• Next, it is easy to see that

u
(C,D)
i = ρ1f1 > −ρ1f1 + ρ2f2 + ρ3f3 = u

(D,C)
i

if and only if 2ρ1f1 > ρ2f2 + ρ3f3. We have:

2ρ1f1 ≥ ρ1f2 + ρ1f3

> ρ2f2 + ρ3f3

so the desired conclusion follows.
• Finally,

u
(D,C)
i = −ρ1f1 + ρ2f2 + ρ3f3 > −ρ1f1 = u

(D,D)
i .

Therefore, we have the following payoff inequalities which
proves the theorem:

Pi cooperates︷ ︸︸ ︷
u
(C,C)
i (~a) > u

(C,D)
i (~a) >

Pi defects︷ ︸︸ ︷
u
(D,C)
i (~a) > u

(D,D)
i (~a) �

To expand our proof to a case with n players, let Ci (or Di)
denote that player Pi cooperates (or defects), and let C−i (or
D−i) denote that, excluding Pi, all the other players cooperate
(or defect), and finally let M−i denote that, excluding Pi,
some players cooperate and some of them defect.

Theorem-2: In a (t, n) socio-rational secret sharing, C strictly
dominates D when we use our new utility function.

Proof: We compute the utility of each outcome based on
the threshold, i.e., the required shares to learn the secret. For
the sake of simplicity, let n > t > 2.

1) If all the players cooperate, τi is positive, `i = 1 since Pi

has learned the secret, and δ = n because all the players
have learned the secret:(

τi > 0, `i = 1, δ = n
)
⇒

u
(Ci,C−i)
i = Ω

(
ρ1f1 + ρ2f2 + ρ3f3

)
.

2) If player Pi as well as ∆ players cooperate but the rest
of the them defect:

(2.1) If ∆ ≥ t− 1, τi is positive, `i = 1 & δ = n:(
τi > 0, `i = 1, δ = n

)
⇒

u
(Ci,M−i)
i = Ω

(
ρ1f1 + ρ2f2 + ρ3f3

)
.

(2.2) If ∆ < t− 1, τi is positive, `i = 0 & δ = 0:(
τi > 0, `i = 1, δ = n

)
⇒

u
(Ci,M−i)
i = Ω

(
ρ1f1

)
.

3) If only Pi cooperates, τi is positive, `i = 0, and δ = n−1
because all the players, except Pi, have learned the secret:(
τi > 0, `i = 0, δ = 0

)
⇒ u

(Ci,D−i)
i = Ω

(
ρ1f1

)
.

4) If only Pi defects, τi is negative, `i = 1 and δ = n
because all the players have learned the secret:(

τi < 0, `i = 1, δ = n
)
⇒

u
(Di,C−i)
i = Ω

(
− ρ1f1 + ρ2f2 + ρ3f3

)
.

5) If Pi defects, ∆ players cooperate and the rest of the
players also defect:

(5.1) If ∆ ≥ t, τi is negative, `i = 1 & δ = n:(
τi < 0, `i = 1, δ = n

)
⇒

u
(Ci,M−i)
i = Ω

(
− ρ1f1 + ρ2f2 + ρ3f3

)
.

(5.2) If ∆ < t, τi is negative, `i = 0 & δ = 0:(
τi < 0, `i = 0, δ = 0

)
⇒

u
(Ci,M−i)
i = Ω

(
− ρ1f1

)
.

6) If all the players defect, τi is negative, `i = 0, and δ = 0
because no one has learned the secret:(
τi < 0, `i = 0, δ = 0

)
⇒ u

(Di,D−i)
i = Ω

(
− ρ1f1

)
.

We now analyze these six scenarios, let ∗−i be C−i or M−i
or D−i:
• If player Pi cooperates (cases 1 − 3), regardless of

whether the other players cooperate or defect:

u
(Ci,∗−i)
i ≥ ρ1f1.

• If Pi defects (cases 4−6), regardless of whether the other
players cooperate or defect:

u
(Di,∗−i)
i ≤ −ρ1f1 + ρ2f2 + ρ3f3.

The proof of the above equation is essentially the same as the
previous proof. As a result, it is always in Pi’s best interest
to cooperate:

u
(Ci,∗−i)
i (~a) > u

(Di,∗−i)
i (~a) �
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