

Extracting Document Structure to Facilitate a Knowledge Base Creation for The
UML Superstructure Specification*

* This research is supported by the IBM Ottawa Software Lab

Mehrdad Nojoumian
School of Information Technology and

Engineering, University of Ottawa
mnojoumi@site.uottawa.ca

Timothy C. Lethbridge
School of Information Technology and

Engineering, University of Ottawa
tcl@site.uottawa.ca

Abstract
The research presented in this paper aims at facilitating
the creation of knowledge bases (KBs) for software
specifications, of which the UML superstructure
specification is our initial target. Our motivation is that
such specifications are dense, repetitive and difficult to
use. They are written primarily in semi-structured text,
but the structure must be maintained manually as they are
edited, resulting in inconsistency. End users cannot use
them efficiently because of the duplications, numerous
concepts connected only implicitly, and general
complexity of the document. Our immediate objective is to
generate a KB for the UML specification by extracting
knowledge from as many sources as possible in the
document such as document structure, embedded natural
language, as well as implicit and explicit cross
references. In this paper our focus is the first step:
extraction of the document’s logical structure. Many key
concepts of a document are expressed in this structure,
which includes the headings of the chapters, sections,
subsections, etc. By extracting such a structure in XML
format, we can form a good infrastructure for the
subsequent KB creation steps.

Keywords: Document analysis, Logical structure,
Document conversion, Information extraction,
Knowledge acquisition

1. Introduction

Published electronic documents, such as specifications,
are often rich in knowledge, but that knowledge is only
partially structured. This makes it difficult for human
beings to make maximum use of the documents, and it
means automatic computer processing of the knowledge
is not immediately possible.

Characteristics of the documents that cause challenges
include the following:
• The conventions used to structure them, such as section

numbering, style sheets, etc, are only partially specified
and are not always properly adhered to.

• A lot of the knowledge is embedded in cross
references. Some cross-references are explicit (e.g.
hyperlinks, or explicit references to other numbered
sections), but many are just implicit, such as simple use
of a word defined elsewhere. Human beings quickly
become confused by the network of references, and
there are often undetected inconsistencies.

• Natural language is still prevalent in the details
expressed in the document. The names of entities also
contain embedded natural language.

• The documents themselves tend to be only publicly
available online in either html or pdf formats. A lot of
the markup in these formats is ‘noise’, including such
things that are imposed by program which generated
the html or pdf from some word processing file.
The overall objective of our work is to extract as much

knowledge as possible from a published specification, to
represent this knowledge formally in a knowledge base
(KB), and then to create tools that can allow for easy
exploration and editing of that knowledge. For example,
our vision is that the person in charge of the specification
could generate views of relevant relationships in order to
ensure they are correct, and make changes where
necessary. It would be possible to generate a specification
in pdf format from the knowledge base, but an end user
would be much better off exploring the knowledge base
using the more flexible KB exploration tool.

 This paper describes the very first step towards our
vision: extracting the most useful knowledge from an
electronic document.

In general, document processing can be divided into
two phases: document analysis and document
understanding. A document has several layers of
structure. Extraction of the geometric structure (including

entitles such as pages, blocks, lines, and words) is
referred to document analysis. Mapping this structure into
a logical structure (including titles, headings, abstract,
sections, subsections, footnotes, tables, lists, explicit
cross-references, etc.) is referred to document
understanding [2]. Extracting concepts embedded in the
document structure, such as realizing that the names of
some sections represent concept names, and the cross-
references represent relationships among the concepts, is
a form of knowledge acquisition.

From the structural point of view, a document can be
unstructured, semi-structured or structured. A plain text
document with nothing marked other than the normal
conventions of natural language (e.g. a period at the end
of a sentence) would be considered unstructured. A
document with tags dividing it into paragraphs, headings,
and sections would be considered semi-structured; most
web pages are of this type. A document in which all the
elements are marked with meta-tags, typically using
XML, would be considered structured. A structured
document can be represented as a tree, with leaf nodes
representing very small snippets of textual content, such
as the names of entities.

In practice, software specification documents fall
somewhere on the continuum between semi-structured
and structured. However, the markup is usually noisy.

When more structure is imposed on a document, the
resulting richer representation allows computers to make
use of the knowledge directly. Unstructured documents or
sections have to rely on natural language understanding
technology before the knowledge can be used.

To conclude, one of the major advantages of electronic
documents is that we can partition them into a hierarchy
of physical components, such as pages, columns,
paragraphs, lines, words, tables, figures, etc or a hierarchy
of logical components, such as titles, authors, affiliations,
sections, subsection, etc. This structural information can
be very useful in information extraction and knowledge
acquisition, which are essential steps for KB creation.

This paper is organized as follows. Section 2 reviews
the existing literature on the document analysis and
knowledge extraction. Section 3 presents the properties of
our targeted document. Section 4 focuses on divers
document transformations. Section 5 illustrates three
experimental results for the document’s logical structure
extraction. Finally in Section 6 we present future work
and concluding remarks.

2. Literature Review

In this section, we review the document analysis and
knowledge extraction literature in order to form a clear
vision of these areas; we refer to many interesting
ongoing research projects.

In [1], Mao et al propose numerous algorithms to
analyze the physical layout and logical structure of
document images in many different domains. The authors
provide a detailed survey of diverse algorithms in the
following three aspects: physical layout representation,
logical structure representation, and performance
evaluation.

S. Klink et al. [2] present a hybrid and comprehensive
approach to document structure analysis. Their approach
is hybrid in the sense that it makes use of layout
(geometrical) as well as textual features (logical) of a
given document.

J. Liang [3] presents a unified document structure
extraction algorithm that is probability-based for scanned
document image pages. He also developed a system that
detects and recognizes special symbols (Greek letters,
mathematical symbols, etc.) on technical document pages
that are not handled by the current OCR (Optical
Character Recognition) systems.

In [4], Nakagawa et al. proposes a mathematical
knowledge browser which helps people to read
mathematical documents. Using this browser, printed
mathematical documents can be scanned and recognized
by OCR. Then the meta-information (e.g. title, author)
and the logical structure (e.g. section, theorem) of the
documents are automatically extracted.

In respect to the document analysis tools, WISDOM++
[5] is a document processing system that operates in five
steps: document analysis, document classification,
document understanding, text recognition with optical
character recognition (OCR), and text transformation into
HTML/XML format.

In [6], Cohen and Jensen assume that structured
documents are represented with the document object
model. Their approach to information extraction is based
on a DOM tree, which is an ordered tree where each node
is either an element or a text node. An element node has
an ordered list of zero or more child nodes, and contains a
tag (such as “table”, “h1”, or “li”) and attributes (such as
“href” or “src”). A text node is normally defined to
contain a single text string.

The next phase after the document analysis is
knowledge extraction which is important from both
general and specific points of view.

In [7], Henzinger and Lawrence discuss methods for
extracting knowledge from the web by randomly
sampling and analyzing hosts and pages, and by
analyzing the link structure of the web. By this approach,
a variety of interesting information can be extracted, such
as the distribution of interest in different areas, the nature
of competition in different categories of sites, and the
degree of communications among different countries.

IKRAFT [8] is an interactive tool to elicit from users
the rationale for choices and decisions as they analyze
information used in building a knowledge base. Starting

from raw information sources, most of them originating
on the Web, users are able to specify connections
between selected portions of those sources.

H. Sakamoto et al. [9] show their recent results in
knowledge discovery from semi-structured texts which
contain heterogeneous structures represented by labeled
trees. The aim of their study is to extract useful
information from documents on the Web.

In [10], Crowder and Sim’s goal is to capture relevant
knowledge from legacy documents. Firstly, they
converted the legacy documents to XML documents
where the output is semantically tagged. Once in an XML
form, the data can be easily transformed. They describe
the development of tools to automate the process of
converting legacy documents to XML documents. They
also show that XML versions of legacy documents
provide better results than a basic text search over the
identical documents.

In the past decade, most work on extraction has been
focused primarily on factual information. Only recent
years have witnessed a growing interest in subjective
texts such as evaluative ones. The general problem that
Carenini et al consider in [11] is how to effectively
extract useful information from large corpora of
evaluative text.

W. R. Cyre [12] developed a tool for knowledge
extraction. The process is to begin with a basic ontology
and extract Conceptual Graphs from text in the domain of
interest. During this process, the ontology is augmented
by the knowledge engineer. In this approach, the user
scans the text and creates conceptual graphs from
sentences or other expressions, and joins the individual
graphs into a knowledge-base.

The approach presented by Vargas-Vera et al [13]
describes a Semantic Annotation Tool for extraction of
knowledge structures from web pages through the use of
simple user-defined knowledge extraction patterns.

3. Document properties

The document we targeted, the UML superstructure
specification (version 2.1), is a large specification in pdf
format with 771 pages. It has almost 2200 headings with
a lot of nested lists, hyperlinks, figures, tables, etc.

What was our motivation for analyzing pdf
documents? First of all, people do not have access to the
original word-processor formats of the documents much
of the time. When documents are published to the web, an
explicit choice is usually made to render the result as pdf
or html to guarantee that everyone can read it (without
having to have Microsoft Word, Framemaker, etc.) and so
that people can not so easily create a new version of the
document that appears to be an official version.
Moreover, pdf format has some useful features that make
it semi-structured; for example it often contains

“bookmarks” created from headings to enable a user to
navigate a document. However, a computer can also
easily use this information to extract the structure.

Figure 1, shows sample bookmarks of the UML
specification. The general structure of this document
consists of parts, chapters, sections, subsections and
keyword-headed sub-subsections. The names of some of
these correspond to concepts such as ‘Abstraction’ and
‘Associations’.

Figure 1. Bookmarks of the UML superstructure

Our ultimate goal is to extract the document’s logical

structure. As we mentioned, many key concepts of the
targeted specification are expressed in this structure. By
extracting the structure and representing it as XML, we
can form a good infrastructure for the subsequent KB
creation steps.

4. Document transformation

We approached the structure extraction problem as a
two-stage problem. In this section we describe the first
step: Transforming the raw input into a format more
amenable to analysis. The second step, extracting and
refining the structure, is the topic of Section 5.

To extract the logical structure of the document, we
experimented with transformations using various existing
tools to see to what extent each could facilitate the
extraction process.

Since our targeted document is a large specification,
we started with much smaller documents. Firstly we
performed various conversions using a simplified sample
file which had similar properties to the target document.
Then we analyzed a single chapter, Chapter 7, before

moving on to process the first 219 pages, which covered
the first 9 chapters.

4.1. Conversion experiments

Table 1 shows the tools we used for conversion and

the formats we experimented with. We applied different
tools in this respect such as Adobe Acrobat Professional
7.8, Microsoft Word 2003, Stylus Studio 2006 XML
Enterprise Suite, and ABBYY PDF Transformer 1.0. In
Table 1 we exclude transformations with similar results.

Table 1. Different conversions

Input Format
(Size KB)

Tools for
Conversions

Output Format
(Size KB)

DOC (34.5) Microsoft Office
Word 2003 TXT (2.81)

DOC (34.5) Microsoft Office
Word 2003 RTF (55)

DOC (34.5) Microsoft Office
Word 2003 HTML (40.7)

DOC (34.5) Microsoft Office
Word 2003 XML (55)

DOC (34.5) Adobe Acrobat
Professional 7.8

PDF (19)
with Bookmarks

DOC (34.5) Adobe Acrobat
Professional 7.8

PDF (15.9)
without Bookmarks

PDF (19)
with Bookmarks

Adobe Acrobat
Professional 7.8 HTML (6.38)

PDF (15.9)
without Bookmarks

Adobe Acrobat
Professional 7.8 HTML (5.15)

PDF (19)
with Bookmarks

Adobe Acrobat
Professional 7.8 XML (9.92)

PDF (15.9)
without Bookmarks

Adobe Acrobat
Professional 7.8 XML (8.30)

PDF (19)
with Bookmarks

ABBYY PDF
Transformer 1.0 HTML (19.2)

PDF (19)
with Bookmarks

ABBYY PDF
Transformer 1.0 TXT (2.82)

In the next section, we define our criteria for choosing

the best transformation; subsequently we evaluate these
conversions according to these criteria.

4.2. Criteria

Since the ultimate goal of the paper is to extract the
document’s logical structure and convert it to XML we
are most interested in an output format from the Table 1
which can most facilitate this.

To select the best conversion, we defined a set of
criteria based on the experiences we gained during our
experiments. These criteria are as follows:

(a) Generality: A format should enable the design of a
general extraction algorithm for processing other
electronic documents.
(b) Low volume: We should avoid a format which
contains of a lot of extra unneeded material that is not
related to the document content. This includes
information related to the font, style, and position of
words, lists, paragraphs, etc.
(c) Clean & understandable: Even if a format results
in small files, it still might not be adequate; it should
also be clean and understandable. For instance,
formats which cleanly mark constructs such as
paragraphs with a single marker and use carriage
returns judiciously are easier to work with than
formats that don’t do this. For instance, some formats
marked constructs with multiple markers and were not
even consistent about this.
(d) Similarity to XML: We prefer a format which has a
similar structure to XML, such as XML itself or
HTML, because our final goal is to extract the logical
structure in the XML style.
(e) Having good Clues: A format should use markers
which provide accurate and good clues for processing
and finding the logical structure, such as meaningful
keywords with respect to the headings: “LinkTarget”,
“DIV”, “Sect”, “Part”, etc.

Sometimes, formats which contain a lot of extra

information, such as font, size, style and position of each
part of the document, are more valuable for processing
while in some cases documents which are absolutely pure
without any extra characters are useful. Hence, we would
like to compromise among different kinds of formats to
satisfy our criteria. In the next part, we evaluate the
presented transformations to define the best candidate.

4.3 First stage of evaluation

To narrow down the list of possible transformations to
use, we evaluated every transformation in Table 1
according to how they satisfy the above criteria. We
performed all the presented conversions on the UML
superstructure specification. Our observations are as
follows:

DOC and RTF formats are messy. They even code
figures among the contents of the document while some
formats such as HTML or XML put all the figures in a
separate folder in an image format. In addition, they store
information related to the font, size, style, etc of each
heading, paragraph, sentence and even words beside
them. This information is not useful for us because they
vary from document to document, contradicting the
generality property and increasing the potential for noise
during processing. On the other hand, if we extract

HTML or XML formats from DOC/RTF, the results also
tend to have the same properties.

TXT format is very simple but does not give us any
clues for processing and you may not even find the
beginning of the chapters, headings, tables, etc.
Therefore, it does not have a suitable structure for
analyzing.

PDF is complex itself, but after a conversion into
HTML or XML by Adobe Acrobat Professional 7.8, the
result is very nice, especially in the case of PDF files
which have bookmarks. They are clean, low sized, with
tagging structure and useful clues for processing. They
can even satisfy the generality property as we describe it
later on.

Therefore, our finalist candidates are HTML and XML
formats extracted by Adobe Acrobat professional 7.8
from the PDF file with bookmarks. In the next section,
we compare these two options.

4.4 Second stage of evaluation

To further narrow our choice of transformation, we
analyzed the following sample parts of our target
document using the two finalist candidates. These cover
an array of possible structures that appear repeatedly in
the UML specification:

(1) Sample paragraphs
(2) Sample figures (e.g. figure 7.25)
(3) Sample tables (e.g. table 2.1)
(4) Complex tables which have phrases, figures and
hyperlinks in their cells (e.g. table 12.1)

In this approach, we turned to writing simple java
scanning code to scan for matching major tags, such as
<Part>, <Sect> and <Div>, which Adobe Acrobat
Professional 7.8 used to open and close each part,
chapter, section, etc of the document. Consider the
following simple structure of the document: (5) Complex nested lists which have complicated

hierarchy structures (e.g. part 2.3)

After many assessments, we found out that the XML
format is the best candidate for processing; it is more
understandable and simple for analysis. Moreover, in the
XML style, each tag is in a line, so we can analyze the
document line by line which is easier in compare to the
HTML format in which we have to explore the document
character by character.

5. Extracting and refining the document
structure

After following the steps described in Section 4, we

have an XML document that is reasonably clean.
However aspects of the document structure still need to
be extracted. That is the topic of this section.

We discuss three implementation approaches to
finalizing our extraction of structure. We evaluate our
methods and the reasons of failures in the first two

techniques. After that, we present our successful practice
for the logical structure extraction.

5.1. First refinement approach: Grammars

In the first approach, we applied various parsing
packages. We attempted to write a comprehensive
grammar to parse the XML document; in particular, we
needed to parse the internal structure of some of the tag-
delimited data, such as the text of headings. The
following are some examples of heading text that needed
parsing:

7 Classes
7.1 Overview
7.2 Abstract Syntax
7.3.1 Abstraction

Although it should be fairly easy to write a parser to

identify such elements as the section numbers and section
titles, we encountered too many exceptions, resulting in
the need for far too many rules and context-sensitive
parsing.

5.2. Second refinement approach: Simple stack-
based parsing written in Java

<Sect name=”Generalization”>
 <Sect name=”Class-Ref”>
 <Sect name=”Name”>
 </Sect>
 <Sect name=”Package-Ref”>
 </Sect>
 </Sect>
</Sect>

Using a straightforward stack-based parsing approach, we
converted this into:

<Generalization>
 <Class-Ref>
 <Name>
 </Name>
 <Package-Ref>
 </Package-Ref>
 </Class-Ref>
</Generalization>

Unfortunately, after running the program for the

different chapters and the whole document as well, it
failed. We found out, there is a considerable amount of
incorrect tagging. The tool opened each part, chapter,
section, etc by “<Sect>” in a proper place of the
document but it closed all of these tags by “</Sect>” in
the wrong places. The problem was more crucial when
we processed the whole document at once because of the
accumulative mis-tagging. Here, a sample of this
detection is presented:

<Sect number=” 7.3”>
 <Sect number=”7.3.1”>
 </Sect>
 <Sect number=”7.3.2”>
 </Sect>

 Correct place for closing <Sect number=”7.3”>
<Sect number=”7.4”>
</Sect>
</Sect> Wrong place

Therefore, we could not extract the logical structure by

this simple approach and decided to develop a new
program which is more powerful and capable of detecting
such a wrong tagging. In the next part, our successful
practice with corresponding results is provided.

5.3. Third implementation approach: leveraging
the bookmarks

In the third approach, we wrote a java-based parser
which focused on a keyword, “LinkTarget”, which
corresponds to the bookmark elements created in the
previous transformation phase. This keyword is attached
to each heading in the bookmark. Therefore, as a first
step, we extracted all the lines containing the named
keyword and put them in a queue: “LinkTargetQueue”.
We also defined the different type of headings in our
document; you can see this classification in Table 2.

Table 2. Different kinds of headings
T Sample Heading Type
1 Part I - Structure Part
2 7 Classes Chapter
3 7.3 Class Descriptions Section
4 7.3.1 Abstraction Subsection
5 Generalization, Notation, etc Keyword
6 Annex End part
7 Index Last Part

Then, we applied the following algorithm which takes

the “LinkTargetQueue” as its input; each node of this

queue is a line of the input XML file which has
“LinkTarget” substring as a keyword.

Procedure DocumentStructureAnalysis(LinkTargetQueue)
F // a new XML file
L // a line: e.g.: <P id="LinkTarget_111914">7 Classes </P>
H // Heading: e.g.: 7 Classes
T // Type: e.g.: for the Chapters, T Chapter = 2
T of the last member of the HeadingStack = 0
HeadingStack = empty

While (LinkTargetQueue != empty) do
 Get “L” from the LinkTargetQueue
 Extract the heading “H” from the “L”
 Define heading's type: “T”
 While (T =< T of the last member of the HeadingStack) do
 Pop “H” and “T” from the HeadingStack
 Close the suitable tag w.r.t the popped “T”

If (HeadingStack == empty)
 Break this while loop
 End if
 End while
 Push the new “H” and “T” in the HeadingStack
 Open new tags w.r.t the pushed “H” & “T”
End while
While (HeadingStack != empty) do
 Pop “H” and “T” from the HeadingStack
 Close the suitable tag w.r.t the popped “T”
End while
Return “F”
End procedure

We extracted 2191 headings from the UML
superstructure specification (version 2.1) and created a
new XML file, Figure 2, for this document. We also
tested the other documents and specifications such as
UML Infrastructure (version 2.0); the extractions were
well in all cases with 100% accuracy.

To trace the proposed algorithm, assume the following
headings in the “LinkTargetQueue”:

1 Heading Chapter

2 Heading

2.1 Heading Section

2.2 Heading

2.2.1 Heading Subsection

2.2.2 Heading

2.3 Heading

3 Heading

T Chapter =2, T Section = 3, T Subsection = 4

The result would be as follow:

<Chapter number=”1”
</Chapter>
<Chapter number=”2”>
 <Section number=”2.1”>
 </Section>
 <Section number=”2.2”>
 <Subsection number=”2.2.1”>
 </Subsection>

<Subsection number=”2.2.2”>
 </Subsection>
 </Section>
 <Section number=”2.3”>
 </Section>
</Chapter>
<Chapter number=”3”>
</Chapter>

Figure 2. Sample logical structure in the XML format

After extracting such a logical structure and creating

the new XML file, we imported our document into the
Protégé, as the targeted knowledge base system, using the
commands available in its XML tab. In Figure 3, the
logical structure model of the document is presented
using the Jambalaya feature of Protégé 3.2.

Figure 3. Logical structure model in the protégé 3.2

In the last section, we describe the second phase of the

project as our future work and then provide some
concluding remarks.

6. Future work and conclusion

In this paper we have described an approach to taking

a raw pdf version of a published specification, and
generating a clean XML document with meaningful tags.

The first phase was kind of document analysis to better
understand the rational structure of the document and
establish a good infrastructure for the second phase. We
experimented with processing using a variety of tools and
formats and concluded that generating pdf with
bookmarks using Adobe Acrobat yields the best results.

We then applied different methods to form a new
XML format which facilitated document understanding.
This involved dealing with mis-tagging.

Now that we have extracted the document’s logical
structure (document entity), we intend to focus on the
hidden concepts found in the remaining natural language
elements, and consequently perform knowledge
acquisition from the UML specifications.

As a future work, we are interested to know what
knowledge could be captured from each element of the

structure. We will capture lists of all words, bi-grams, tri-
grams and quad-grams with their frequency of
occurrence. The most frequent of these, after excluding
those that are simply stop words, will give us a sense of
the terminology and concepts in the document as a whole
and present a sense of the key topics in each chapter,
section and subsection. We would like to do related-
phrases analysis for relationships between the concepts
identified in the terminological analysis. For example,
patterns such as “X is a kind of Y”, “X has a Y”, etc.

To conclude, we have made a first step towards our
goal of creating a tool that will make complex
specifications more understandable and navigable.

7. Acknowledgement

We highly appreciate the anonymous reviewers for

their comments.

8. References

[1] S. Mao, A. Rosenfeld, and T. Kanungo, “Document
Structure Analysis Algorithms: A Literature Survey”, in
Proceedings of SPIE Electronic Imaging, USA, 2003, pp. 197–
207.

[2] S. Klink, A. Dengel, and T. Kieninger, “Document structure
analysis based on layout and textual Features”, in Proceedings
of International Workshop on Document Analysis systems,
Brazil, 2000, pp. 99-111.

[3] J. Liang, “Document Structure Analysis and Performance
Evaluation”, PhD thesis, University of Washington, Seattle,
USA, 1999.

[4] K.Nakagawa, A.Nomura, and M.Suzuki, “Extraction of
Logical Structure from Articles in Mathematics”, 3rd
International Conference on Mathematical Knowledge
Management, Bialowieja, Poland, 2004, pp. 276-289.

[5] O. Altamura, F. Esposito and D. Malerba, “Transforming
paper documents into XML format with WISDOM++”,
International Journal on Document Analysis and Recognition,
vol. 4, 2001, pp. 2-17.

[6] W. Cohen and L. Jensen, “A structured wrapper induction
system for extracting information from semi-structured
documents”, 17th International Joint Conference on Artificial
Intelligence, Workshop on Adaptive Text Extraction and Mining,
Seattle, USA, 2001.

[7] M. Henzinger and S. Lawrence, “Extracting knowledge from
the World Wide Web”, in Proceedings of the National Academy
of Science, USA, 101: 5186-5191, 2004.

[8] Y. Gil and V. Ratnakar, “IKRAFT: Interactive Knowledge
Representation and Acquisition from Text”, in Proceedings of

the 13th International Conference on Knowledge Engineering &
Knowledge Management, Siguenza, Spain, 2002, pp. 27-36.

[9] H. Sakamoto, H. Arimura, and S. Arikawa, “Knowledge
Discovery from Semi-structured Texts”, Progress in Discovery
Science, Springer Berlin, Heidelberg, 2002, pp. 586-599.

[10] R. Crowder and Y. W. Sim, “An Approach to Extracting
Knowledge from Legacy Documents”, In Proceedings of
International Design Engineering Technical Conferences &
Computers and Information Engineering Conference, Salt Lake
City, USA, 2004, ASME DETC2004-57677, 7 pp.

[11] G. Carenini, R. T. Ng, and E. Zwart, “Extracting
knowledge from evaluative text”, in Proceedings of the 3rd
International Conference on Knowledge Capture, Banff,
Canada, 2005, pp. 11-18.

[12] W. R. Cyre, “Knowledge Extractor: A Tool for Extracting
Knowledge from Text”, in Proceedings of Fifth International
Conference on Conceptual Structures (ICCS), Seattle, USA,
1997, pp. 607-610.

[13] M. Vargas-Vera, E. Motta, J. Domingue, S. Buckingham
Shum, and M. Lanzoni, “Knowledge Extraction by using an
Ontology-based Annotation Tool”, In Proceedings of the
Knowledge Markup and Semantic Annotation Workshop,
Victoria, Canada, 2001, pp. 5-12.

