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Abstract—Societal acceptance of self-driving cars (SDC) is
predicated on a level of trust between humans and the au-
tonomous vehicle. Although the performance of SDCs has im-
proved dramatically, the question of mainstream acceptance and
requisite trust is still open. We are exploring this question
through integration of virtual reality SDC simulator and an
electroencephalographic (EEG) recorder. In order for a passenger
to build and maintain trust, the SDC will need to operate in
a manner that elicits positive emotional response and avoids
negative emotional response. In our experiment, a test subject
was exposed to scenarios designed to induce positive and negative
emotional responses, quantified by the EEG beta wave to alpha
wave power ratio. As predicted, an increase in the beta to alpha
power ratio was observed when the test subject was exposed to
stress inducing situations inside the SDC simulator. Our results
are expected to inform the design and operation of an EEG-based
supervisory feedback control module or artificial intelligence (AI)
that monitors the emotional state of passengers and adjusts the
AI control parameters accordingly.

Index Terms—Electroencephalogram (EEG), Autonomous Sys-
tem, Self-Driving Car

I. INTRODUCTION

Google, Tesla, Mercedes-Benz, Ford, and others have cre-
ated semi-autonomous cars, and they predict mass production
of fully self-driving cars (SDCs) in the early 2020s [1].
Widespread adoption of SDCs is dependent on consumers
experiencing and maintaining positive emotional responses in
SDCs. Electroencephalography (EEG) provides a non-invasive
way to monitor brainwave activity, and a large body of
research has focused on relating EEG responses to emotional
states [2]–[4]. Recently, due to advances in dry electrode
techniques and machine learning algorithms, there has been
a proliferation of consumer grade and real-world applications
of EEG for brain computer interfaces (BCI) [5]. EEGs are an
appropriate choice to monitor SDC passenger response as they
offer excellent temporal resolution [6].

In the experimental study, we will evaluate real time SDC
passenger emotional responses through EEG analysis of a
passenger in a SDC simulator. The simulation is designed
to elicit negative emotions in order to assess the level of
passenger fear, stress and anxiety in response to autonomous
control actions of the SDC. Ultimately, it is envisioned that
such information can be used to develop and inform the
SDC autonomous control of maneuvers that elicit negative

emotional response in a passenger, and adjust its behavior
accordingly.

Jun and Smitha [7] found that effective stress is indicated by
a decrease of EEG alpha band power and increase in beta band
power. Conventionally, the alpha band contains frequencies 8-
12 Hz, and the beta band 12-30 Hz [8]. Haak et. al. [6] also
found that there is a strong positive correlation between eye
blinking frequency and the emotional stress level of drivers.
Additionally, Putman at al. [9] found that slow wave (SW) /
fast wave (FW) ratio weakly correlates with fear as well as
anxiety. Ratios were calculated by dividing slow wave power
density, i.e., theta 4-8 Hz and delta 0.5-4Hz, by fast wave
power density, i.e., beta 12-30 Hz. Wang et al. [5] compared
several spectral decomposition methods, and found that the
power spectrum is the most robust feature in analyzing EEG
waves for emotion features.

The uniqueness of this research lies in the immersiveness
of the SDC simulator. Previous research does not appear to
have implemented a virtual reality (VR) headset along with
a motion chair to create a SDC simulation while monitoring
the EEG response of the passenger. This work builds on our
prior work from [10] that showed our simulator is highly
effective for collecting real-time data from human subjects.
The previous work required subjects to self report, while the
implementation of an EEG will provide more objective data.
Our primary goal is to classify participants emotional response
while in positive and negative emotion inducing scenarios
in the SDC simulator. The paper is organized as follows.
Section II reviews relevant literature and work in the field.
Section III describes the SDC simulator. Section IV covers
the experimental procedure. Section V examines the EEG data
acquisition, analysis and results. Concluding remarks are made
in Section VI.

II. LITERATURE REVIEW

Regarding EEG applications to SDCs, Lin et. al. [11] found
that the EEG responses of the alpha and gamma bands in
the left and right motor cortex, parietal, lateral occipital,
and occipital midline brain areas were highly correlated to
subjective motion sickness levels. They created a driving
simulator and implemented a neural fuzzy inference network
to estimate a car passenger’s sickness level based on EEG



features while in the simulation. The overall performance of
this model achieved a prediction accuracy of 82%.

Yeo et. al. [12] created a support vector machine (SVM)
EEG classifier that could correctly identify if a driver was in
drowsy state with 99.3% accuracy and was able to predict
when drivers enter a drowsy state with a 90% accuracy. Dom-
inant beta wave activity indicated that a driver was alert, while
a decrease in the amplitude or frequency of the alpha rhythm
indicated a drowsy state. Fast eye blinks were associated with
alertness and slow eye blinks were associated with a drowsy
state. The extracted features came from the power spectrum
of each 10 second EEG epoch.

EEG can be applied as a form of systems control. Meng et.
al. [13] found that subjects who wore a noninvasive EEG could
modulate their brain activity to control a robotic arm in order
to perform reach and grab tasks in three dimensional space
with a high level of accuracy. Control in three dimensions
was achieved by a two-step sequential experimental design
with control of the robotic arm reduced in each step to a two
dimensional plane. Brain wave activity was monitored in the
motor cortex and participant imagination of movement in the
left hand, right hand, both hand, and relaxation corresponded
to the respective left, right, up, and down movement of the
robotic arm.

Göhring et. al. [14] created a car controlled by the user’s
modulation of brain waves while wearing an EEG. In one
protocol, the car is completely controlled by the user’s brain
waves, but the precision of the vehicle control was not high
enough to be used in real world scenarios. In the other
protocol, the user is prompted to make choices (i.e., left or
right turn) at certain decision points in the course. These
results found a high level of precision.

III. SIMULATION SETUP

The SDC virtual reality simulator is based on fusion of an
Oculus Rift headset with an Atomic A3 Full Motion Simulator.
Figure 1 shows a participant in the simulator.

Fig. 1. Participant using the SDC simulator.

Driving situations were recorded using the GoPro Fusion
Camera and edited using the GoPro Fusion Studio to produce

360 degree video. The videos were exported from Fusion
Studio at 4k resolution as MP4s along with 360 degree MP3
audio files. The Oculus Rift head set outputs 1080x1200
resolution per eye, at a 90 Hz refresh rate, a 110 degree field of
view, and has headphones which output a 3D audio effect [15].
While wearing the Oculus Rift VR headset, the participant can
freely move their head 360 degrees to see the complete scene.
See figure 2 for the participants view inside the simulator.

Fig. 2. View from the simulation. Each frame represents the participant’s
view as they turn their head to look around, illustrating the 360 degree view
inside the simulator.

The Atomic A3 Full Motion Simulator can move up to 71
degrees per second across a full 27 degree dual-axis movement
range [16]. The combination of complete visual, audio, and
movement immersion provides a convincingly realistic simu-
lation. The Atomic A3 Simulator receives telemetry data that
has pitch values for front and back movements and roll values
for left and right movements. The Atomic A3 telemetry data
was generated and played using Simphinity Motion Software.
The application is executed on an AlienWare Area-51 Desktop
equipped with an Intel Core i7-5960X processor along with
dual NVIDIA GeForce GTX Titan Z graphics cards.

IV. EXPERIMENTAL PROCEDURE

A. Experiment Design

In this phase of the research, only one test subject was
exposed to the simulation. The test subject was exposed to
two different simulation scenarios. The subjects brain waves
were monitored during both simulation scenarios that lasted
approximately 2 minutes each. In the first scenario (Scenario
1), the SDC performed smooth highway driving. The SDC
maintained a comfortable amount of distance from other
vehicles and followed all rules of the road. In the second
scenario (Scenario 2), the SDC drove erratically around a
residential neighborhood violating common rules of the road.
The SDC ran through a stop sign and nearly collided with
another vehicle. It was predicted that the EEG data would
indicate a positive emotional state in Scenario 1 and a negative
emotional state in Scenario 2.

V. EEG BASED EMOTIONAL CLASSIFICATION

Figure 3 illustrates the pipeline used to classify emotional
state from the EEG data that we collected. MATLAB was used
for all data analysis.
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Fig. 3. Workflow of EEG data analysis

A. Data Acquisition

The Emotiv EPOC+ was used for EEG signal acquisition.
The EPOC+ records signals from 14 channels (AF3, F7, F3,
FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8 and AF4). Two
electrodes are used as references (CMS/DRL), the P3/P4 lo-
cations [17]. The 10-20 methodology of electrode application
was used [18]. See Figure 4 for electrode placement. The
signal was sampled at 128 Hz [17].

Fig. 4. Emotiv EPOC+ EEG electrode placement [19].

Based on the previously discussed research [5], [7], [9] the
ratio of the average power between the beta and alpha waves
was used as the main feature to determine emotional state.
A high beta/alpha power ratio indicates negative emotional
response. A low beta/alpha ratio indicates positive emotional
response. The average power in the delta (0.5-4 Hz), theta (4-8
Hz), alpha (8-12 Hz), and beta (12-30 Hz) is computed from
the PSD.

Wang et. al. [5] found that the features with the most
information on emotional response were mainly on right
occipital lobe and parietal lobe in alpha band, the parietal

Fig. 5. Distribution of the top 50 subject-independent features for emotional
state from Wang et. al. [5].

lobe and temporal lobe in beta band, left frontal lobe and right
temporal lobe in gamma band, as shown in Figure 5. It seems
reasonable that these emotional response brainwaves do not
appear to originate in the frontal cortex associated with higher
thought processes and planning, but are closer to the occipital,
brain stem, and limbic system where emotions are thought to
be processed. The P7 electrode was the channel used for the
signal processing and data analysis. In future phases of the
research, more channels and interaction between channels will
be analyzed.

B. Signal Processing

Beta to alpha EEG band Power Spectral Density was
estimated using Welch’s method with 50% windowing overlap,
i.e., 128 Hz sampling rate over consecutive 4 second blocks.
The ratio was calculated using the average power bands.

C. Results

As predicted, a higher average beta to alpha power ratio
was observed in Scenario 2 then in Scenario 1. The average
beta to alpha power ratio in Scenario 1 was -4.05 dB, and the
average beta to alpha power ratio in Scenario 2 was -1.93 dB.
The results can be seen in Figure 6. Spikes in the beta to alpha
power ratio in Figure 6 can be related to specific events in the
SDC simulation. In Scenario 2, the spike at the 11 second
mark occurs when the SDC simulation runs a stop sign and
nearly collides with another car. The spike at the 50 second
mark in Scenario 2 occurs when the SDC aggressively drives
around a winding road in a residential neighborhood, and the
spike at 90 seconds occurs when the SDC abruptly stops at
an intersection.

VI. CONCLUSION

This works indicates the effectiveness of using the beta to
alpha power ratio as an indicator of emotional state while a
participant is in the SDC simulator. In our future work, we
will implement templates from our sequential and structured



Fig. 6. Time series displaying the beta to alpha power ratio in Scenario 1 vs. Scenario 2.

trust assessment model from [20], and will evaluate a larger
number of test subjects in the simulator.

EEG data has a low signal to noise ratio, therefore, it can
often be difficult and time consuming to manually classify a
data set, making a machine learning based classifier necessary
for large sets of data. Prior research has shown that Linear
SVM and MLP neural networks are good options to clas-
sify EEG data [21]. Future work will implement a machine
learning classifier to determine the subjects emotional state.
The ultimate goal is to lay the foundation to create a resilient
supervisory feedback control module that monitors passengers
state and acts as a feedback loop to modulate the control
actions of the SDC.
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