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Dynamic Secret Sharing

» Motivation: in a threshold scheme, the sensitivity of the secret as well as
the number of players may fluctuate due to various reasons.

v' Over time, mutual trust might be decreased: perhaps due to the
organizational problems or security incidents, and vise versa.

v" The structure of the organization to which the players belong might be
changed: new players may join or current parties may leave.

Therefore, modifying the threshold and/or changing the secret might be
required throughout the lifetime of a secret

» Contribution: new dynamic secret sharing schemes.

v Dealer-Free: protocols can be executed in the absence of the dealer.

v Unconditionally Secure: protocols don’t rely on any math assumptions.
v" Min Storage Cost: parties don’t need to store extra shares beforehand.
v Flexible: parameters can be changed to arbitrary values multiple times.

Mehrdad Nojoumian 2



t ~> t': Passive Adv - Lagrange Method

Threshold Modification

1. A set A is determined such that it consists of the identifiers of at least t elected players.
Each player P; € A selects a random polynomial g;(x) of degree at most ' — 1 such
that ¢;(0) = f(¢). He then gives g;(j) to P; for 1 < j < n, i.e., resharing the original
shares by auxiliary shares. I S

2. The following public constants are computed:

VA = H _‘], for all 7 € A.
. )
JEA,jFi
3. Each player P; (1 < j < n) erases his old shares, and then combines the auxiliary
shares he has received from other players to compute his new share as follows:

Pj = Z (%'A X gi(i))- } the threshold is now t’

PY=@AN
Secret Recovery

e Now, if a set A’ of at least ¢’ players P; cooperate, they can recover a by using
Lagrange interpolation method:

A/
a=) (%‘ X 991‘)-
JEA!
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t=3 ~> t'=4

> Example: using Lagrange method, let f(z) =342z +2° € Zyg

1. Players re-share their shares with new polynomials of degree three, i.e., t/

fv(;zt)—.~6+1'+1 + 22° fa(z) = i8'+ 3r 4 227 + 2°
folw) =AL3+ 22 + 2° 4 32 fa(z) '§, W20 4 227 + 227

— 4

The &, «,,, where each P; generates a row and receives a column, is as follow

At this stage, each P; has to store four shares or players need to define a set A

:3- .L’ ) ) . N N )
in order to convert these shares to a single share. Suppose A = { Py, P», P3}
(0—-2)(0-3) (0—1)(0—3) . (0—=1)(0—-2)
Afl = - p - : p— 3 ")2 = p - p - e —3 ’73 g : - p p p— 1
(1-2)(1-3) (2-1)(2-3) (3-1)(3-2)
4. At this step. players convert their shares to a single share based on A and ~;-s.

and erase their old shares, shown in &,,«,,:
(3)10 + (—=3)17 + (1)5 = —16 p3(x) = (3)15 4 (=3)12 + (1)15 =
(3)0+ (—3)9+ (1)D= 14 pa(z) = (3)2+ (=3)18 4 (1)12 = —17

p1(x)

pa(w)

I

I
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t ~> t’: Passive Adv - Vandermonde Method

Threshold Modification

1. A set A is determined such that it consists of the identifiers of at least t elected players.
Each player P; € A selects a random polynomial g;(x) of degree at most t' — 1 such
that ¢;(0) = f(¢). He then gives g;(j) to P; for 1 < j < n, i.e., resharing the original
shares by auxiliary shares. —

2. Participants then compute the first row of a public matrix V,,;fn (mod ¢q) to adjust the
threshold, where V,,«, 1s the Vandermonde matrix, i.e., V; ; = U= for 1 < 1,7 < n.
Suppose this vector is Vl_xln = (v, w2, ..., Up).

3. Eventually, each player P; computes his final share by multiplying V;;,, by his vector

of shares:
mn

o(3) =Y vig(h). } the threshold is now t’
7—1

Secret Recovery

e To recover the secret, t' participants P; have to collaborate in order to construct a
polynomial of degree ¢’ — 1:

¢<x>=fj( [T S=ixe). st o)

j=1 N <i<t! i)
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t \\ t-1: Passive/Active Adv - Public Evaluation

Threshold Decrease

1. The players select an id j such that j ¢ P. Subsequently, ¢t players P; are selected
(e.g., 1 <i <t). They compute Lagrange constants as follows:

_ j—k
w= 1L
1<k<t,i#k
2. Each P; multiplies his share f(i) by his Lagrange constant. He then randomly splits

the result into t portions, i.e., f(i) X 7; = O1; + O9; + -+ + Oy for 1 < i < t.

3. The players exchange Op;-s through pairwise channels
As a result, each P holds t values. He adds them together and reveals o5 = Zle Oki

4. The players add these values ;. for 1 < k <t together to compute the public share
: t

f(J) =2 k=1 Ok

Each P; combines his private share f(i) with the public share f(j) as follows:

fi) = 1) -3 (FO =),

i—

t

6. The shares f(i) are on a new polynomial f(z) € Z,[r] of degree t—2 where f(0) = f(0).
Therefore, t — 1 players are now sufficient to recover the secret.
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=3 ~> t'=2

> Example: let f(X) =90+ 2x + 5x? € Z13 * Can be seen as the

“Enrolment Protocol”

o~ TN
l\?)( P,: Public Share

305‘ .'*“””*“\
Q*1 @3+ 6

+ 3 *3=1 >( 61
(-8 G
“*1 + @3 +2 *3=1

'

f(1)=6—4 (3—6/1—4) =2

w

7

1f(2)=6-4(7-6/2-4)=8 > f(x)=9+6xEZ,

f(3)=6—4(8—6/3—4)=1

.
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t / t': Passive/Active Adv - Zero Addition

Threshold Increase

For every player P;, suppose f(7) is the share of an unknown secret a belonging to F;.

|
I . . 1 . ~
1. Players use polynomial production to generate shares of an unknown secret 0 on a

polynomial g(x) of degree t' — 2.

his publirﬁ identity
2. Each player P; multiplies his share g(i) by i. Now, each P; has a share of 0 on the
polynomial g(x) = zg(x) of degree t' — 1.

3. Each player adds his share f(i) of « to his share ig(i) of 0. As a result, each player
has a share of «, where the new threshold is ¢’ > t.

]ﬁolynomial Production

1. Initially, ¢ players P; are selected at random in order to act as independent dealers;
they each might be honest or malicious.

2. Each of the t chosen players P; shares a secret, say ¢;, among all the players using a
Shamir scheme, where the degree of the secret sharing polynomial is t — 1. Then all
players have shares of every secret 9.

3. Every player adds his shares of the d;-s together. As a result, each player has a share
on a polynomial g(x) of degree t — 1 with a constant term ¢ = ) d;.
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Summary of Threshold Modification Techniques

Threshold Change

Decrease

Increase
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Passive Adversary

Re-sharing by Lagrange
Method

Re-Sharing by
Vandermonde Matrix

Public Evaluation

Re-sharing by Lagrange
Method

Re-Sharing by
Vandermonde Matrix

Zero Addition

Active Adversary

Public Evaluation

Zero Addition



Thank You Very Much

Special Thanks to Dr. Douglas R. Stinson
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