
1

Reengineering PDF-Based Documents Targeting
Complex Software Specifications*

MEHRDAD NOJOUMIAN1

University of Waterloo, Canada

and
TIMOTHY C. LETHBRIDGE2

University of Ottawa, Canada

This article aims at reengineering of PDF-based complex documents, where specifications of the
Object Management Group (OMG) are our initial targets. Our motivation is that such specifications
are dense and intricate to use, and tend to have complicated structures. Our objective is therefore to
create an approach that allows us to reengineer PDF-based documents, and to illustrate how to
make more usable versions of electronic documents (such as specifications, technical books, etc) so
that end users to have a better experience with them. The first step was to extract the logical
structure of the document in a meaningful XML format for subsequent processing. Our initial
assumption was that, many key concepts of a document are expressed in this structure. In the next
phase, we created a multilayer hypertext version of the document to facilitate browsing and
navigating. Although we initially focused on OMG software specifications, we chose a general
approach for different phases of our work including format conversions, logical structure extraction,
text extraction, multilayer hypertext generation, and concept exploration. As a consequence, we can
process other complex documents to achieve our goals.
Key Words: Digital Libraries, Electronic Publishing, Improving User Experiences, Browsing Interfaces

1. INTRODUCTION
Published electronic documents, such as specifications, are rich in knowledge, but that
knowledge is often complex and only partially structured. As a result, it is usually difficult
for users to make maximum use of a document. The objective of this research is to
develop an approach by which a typical published specification can be made more usable
to end-users. We achieve this by reengineering the PDF version of a document in order to
generate a new multilayer hypertext version of that document. This makes the knowledge
more explicit, and facilitates searching, browsing, navigating, and other operations
required by end users.

As a case study, we applied our approach to various OMG software specifications
published in PDF format. However, we ensured that all aspects of our work are as general
as possible so that the same approach can be applied to other documents. We chose OMG
specifications because they (a) have particularly complicated structures, (b) are important
to the software engineering community, and (c) have been studied in depth by members of
our research group who have experienced frustration with them.

Our overall approach is an example of document engineering, and is divided into two
distinct phases. The first step is to extract the document’s logical structure and core

1 David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, Canada,

mnojoumi@cs.uwaterloo.ca
2 School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, Canada,

tcl@site.uottawa.ca

mailto:mnojoumi@cs.uwaterloo.ca�
mailto:tcl@site.uottawa.ca�

2

knowledge, i.e., representing the document in a meaningful XML format [Nojoumian and
Lethbridge 2007]. This result consists of content information and excludes irrelevant
details of the original document’s presentation. Capturing the content in XML allows for
easy exploration and editing of data by XML editors and other tools, and allows the
generation of the new presentation to be a separate responsibility. The initial task in phase
one is to use a Commercial Off-The-Shelf (COTS) tool to convert an input PDF file into a
format we can more readily work with. We conducted an experiment to see which tool
would generate the best XML version of the document.

The next task was to parse the output of the COTS tool to clean up the XML file and
create meaningful tags based on the document headings, i.e., Table of Contents (ToC), for
further processing. The second phase of our approach is to construct a multilayer
hypertext version of the document in order to make a complex document more usable by
allowing navigation of both its structure, and also of semantics described by the
document. We believe that if developers of specifications publish their documents in the
format that we developed, it will greatly assist end users of software specifications.

1.1 Motivation and Contribution
The motivation for our work is that complex documents such as software specifications
are not as usable as we believe they should be. By complex we refer to a document which
has most of the following features: a large number of pages and figures, interconnected
concepts, definitions or equations spread throughout the document, numerous cross
references, intricate tables expanded over successive pages with figures and hyperlinks in
their cells, nested lists with complicated hierarchical structures, and long samples of
programming code spread over page boundaries.

In other words, they are large, dense and intricate to use, so most users will skim them
or look things up when needed. However, readers often have to jump backwards and
forwards many times to follow cross-references. Numerous concepts tend to be connected
only implicitly; it is not easy for end users to follow references to the place where the
reference points. For instance, in the UML specifications, there are definitions of
metaclasses. Each of these has inherited properties coming from metaclasses that may be
in other packages.

Nowadays, documents are published using a format that mimics legacy paper
documents. Although PDF is an excellent way of rendering a paper document faithfully in
electronic form and has some built-in navigation capability, the use of PDF takes away
some potential usability and makes the access to its structured content difficult; requiring
reverse engineering techniques. For this reason, various pre-processing tools have been
developed to allow the extraction of a PDF file’s textual content. However, these tools
have limited capabilities in the sense that the text’s reading order is not necessary
preserved, especially when dealing with complex layouts [Hadjar et al. 2004].

The above issues raise the following research questions: How can we reengineer a
PDF-based document in as general and straightforward way as possible? What facilities
are required for end users to have a better experience with a document? The following is a
list and brief description of the key contributions of our work for document engineering.

An efficient technique for capturing document structure: we experimented with
conversions using different COTS tools to select the best file transformation, i.e.,
extracted document’s logical structure in a clean XML format. We further processed this
using a parser written in Java. We encountered problems such as mis-tagging related to
the conversion phase and lack of well-formed characteristic of our XML file. We

3

overcame these problems and generated a well-formed XML document with various types
of meaningful tags, which facilitated our further processing.

Various techniques for text extraction: we experimented with numerous methods to
create a usable multilayer hypertext version of the document for end users. We also
applied the latest W3C (World Wide Web Consortium) technologies for concept
extraction and cross-referencing to improve the usability of the final output.

A general approach for document engineering: although our targeted documents
were OMG specifications, we chose a generic approach for various phases of our work
including format conversions, logical structure extraction, text extraction, hypertext
generation, and concept exploration. As a result, we can process other complex
documents. We also established the major infrastructure of a document-engineering tool.

Significant values and usability in the final result: after showing how to create a
more useful format of a document, we demonstrate the usability of our final outcome such
as: better navigating and scrolling structure, simple textual content processing, efficient
learning, faster downloading, as well as easier printing, monitoring, coloring, and cross
referencing.

2. RELATED WORK
In this section, we review document structure analysis and some research with respect to
analyzing PDF documents and leveraging tables of contents.

2.1 Document Structure Analysis
Klink et al. [2000] present a hybrid and comprehensive approach to document structure
analysis. Their approach is hybrid in the sense that it makes use of layout (geometrical) as
well as textual features (logical) of a given document. Mao et al. [2003] propose
numerous algorithms to analyze the physical layout and logical structure of document
images (images of paper documents) in many different domains. The authors provide a
detailed survey of diverse algorithms in the following three aspects: physical layout
representation, logical structure representation, and performance evaluation.

Summers [1998] explains an approach for finding a logical hierarchy in a generic text
document based on layout information. The logical structure detection has two stages,
segmentation and classification. The first one separates the text into logical pieces, and its
algorithm relies totally on layout-based cues, while the second one labels the pieces with
structure types, and its algorithm uses word-based information. Tsujimoto and Asada
[1990] represent a document’s physical layout and logical structure as trees. They
characterize document understanding as transformation of a physical tree into a logical
one. Blocks in the physical tree are classified into head and body while in the logical tree
are categorized into title, abstract, sub-title, paragraph, page number, caption, etc.

Lee et al. [2003] provide a syntactic method for sophisticated logical structure
analysis, which transforms multiple-page document images with hierarchical structure
into an electronic document in XML. Their proposed parsing method takes text regions
with hierarchical structure as input. Conway [1993] uses page grammars and page parsing
techniques to recognize document logical structure from physical layout. The physical
layout is described by a set of grammar rules. Each of these rules is a string of elements
specified by a neighbor relationship such as above, left-of, over, left-side, and close-to.
For describing the logical structure a context-free string grammar is used.

4

Aiello et al. [2000] provide a framework for analyzing colored documents of complex
layout. In this framework, no assumption is made about the layout. The proposed
structure combines two major sources of information: textual and spatial. It also uses
shallow natural language processing tools (such as partial parsers) to analyze the text.

2.2 PDF Document Analysis
Anjewierden [2001] describes a method in order to extract the logical structure from PDF
documents. The approach is based on the idea that the layout structure contains cues
about the logical structure, for instance, a text object in a large bold font. As a result, the
logical structure (e.g., a section title or heading) can be detected incrementally.

Chao and Fan [2004] develop various techniques that discover different logical
components on a PDF document page. They first partition a page into text blocks, images
blocks, vector graphics blocks, and compound blocks. They then present the results of
this analysis in an XML format. Hadjar et al. [2004] propose a new approach for the
extraction of the document content by low-level extraction techniques applied on PDF
files as well as layout analysis performed on TIFF images. They first illustrate various
steps of their method, and then present a first experiment on the reconstruction of the
newspapers’ reading order.

Rigamonti et al. [2005] demonstrate a reverse engineering tool for PDF documents,
named “Xed”. This tool extracts the original document layout structure in a hierarchical
canonical form (i.e., independent of the document type) by means of electronic extraction
methods and document analysis techniques. Bloechle et al. [2006] present different
approaches for processing the structured content of PDF documents based on image
analysis and electronic content extraction. They also demonstrate an algorithm for
restructuring a document in XCDF (eXhaustive Canonical Document Format), which is
based on XML and has well-defined properties facilitating access to the structured
content.

2.3 Leveraging Tables of Contents
Dejean and Meunier [2005] describe a technique for structuring documents according to
the information in their tables of contents (ToC). In fact, the detection of a ToC, as well
as the determination of the parts it refers to in the document body, rely on a series of
properties that characterize any ToC. He et al. [2004] propose a new technique for
extracting the logical structure of documents by combining spatial and semantic
information of the table of contents. They exploit page numbers and numbering schemes
to compute the logical structure of a book. Their method is not a general approach
because of the observed diversity of page or section numbering, and of ToC layout.

Lin et al. [1997] propose a method for analyzing the logical structure of books based
on their tables of contents by layout modeling and headline matching. In general, the
contents page holds accurate logical structure descriptions of the whole book. In this
approach, text lines are first extracted from the contents page, and OCR (Optical
Character Recognition) is then executed for each text line. The structures of the page
number, head, foot, headline, chart, and main text of the text page are analyzed and
matched with information obtained from the contents page.

Belaid [2001] presents a labeling approach for the automatic recognition of a table of
contents. A prototype, called “Calliope”, is applied for electronic consulting of scientific
papers. This approach works on structured ASCII files produced by OCR. Lin and Xiong

5

[2005] introduce a new approach to explore and analyze a ToC based on content
association. Their method leverages the text information in the whole document, and it
can be applied to a wide variety of documents without analyzing the model of an
individual document; NLP (Natural Language Processing) and layout analysis are
integrated to improve the ToC tagging. Bourgeois et al. [2001] describe a statistical
model for document understanding, which uses both text attributes and document layout.
In this model, probabilistic relaxation (which is a general method to classify objects and
to repetitively adjust the classification) is used as a recognition method for understanding
the table of contents and discovering the logical structure.

3. DOCUMENT TRANSFORMATION
We selected PDF-based documents for processing for the following reasons. First of all,
people do not have access to the original word-processor formats of many documents.
When a document is published to the web, an explicit choice is usually made to render the
result as PDF or HTML to guarantee that everyone can read it without having to have
Microsoft Word, FrameMaker, etc. In addition, the PDF format has useful features that
make it semi-structured. For instance, it often contains bookmarks created from headings
to enable a user to navigate a document; a computer can also use this information to
extract the logical structure. Finally, since a PDF file can be easily generated from most
document formats, there exist a huge number of PDF documents on the Internet.

One of our major goals is to extract the document’s logical structure. As we
mentioned earlier, many key concepts of the targeted OMG specifications are expressed
in the logical structure. By extracting this structure and representing it as XML, we can
form an excellent infrastructure for our subsequent processing. We solved this problem in
two phases. In this section, we describe the first step, i.e., transforming the raw input into
a format more amenable to analysis. The second step, i.e., extracting and refining the
logical structure, is the topic of the next section.

To extract the logical structure of a document, we performed various conversion
experiments using different tools such as Adobe Acrobat Professional, Microsoft Word,
Stylus Studio® XML Enterprise Suite, and ABBYY PDF Transformer to see to what extent
each could facilitate the extraction process.

3.1 Criteria
Since we want to extract the document’s logical structure and convert it to XML, we are
interested in an output format that can most facilitate this extraction. To select the best
conversion, we defined a set of criteria based on the experiences we gained during our
experiments. These criteria are as follows:

 Generality: A format should enable the design of a general extraction algorithm for

processing other electronic documents.
 Low volume: We should avoid a format consisting of various extra materials not

related to the document content. This includes information related to the presentation
format, for instance, the position of elements such as words, lists and paragraphs.

 Easy processing: Even if a format results in a small file, it still may not be adequate.
It should also be clean and machine-readable. For instance, formats that purely mark
constructs such as paragraphs with a single marker are easier to work with than
formats that do not do this.

6

 Tagging structure: We prefer a format that has a tagging structure, such as XML or
HTML, because we want our final output of this step to be a structured format.

 Containing clues: A format should use markers, which provide accurate and useful
clues for processing and finding the logical structure. For example, meaningful
keywords regarding the headings: “LinkTarget”, “DIV”, “Sect”, “Part”, etc.

Sometimes, formats that contain extra data such as font, size, style, and position are

more helpful, while in other cases documents that are mostly text without additional
details would be more useful. For instance, the extra data would be useful for algorithms
that detect headings of a document based on this information, whereas style and font tags
are of little use to our algorithm. Hence, we would like to compromise among different
kinds of formats to satisfy our mentioned criteria. In the next part, we evaluate different
transformations to define the best candidate.

3.2 Evaluation
To narrow down the list of possible transformations, we evaluated each transformation
according to how it satisfies our criteria. We performed all conversions on various OMG
software specifications with different tools. Our observations are as follows:

DOC and RTF formats are generally messy. For example, they code figures among the
contents of the document, whereas some formats such as HTML or XML put all the
figures in a separate folder in an image format. In addition, DOC and RTF store
information related to the font, size, and style of each heading, paragraph, and sentence
beside them. This information is not useful for us because it varies from one document to
another, contradicting the generality property and increasing the potential for noise during
processing. TXT format is very simple but does not give us consistent clues about where
to find the beginning of chapters, headings, tables, etc.

PDF is complex, but after Adobe Acrobat Professional converts a document from
PDF into HTML or XML, the result is very nice. Both the HTML and XML formats are
clean, relatively small, with a tagging structure and useful clues for processing. The
results are consistent, satisfying the generality property. Therefore, our finalist candidates
for input into logical structure extraction are HTML and XML formats as generated from
PDF. To further narrow our choice of transformation, we analyzed the following sample
parts of the targeted documents using the two finalist candidates. These cover an array of
possible structures that appear repeatedly in OMG software specifications: (a) Sample
paragraphs, (b) Sample figures, (c) Complex tables containing figures and hyperlinks in
their cells, and (d) Nested lists with complicated hierarchy structures.

Our many assessments revealed that the XML format is more machine-readable and
simple for analysis. Moreover, in an XML file, each tag is in a line, so we can analyze and
parse the document line by line, which is easier compared to the HTML format in which
we have to explore the document character by character. In the next section, our
experimental outcomes related to the logical structure extraction are presented.

4. LOGICAL STRUCTURE EXTRACTION
After following the step described in previous section, we have the initial XML
document. However, aspects of the document structure (such as headings) still need to be
extracted to form a meaningful tagging structure in order to facilitate the further
processing. The main motivation for further processing is that we found the documents

7

tend to have consistent patterns of sentence structure and terminology in their document
headings, various document body sections, and the index [Nojoumian 2007]. Our first
assumption was that document headings (i.e., those that appear in the table of contents)
carry the most important concepts with respect to a targeted document. This assumption
seems particularly reasonable when we have a large document with numerous headings.
That is why people usually explore the table of contents when they start working with a
new document.

In the following section, we first discuss two implementation approaches to finalize
our extraction of the logical structure. We then evaluate our methods and express the
reasons for failure in the first technique. Finally, we present our successful practice for the
logical structure extraction.

4.1 First Refinement Approach
In this approach, we applied a simple parser to scan for matching major tags, such as
<Part>, <Sect> and <Div>, which Adobe Acrobat Professional used to open and close
each part, chapter, section, etc of a document. Consider the following sample structure of
a document (left-hand side). Using a straightforward stack-based parsing approach, we
converted this into (right-hand side):

Unfortunately, after running the program on different chapters and the whole

document as well, it failed. We found out that there is a considerable amount of incorrect
tagging. The tool opened each part, chapter, section, etc by <Sect> in a proper place in
the document but it closed all of these tags by </Sect> in wrong places. The problem
became more serious when we processed the whole document at once because of the
accumulated mis-tagging. A sample of incorrect tagging is presented here:

As a result, we could not extract the logical structure of the document in a meaningful

format by this simple approach and decided to develop a new program that was more
powerful and capable of detecting tagging errors. In the next section, our successful
approach and the corresponding results are demonstrated.

<Sect name=”Generalization”> <Generalization>
 <Sect name=”Class-Ref”> <Class-Ref>
 <Sect name=”Name”>…</Sect> <Name> … </Name>
 <Sect name=”Package-Ref”>…</Sect> <Package-Ref> … </Package-Ref>
 </Sect> </Class-Ref>
</Sect> </Generalization>

<Sect number=” 7.3”>
 <Sect number=”7.3.1”> … </Sect>
 <Sect number=”7.3.2”> … </Sect>
 Correct place for closing <Sect number=”7.3”>
<Sect number=”7.4”>
</Sect>
</Sect> Wrong place

8

4.2 Second Implementation Approach
In the second approach, we developed a more powerful parser that focused on a keyword,
LinkTarget, which corresponds to the bookmark elements created in the previous
transformation. This keyword is attached to each heading in the bookmark such as
headers of parts, chapters, sections, and so on. Therefore, as a first step, we extracted all
lines containing the mentioned keyword and put them in a queue, named
LinkTargetQueue. We also defined various types of headings in the entire set of OMG
specifications with respect to its logical structure. This classification is shown in Table 1.

Table 1. Different kinds of headings

T Sample Headings Type

1 Part I - Structure Part
2 7 Classes Chapter
3 7.3 Class Descriptions Section
4 7.3.1 Abstraction Subsection
5 Generalization, Notation, etc Keyword
6 Annex End part
7 Index Last Part

Then, we applied the Procedure LogicalStructureExtractor(LinkTargetQueue) that

takes a queue as its input. Each node of this queue is a line of the input XML file which
has LinkTarget string as a keyword, e.g., <P id="LinkTarget_111914">7 Classes </P>.
This algorithm extracts headings (e.g., 7 Classes) and then defines their types by pattern
matching according to Table 1 (e.g., TChapter

Fig. 1

 = 2). Subsequently, it applies a stack-based
approach for opening and closing corresponding tags at suitable places in the XML file.
By applying this logical analyzer, we extracted all headings from various OMG software
specifications and created new XML files for these documents with meaningful tags.

 shows a sample bookmark and its corresponding logical structure in XML
format regarding one of the OMG specifications, i.e., UML Superstructure Specification
(Unified Modeling Language). It consists of 4 major parts, 18 chapters, and numerous
concepts such as generalizations, description, etc. We extracted 71 different types of tags
in three categories (Structures, Blocks, and Keywords). Some of them, with their number
of occurrence, are presented in Table 2. The general structure of these documents consists
of parts, chapters, sections, subsections, and keyword-headed sub-subsections.

Table 2. Sample XML tags in the UML superstructure specification

Structures # Blocks # Keywords #
<Part> 4 <P>: Paragraph 8228 <Associations> 177

<Chapter> 18 <Figure>: Figure 738 <Attributes> 171
<Section> 74 <Table>: Table 105 <Constraints> 172

<Subsection> 314 <TH>:Table Header 283 <Description> 202
 <TR>: Table Row 547 <Generalization> 296
 <TD>: Table Data 1721 <Notation> 169
 <L>: Lists 245 <Semantics> 179
 : List Item 765 etc.

9

Fig. 1. UML specification’s bookmarks and its logical structure extracted in XML format

Procedure LogicalStructureExtractor(LinkTargetQueue)
F // a new XML file
L // a line: e.g.: <P id="LinkTarget_111914">7 Classes </P>
H // Heading: e.g.: 7 Classes
T // Type: e.g.: for the Chapters, T Chapter = 2
T Last member of the HeadingStack = 0
HeadingStack = empty
While (LinkTargetQueue != empty) do

Get “L” from the LinkTargetQueue
Extract the heading “H” from the “L”
Define heading's type: “T”
While (T =< T Last member of the HeadingStack) do

Pop “H” and “T” from the HeadingStack
Close the suitable tag w.r.t the popped “T”
If (HeadingStack == empty)

Break this while loop
End if

End while
Push the new “H” and “T” in the HeadingStack
Open new tags w.r.t the pushed “H” & “T”

End while
While (HeadingStack != empty) do

Pop “H” and “T” from the HeadingStack
Close the suitable tag w.r.t the popped “T”

End while
Return “F”

End procedure

10

5. TEXT EXTRACTION
Hypertext presentation has been a popular method for various computer applications
dealing with large amounts of loosely structured information such as on-line
documentation or computer-aided learning [Nielsen 1990b]. In this section, we take our
results from the last section one step further in order to construct a general structure for
our hypertext interfaces. We first evaluate whether each document is well formed and
generates a valid schema. We then produce multiple HTML pages for each document
while connecting them together. Finally, we demonstrate the construction of the
document’s key elements such as anchor links, figures, tables, and lists. The constructed
multilayer hypertext versions consist of the following elements:

 A page for the table of contents.
 A separate page for each heading types, i.e., part, chapter, section, and subsection.
 Hyperlinks for accessing to the table of contents, next and previous pages.
 Some pages for extracted concepts, e.g., package and class hierarchy of the UML.
 Various cross references throughout the document.

To increase the usability of each document and highlight specific classes of

information, we used different colors to present each XML element.

5.1 Checking Well-formedness and Validity
Every XML document must be well formed which means that it properly matches opening
and closing tags and abides by logical rules of nesting. For well-formed checking and
validating, we used a tool named Stylus Studio® XML Enterprise Suite, which is an XML
integrated development environment.

In addition to checking for well-formedness, it is necessary for an XML document to
be valid, i.e., whether a document uses tags in a consistent manner with its schema or not.
A valid document has data that complies with a particular set of user-defined principles,
or XML Schema, which illustrate correct data values and locations. Most of the XML
tools support automatic schema generation in addition to the well-formedness checking.
They also provide features for error detection during validation procedure, which makes it
very easy to validate a schema. We first generated XML schemas and then validated the
extracted documents.

5.2 Producing Multiple Outputs
To enhance the multilayer hypertext version’s efficiency and facilitate document
browsing, we produced multiple outputs using the <xsl:result-document> element, and
generated a small hypertext page for each part, chapter, section, and subsection. The other
alternative was to create a long HTML file (such as existing specifications on the web).
Our motivation for generating small hypertext pages were as follows:

 A better sense of location: Users can have a better sense of location when

navigating cross-references. In a large hypertext document one can use anchors (with
the syntax and) to allow jumping from section to
section. However, the result of jumping to a section in this manner places you into
the middle of a document. Therefore, the user can find it confusing to determine

11

exactly where they have arrived. On the other hand, if the destination of a jump is an
entire hypertext page, the above problem goes away.

 Less chance of getting lost: Users are less likely to get lost by scrolling in small
pages in comparison to a long page. In a long hypertext page, after following a link, a
user may then move to some other parts of the document. But then the user may not
know how to go back to where they came from unless they happen to remember the
section number or title of the section they came from. If instead the document is
organized as many small hypertext pages, it becomes simply a matter of hitting the
back button in the browser.

 A less-overwhelming sensation: A smaller document should help users to manage
larger amounts of information and understand the document more efficiently.

 Faster loading: Users are not always interested in downloading the whole document
at once, especially when the document is fairly big.

 Statistical analysis: It may be useful to calculate the most frequent pages loaded and
the time during which users stay in each page. This information could be used to
improve the specification itself, and to determine what the most significant
information is.

To prevent loss of the original order of a document, we created Previous and Next

hyperlinks in each page in order to help the user to realize where he or she is, has been,
and can go. It is important to note that there is a logical limit to how finely one wants to
break down a large document into small hypertext pages (in the absurd extreme, one
could separate each paragraph). What we have done is to limit the division to the
subsection level.

In order to generate separate hypertext pages, we applied Saxon, which is an open
source XSLT and XQuery processor developed by Michael Kay. Saxon versions exist for
both .Net and Java. We used the Java version with the following command to transform
the targeted XML documents by the XSLT code that we developed: “java -jar saxon8.jar
-t filename.xml filename.xsl”.

In our document, each part consists of a body as well as chapters, sections, and
subsections inside of itself. Each chapter also consists of sections and subsections in
addition to its body, and so forth. Therefore, to exclude chapters, sections, and
subsections from an independent hypertext page, which just belongs to the body of a part,
we had to create a global template for each of these entities in the XSLT code, as shown
in Fig. 2. A global template is useful if an element occurs within various elements or in
various locations of a document.

The other significant issue was the naming of these output files. This procedure had
more importance when we wanted to link these hypertext files together and create the
table of contents. Therefore, we used the following XPath function to name our outputs:

concat (‘folder-name/’, @Number, ‘.html’)

This function concatenates three strings, creates a folder named “folder-name”, and

puts each hypertext file in this folder. The @Number refers to the attribute of <Part>,
<Chapter>, <Section>, and <Subsection> elements. As a result, we named the hypertext
outputs as follows: I.html, 7.html, 7.1.html, 7.2.html, 7.3.html, 7.3.1.html, 7.3.2.html, etc.

12

Since file names were created from the @Number attribute, we were able to facilitate
access to each of these files. For instance, by a simple piece of XSLT code, as shown in
Fig. 3, we generated the related hyperlinks in the table of contents.

Fig. 2. Producing multiple outputs

Fig. 3. Generating hyperlinks in the ToC

In the next section, we illustrate how to connect these files together by Previous and

Next hyperlinks at the top of each page.

5.3 Connecting Hypertext Pages Sequentially
In the earlier section, we generated numerous hypertext pages for each OMG
specification, for example, 418 pages for the UML Superstructure Specification. In a later

13

section, we will be creating contextual hyperlinks and the table of contents that will allow
direct jumping to various pages. However, we would still like to link all pages together by
creating Previous and Next links in each page. This will allow the reader to proceed
through the document in its original sequence, should they wish to do that. Therefore, we
first extracted all elements’ attribute, named Number, sequentially (1, 2, …, 7, 7.1, 7.2,
7.3, 7.3.1, etc) using a simple XSLT code. We then put them in a file, named Num.txt,
and executed the algorithm Procedure Linker() in order to link hypertext pages together.

In the next section, we demonstrate our presentation methods for different kinds of

document major elements, and provide the related XSLT codes for the style sheet design.

5.4 Forming Major Document Elements
To construct the major document elements such as figures, tables, and lists, we developed
various style sheets by XSLT programming and applied some tools such as Altova
StyleVision® Enterprise Edition which is a visual style sheet designer for transforming
XML and database content into HTML, PDF, and RTF output. In the next parts, a
complete discussion with respect to the style sheet design for document elements is
demonstrated with relevant XPath expressions and XSLT codes.

5.4.1 Figures

We first present the automatic extraction of a document’s figures. In the transformation
phase, when Adobe Acrobat Professional converted a document into an initial XML file,

Procedure Linker()
Num.txt // a text file consisting of all attributes
A1, A2 // variables
A1 = Read the first attributes from “Num.txt” file // (e.g. A1 = 1)
A2 = Read the second attributes from “Num.txt” file // (e.g. A2 = 2)
Call SetupLink (A1, A2) // (e.g. (1, 2))
A1 = A2 // (e.g. A1 = 2)
While (True) do

A2 = Read an attribute from “Num.txt” // (e.g. A2 = 3, A2 = 4, A2 = 5)
 If (End of the “Nume.txt”) Then

Break this while loop
 End If
 Call SetupLink (A1, A2) // (e.g. (2, 3), (3, 4), (4, 5))
 A1 = A2 // (e.g. A1 = 3, A1 = 4, A1 = 5)

End while
End procedure
Procedure SetupLink(X1, X2)

folder-name Folder // a folder containing various hypertext files
X1, X2 // arguments
Extract the X1.html and X2.html from folder-name
// (e.g. 7.3.1.html and 7.3.2.html)
Set “Next” Hyperlink in X1.html based on the X2 variable
// (e.g. in 7.3.1.html “Next” refers to 7.3.2.html)
Set “Previous” Hyperlink X2.html based on the X1 variable
// (e.g. in 7.3.2.html “Previous” refers to 7.3.1.html)

End procedure

14

it also created a folder, named images, for the XML file. Adobe put all figures of the
document in this folder, and named them as follows: folder-name_img_1.jpg to folder-
name_img_n.jpg. The Fig. 4 shows the structure of the <Figure> element that has two
children: (a) <ImageData> with its “src” attribute, and (b) <Caption>.

Fig. 4. Figure tag structure in the XML document

For the relevant style sheet design, first we took out the targeted chapter (e.g., Chapter

2: Conformance) and extracted the <Figure> element. Then, we inserted a dynamic
hyperlink inside of the src attribute by the following XSLT code and XPath expression:

<xsl: value-of select=“string(.)”/>

This line of the code selects the value of the string(), which returns the string value of

the argument. Here, it refers to the current node by dot. Therefore, it replaced the values
of this attribute (i.e., images/folder-name_img_1.jpg … images/folder-name_img_n.jpg)
into the hyperlinks, and imported all figures of each document into the right places inside
of the document. We also imported the related captions to the end of each figure, Fig. 5.

Fig. 5. Dynamic importation of figures

15

5.4.2 Tables

Now, we illustrate how to create a dynamic pattern for importing all tables with different
sizes from the XML files corresponding to specifications. Fig. 6 shows the <Table>
element structure. It has two children: (a) <Caption> element which consists of (a) plain
text, and (b) <TR> element (Table Row) which has two different children: (b-1) <TH>
element (Table Header), and (b-2) <TD> element (Table Data).

Fig. 6. Table tag structure in the XML document

Dynamic table creation is supported by XSLT programming. In these tables, one of

the dimensions is fixed and the other one is dynamic. For example, the number of
columns is fixed but the number of rows is variable. To create a dynamic pattern for
importing our tables, we first created the relevant caption, and then selected the <TR>
element. Subsequently, we constructed all table cells.

To import table headers <TH> and table data <TD>, we applied the following XPath
function: position(). This function returns the index position of the node that is currently
being processed. As an example, consider the first <TR> element in the Fig. 6. If we
apply <TD> When: position() = 1 <TD>, it returns Level 1 string. We used each of the
following expressions in a conditional branch through the first column to the last one,
e.g., position() = 1,…, position() = 6. They imported relevant data into the related cells.

5.4.3 Lists

We now present the style sheet design for lists. Fig. 7 shows the <L> element structure for
a simple list. It has two grandchildren: (a) <LI_Label>, and (b) <LI_Title>.

To present a simple list, we first extracted <LI_Label> and <LI_Title> elements by
<xsl:for-each select="LI_Label"> and <xsl:for-each select="LI_Title">, and then
presented their contents. But for the nested lists, after extracting the second <L> element,
we applied the following XPath expressions:

child :: * [position()=1] & child :: * [position()=2] first second parts of the nested lists

16

Fig. 7. List tag structure in the XML document

The child::* means select all children of the current node, and child::* [position()=1]

means select the child which is in the first place, and so forth, as shown in Fig. 8.

Fig. 8. Importation of simple and nested lists

17

6. CONCEPT EXTRACTION
In this section, we present a sample of concept extractions from targeted documents,
specifically OMG software modeling specifications (these concepts include class and
package hierarchies). We applied logical expressions in order to extract such concepts.
Although this part has been designed for software modeling specifications, it can give us a
general view of how to perform concept extraction from other documents.

As we mentioned in prior sections, there are numerous concepts in headings (this fact
was one of our major reasons for the logical structure extraction of a document). As an
example, Fig. 9 shows class descriptions with respect to the Components and Composite
Structures. Using from as a keyword, it also presents the packages to which these classes
belong. Since we tagged this information as chapter, section, and subsection headings, we
extracted (using XPath expressions and XSLT code) the class and package hierarchies of
modeling specifications in two separate pages.

Fig. 9. Headings containing UML concepts

6.1 Modeling Class Hierarchy Extraction
In this part, we explain how to extract the class hierarchy from XML documents
corresponding to modeling specifications. The main clue that we used in our extraction
code was the Class Descriptions, which is a keyword string for the class hierarchy
detection. For this reason, we applied the following XPath expression inside of the
<Section> element (Fig. 10, arrow-I) to take out all classes:

child::*[position()=1]/starts-with(.,‘Class Descriptions’)

This expression means: select the first child of the <Section> element whose content

starts with Class Description. By this logical expression, we only selected sections that
present some descriptions about classes. Subsequently, we applied the following
expression in order to define the title of a class set:

preceding-sibling :: * [last()]

This expression means: select the preceding sibling of the <Section> element in the

last place (Fig. 10, arrow-III). As you can see in Fig. 10, <Section 9.3> has three
preceding-siblings: <Section 9.2>, <Section 9.1>, and <Name> which is the last one.
Finally, we moved to the <Subsection> element (Fig. 10 <Subsection 9.3.1>) and

18

extracted contents of the <Name> element (e.g., Class) and the <Reference> element
(e.g., StructuredClasses). We also linked this class to its relevant hypertext page by the
<Subsection> element’s attribute (i.e., @Number+html, for instance, 9.3.1.html).

Fig. 10. Part of tagging structures in the XML document

As an example, part of the XSLT code with respect to the extraction of the UML class

hierarchy is presented in Fig. 11.

Fig. 11. UML class hierarchy extraction

19

6.2 Modeling Package Hierarchy Extraction
To extract the UML packages, we used the <Reference> element inside the <Subsection>
element. The <Reference> element was created by from as a keyword string during the
logical structure extraction. For instance, we applied the following expression inside of
the <Subsection> element in order to extract all classes belonging to the Actions package:

contain(Reference,‘Actions’) = true() and
contain(Reference,‘CompleteActions’) = false() and …
contain(Reference,‘StructuredActions’) = false()

The contain(string-1 , string-2) function, returns true if string-1 contains string-2,

otherwise, it returns false. Therefore, the above XPath expressions mean select
subsections whose <Reference> element contains Actions but are not CompleteActions or
StructuredActions, etc. As shown, we excluded other packages whose names overlapped
with Actions package. Finally, we extracted the <Name> element, which carried the class
names of the Actions package, and then linked each of these classes to its relevant
hypertext page. Part of the XSLT code for the UML package hierarchy extraction is
presented in Fig. 12.

Fig. 12. UML package hierarchy extraction

20

We developed a simple script that could execute the above XSLT code repeatedly
(plugging in each of the package names where Actions appears).

7. CROSS REFERENCING
To facilitate document browsing for end users, we created hyperlinks for major document
keywords (for example, class names as well as package names) throughout the generated
user interfaces. As we mentioned previously, since these keywords were among document
headings, each of them had an independent hypertext page or anchor link in the final user
interfaces. These hyperlinks help users to jump from one page to another page in order to
gather more information as required.

We developed the related XSLT code to produce required strings for keywords used
in the cross referencing algorithm, Fig. 13.

Fig. 13. Producing related strings for cross-referencing

This code selects sections that consist of class descriptions, and then generates a string

which is made from the following six substrings, for every class:

Name+@+Name+

For instance, Abstraction is a class name; therefore, its generated string is as follows:

21

Abstraction@Abstraction

We applied a similar approach to generate related strings for package names, for example,
the following string is generated for the Actions as a package name:

Actions@Actions

As you can see, we isolated keywords from their corresponding hyperlinks by @

character. We also listed all of these strings in a text file, named UniqueKeywords.txt, and
then executed the Procedure CrossRef() for cross referencing.

To generalize this cross-referencing approach for other keywords and documents, we
simply extracted all headers (since each had an independent hypertext page or anchor
link) with their corresponding hyperlinks in order to put them in the UniqueKeywords.txt
file, and then executed the CrossRef procedure.

8. EVALUATION, USABILITY, AND ARCHITECTURE
In this section, we demonstrate reengineering of various OMG software specifications,
and address usability of generated multilayer hypertext versions by comparing them to the
original PDF documents. We also illustrate the architecture of a document-engineering
framework with the reengineering capability of PDF-based documents.

8.1 Reengineering of Various OMG Specifications
For further evaluation, we selected wide variety of other software specifications from
Object Management Group (OMG) webpage with diverse number of pages and headings.
The sample result of this assessment on ten documents is demonstrated in Table 3.

Procedure CrossRef()
folder-name // a folder consisting of various hypertext files
F // a hypertext file belonging to a document
UniqueKeywords.txt // a file consisting of the mentioned strings
L // e.g.: Abstraction@Abstraction
S1, S2 // string variables
While (True) do

F = Extract a new hypertext page from folder-name
 If (all hypertext pages are extracted) Then

Break this while loop
 Else

While (end of the “UniqueKeywords.txt” file) do
Get a new “L” from the text file // a new line
Split “L” into two strings from “@” character
S1 = first part of the “L” // Abstraction
S2 = second part of the “L” // corresponding links
If (find S1 in F in one place or many places) Then

Replace All (S1, S2) // replace all S1 strings with S2
 End If

End while
 End If-Else

End while
End procedure

22

Table 3. Sample reengineering of OMG specifications

Original OMG
Specifications

Number
of PDF
Pages

Number of
Headings

Headings
Used in

Cross-Ref

Number of
Tokens in
Doc Body

Number of
Tokens in
Headings

Data
Analysis
Results

Number of
Hypertext

Pages
CORBA 1152 787 662 13179 702 15.1% 788

UML Sup. 771 418 202 10204 378 12.2% 421
CWM 576 550 471 6434 463 13.2% 551
MOF 292 61 52 6065 92 8.0% 62

UML Inf. 218 200 122 4329 176 9.3% 201
DAIS 188 135 102 3051 151 12.6% 136
XTCE 90 18 18 3075 26 2.6% 19
UMS 78 69 59 1937 94 22.7% 70

HUTN 74 88 83 2264 144 9.8% 89
WSDL 38 17 17 1106 36 16.3% 18

In this evaluation, for each of these documents, we created a separate hypertext page
for its headings in addition to a page for its table of contents. To increase the usability of
the outcomes, we did cross referencing all over hypertext pages by (a) detecting headings
in each of these pages, and (b) connecting them to their corresponding entries. For
instance, if the AssociationClass is among headings, it certainly has an independent
hypertext page as well as hyperlinks in all the other pages where it appears. To avoid
ambiguity, we filtered some phrases with common substrings (e.g., Association and
AssociationClass), and eliminated phrases with many independent pages.

Furthermore, for each of these specifications, we sorted document and heading tokens
based on their frequency in two separate lists. We then defined positions of heading
tokens among document tokens, i.e., [P1… PN

Table 3
]. Finally, we determined how important

the headings are. The data analysis column in shows the headings are among the
most frequent words, e.g., 15.1% shows headings are among top 15.1% frequent words in
the entire document.

Fig. 14 also demonstrates the same concept with two different evaluations. In the
lower diagram, we evaluated the headings whose number of occurrences were bigger that
2; but in the higher diagram we assessed the entire headings. As we mentioned earlier,
this conclusion was our major motivation for:

 Extracting the logical structure based on the headings.
 Generating a separate hypertext page for each heading.
 Detecting major concepts among the document headings.
 Cross-referencing by detection of the document headings.

µ: Mean of [P1…PN

∂: Total number of document tokens
]

Percentage = (µ * 100) / ∂

23

0
10
20
30
40
50
60
70
80
90

100

1 2 3 4 5 6 7 8 9 10

Pe
rc

en
ta

ge

Fig. 14. Headings are among the most frequent words

All experiments confirmed that our approach is applicable to all kinds of documents.

We just spent few seconds on some of these documents after the transformation phase to
deal with rare mis-tagging problems. For example, forbidden notations among XML tags
such as “>” (greater than) and “<” (less than) in some mathematical equations. Although
this issue can be resolved automatically in our future design, the rest of our engineering
procedures and software modules are totally automatic.

8.2 Usability of Multilayer Hypertext Interfaces
Heuristic evaluation is a systematic assessment of a user interface design in which a set of
evaluators inspects the interface to judge its conformity with well-known usability
principles [Nielsen and Molich 1990]. Nielsen [1989] compares 92 standard
measurements of various usability issues related to hypertext in order to define those
criteria that have the largest effects. Botafogo et al. [1992] also develop two types of
metrics for hypertexts: global and node. The former refers to metrics concerning with the
hypertext as a whole, and the latter focuses on the structural properties of individual
nodes.

Although heuristic evaluation is not guaranteed to detect every single usability
problem in an interface, this technique is a very efficient usability engineering method
[Jeffries et al. 1991]. We first applied the same approach with the help of experts in our
research lab. We then run a simple usability study among a group of software engineering
students by designing multiple-choice questionnaires with an extra space for comments.

Our goal was to let them explore our user interfaces without any time limit such that
they can also provide constructive feedback. For instance, they suggested that we add a
Frame-like interface with a tree control on the left which shows the overall structure of a
document, or create features that allow a user to add values to a document such as
annotations, cross references, and links to related documentations.

In both methods, our intention was to compare the generated multilayer hypertext
versions with the original PDF format as well as the HTML format of the specifications,
which can be provided directly by Adobe Acrobat. This tool made a long hypertext page
for each of those specifications along with anchors for headings at the top of each output.

Conklin [1987] summarizes operational benefits of hypertexts as follows: ease of
tracing references, ease of creating new references, information structuring, global views
in the ToC, customized documents, modularity, task stacking, and collaboration. Beside
these advantages, we detected the following benefits through our usability studies, which
did not exist in the original PDF formats, or Adobe-Generated HTML formats:

24

 Navigating: To be able to define previous, current, and next locations, and to go
forward and backward by sequential browsing of headings. Indeed, the tendency to
lose the sense of location and direction in a document is one of the major
disadvantages of nonlinear hypertexts [Conklin 1987]. Moreover, a framework where
users explore large amounts of information should have backtracking features in
order to help the user to return directly to prior locations [Nielsen 1994].

 Scrolling: It would be confusing to scroll a long hypertext page containing hundreds
of topics, headings, and cross-references rather than a set of small hypertext pages.
Moreover, page boundary in the PDF version makes it difficult to follow up related
materials spread over various pages (e.g., a big table or program code). Nielsen and
Lyngbaak [1989] showed that 56 percent of the readers of a document presented in
the hypertext format agreed with the statement “I was often confused about where I
was”.

 Processing: Accessing the structured content of PDF documents is a complex task,
requiring reverse engineering and pre-processing techniques [Bloechle et al. 2006].
The generated hypertext interfaces simplify the content processing of the documents
in the case of information retrieval, data mining, and knowledge acquisition.

 Learning: Humans can better handle a small amount of information presented in a
single hypertext page, related to a unique topic. Based on the minimize user memory
load principle, user interfaces should be simplified as much as possible, because
every extra information or feature on a screen is one more thing for the user to learn
[Nielsen 1994].

 Monitoring: To define a set of hypertext pages which have been downloaded several
times and are probably more interesting for end users; they also get high ranking in
popular search engines such as Google, Yahoo, etc.

 Downloading: Technical documents are not like novels. In other words, we do not
need to provide the whole document at once. The better idea is to provide the table of
contents as a menu for users, and let them to select whatever they require. In a large-
scale assessment, this issue decreases network traffic a considerable amount.

 Referencing: Users should be able to jump to the desired location in a large
information space. Therefore, a hypertext-like approach [Nielsen 1990a] with cross-
referencing among various concepts, definitions, or even different documents would
be a practical solution. For example, connecting UML Superstructure Specification
to the UML Infrastructure Specification wherever it is necessary.

 Coloring: To be able to use different colors to present various classes of information
and highlight some significant parts of the document automatically. It is a fact that
some colors and color combinations are more visible than others [Durrett 1987].

 Keeping track: Users should be able to keep track of their interaction history and
use this information subsequently [Greenberg 1993]. As a solution, colors of visited
hyperlinks in the table of contents or other cross-references will be changed.

8.3 Architecture of the proposed framework
As we went further, by reengineering more specifications and technical documents, we

modified our software components and ended up with the architecture of a document-
engineering framework. It takes a PDF document and then generates corresponding
meaningful XML format and multilayer hypertext version of the document. A company
such as Adobe could use our approach in order to generate more useful versions of a
document for both processing and browsing. This architecture is demonstrated in Fig. 15.

25

Fig. 15. Architecture of the implemented document-engineering framework

9. CONCLUSION AND FUTURE WORK
In this article, we described an approach for taking raw PDF versions of complex
documents (e.g., specifications) and converting them into multilayer hypertext interfaces.
For each document, we first generated a clean XML document with meaningful tags, and
then constructed from this a series of hypertext pages constituting the final system.

The key contributions of the research are: (a) to illustrate methods for reengineering
PDF-based technical documents in a general way, and (b) to demonstrate how to make a
more usable hypertext version of documents so that end users to have a better experience
with them. Our major goals were to make a complex document more usable by allowing
navigation of both its structure and also of semantics described by the document.

We applied the latest W3C technologies such as XSLT and XPath expressions, and
learned that, although by using these technologies we can parse every XML document, it
would be more usable if the created XML documents have strong logical relationships
among their elements and attributes similar to the XML documents we produced. As the
final point, we propose research in the following directions as our future work:

 Extract the initial XML document from other formats such as DOC, RTF, HTML,

etc. This can extend our framework for other kinds of formats and documents.
 Automate the concept extractions or at least create some features for the detection of

the logical relationships among headings (as presented in Fig. 9).
 Improve the current solution and discover new users’ demands. Only by such an

investigation we can have a deep understanding of users’ difficulties.

Access to all implementations and the reengineered OMG specifications are available.

Text Extraction by XSLT and XPath Technologies

Transforming
the Document

Extracting Logical
Structure: XML

Producing Multiple Hypertext Pages
 Producing Table of Contents

Extracting Document Concept

Generating Heading Numbers

Generating Headings and Their
Corresponding Hyperlinks Filtering Headings

Linking Hypertext
Pages: Linker()

Cross Referencing
CrossRef()

PDF
Document

Multilayer
Hypertext

Version: HTML

Extracting Doc Body without Headings

Extracting Document Headings Document’s Data
Analysis

26

REFERENCES
AIELLO, M., MONZ, C., AND TODORAN, L. 2000. Combining linguistic and spatial

information for document analysis. In Proceedings of RIAO Content-Based Multimedia
Information Access, France, 266-275.

ANJEWIERDEN, A. 2001. AIDAS: Incremental logical structure discovery in PDF documents. In
Proceedings of 6th

BELAID, A. 2001. Recognition of table of contents for electronic library consulting. International
Journal on Document Analysis and Recognition, vol. 4, 35-45.

 ICDAR, USA, 374-378.

BLOECHLE, J., RIGAMONTI, M., HADJAR, K., LALANNE, D., AND INGOLD, R. 2006.
XCDF: a canonical and structured document format. In Proceedings of 7th

BOTAFOGO, R.A., RIVLIN, E., SHNEIDERMAN, B. 1992. Structural analysis of hypertexts:
identifying hierarchies and useful metrics. ACM TOIS, vol. 10:2, 142-180.

 International
Workshop on Document Analysis Systems, New Zealand, 141-152.

BOURGEOIS, F., EMPTOZ, H., AND BENSAFI, S. 2001. Document understanding using
probabilistic relaxation: application on ToC. In Proceedings of 6th

CHAO, H. AND FAN, J. 2004. Layout and content extraction for PDF documents. In Proceedings
of 6

 ICDAR, USA, 508-512.

th

CONKLIN, J. 1987. Hypertext: an introduction and survey. Computer, IEEE Computer Society
Press, vol. 20: 9, 17-41.

 International Workshop on Document Analysis Systems, Italy, 213-224.

CONWAY, A. 1993. Page grammars and page parsing: a syntactic approach to document layout
recognition. In Proceedings of 2nd

DEJEAN, H. AND MEUNIER, J. 2005. Structuring documents according to their table of contents.
In Proceedings of the ACM Symposium on Document Engineering, United Kingdom, 2-9.

 ICDAR, Japan, 761-764.

DURRETT, H. J. (Ed.) 1987. Color and the Computer. Academic Press, Boston, USA.
GREENBERG, S. 1993. The Computer User as Toolsmith: The Use, Reuse, and Organization of

Computer-Based Tools. Cambridge University Press, Cambridge, UK.
HADJAR, K., RIGAMONTI, M., LALANNE, D., AND INGOLD, R. 2004. Xed: a new tool for

extracting hidden structures from electronic documents. In Proceedings of the 1st

HE, F., DING, X., AND PENG, L. 2004. Hierarchical logical structure extraction of book
documents by analyzing tables of contents. In Proceedings of Document Recognition and
Retrieval XI, USA, vol. 5296, 6-13.

 International
Workshop on Document Image Analysis for Libraries, USA, 212-221.

JEFFRIES, R., MILLER, J. R., WHARTON, C., AND UYEDA, K. M. 1991. User interface
evaluation in the real world: a comparison of four techniques. In Proceedings of the ACM
Human Factors in Computing Systems Conference, 119-124.

LEE, K., CHOY, Y., AND CHO, S. 2003. Logical structure analysis and generation for structured
documents: a syntactic approach. IEEE TKDE, vol. 15, 1277-1294.

LIN, C., NIWA, Y., AND NARITA, S. 1997. Logical structure analysis of book document images
using contents information. In Proceedings of 4th

LIN, X. AND XIONG, Y. 2005. Detection and analysis of table of contents based on content
association. International Journal on Document Analysis and Recognition, vol. 8, 132-143.

 ICDAR, Germany, 1048-1054.

MAO, S., ROSENFELD, A., AND KANUNGO, T. 2003. Document structure analysis algorithms:
a literature survey. In Proceedings of SPIE Electronic Imaging, USA, vol. 5010, 197-207.

NIELSEN, J. 1994. Usability Engineering. Morgan Kaufmann, San Francisco, USA.
NIELSEN, J. 1990a. Hypertext and Hypermedia. Academic Press, Boston, USA.

27

NIELSEN, J. 1990b. The art of navigating through hypertext. Communications of the ACM, vol.
33: 3, 296-310.

NIELSEN, J. 1989. The matters that really matter for hypertext usability. In Proceedings of the 2nd
Annual ACM Conference on Hypertext, USA, 239-248.

NIELSEN, J. AND LYNGBAAK, U. 1989. Two field studies of hypermedia usability. In
Proceedings of the Hypertext II Conference, UK, 29-30.

NIELSEN, J., AND MOLICH, R. 1990. Heuristic evaluation of user interfaces. In Proceedings of
the ACM Human Factors in Computing Systems Conference, USA, 249-256.

NOJOUMIAN, M. 2007. Document Engineering of Complex Software Specifications. Master
Thesis. University of Ottawa, School of Information Technology and Engineering.

NOJOUMIAN, M. AND LETHBRIDGE, T.C. 2007. Extracting document structure to facilitate a
knowledge base creation for the UML superstructure specification. In Proceedings of the 4th

RIGAMONTI, M., BLOECHLE, J., HADJAR, K., LALANNE, D., AND INGOLD, R. 2005.
Towards a canonical and structured representation of PDF documents through reverse
engineering. In Proceedings of 8

IEEE International Conference on Information Technology: New Generations, USA, 393-400.

th

SUMMERS, K. 1998. Automatic Discovery of Logical Document Structure. PhD Thesis, Cornell
University, Department of Computer Science.

 ICDAR, Korea, 1050-1054.

TSUJIMOTO, S. AND ASADA, H. 1990. Understanding multi-articled documents. In Proceedings
of 10th International Conference on Pattern Recognition, USA, 551-556.

	5.4.1 Figures
	5.4.2 Tables
	5.4.3 Lists

