An Examination of the Scientific Justification for the Formulation of a Popular Weight-Loss Product: Hydroxycut

Stephanie Svoboda SSvoboda@fau.edu

COE SAC 8th Research Symposium
Florida Atlantic University
Wednesday March 25, 2009
Faculty Sponsor: Dr. Patrick Jacobs

Introduction

- In 2002, 64.5% of Americans were classified as either overweight or obese
- \$35 billion dollars on weight loss products, including weight loss supplements
- Hydroxcut, makes claims on their website, www.hydroxycut.com, that their product has been the best selling weight loss supplement for the past ten years

3 Claims

- 1. Lose more weight, faster!
- 2. Keep your appetite in check to make eating better a lot easier.
- 3. Burn more calories to look leaner and more muscular than ever before.

Purpose

To determine if the three claims have any scientific merit and if they are in fact true.

Where is the Research?

- 10 Peer Reviewed Scientific
 Articles indexed on Medline/Pubmed on "Hydroxycut"
 - 9 negative, mostly case studies
 - > 1 positive results in cholesterol
- "2" Summaries on Hydroxycut.com
 - (-)-hydroxycitric acid (HCA), 2) Niacin-bound chromium (NBC), and 3) Gymnema Sylvestra Extract (GSE)
- 2 Peer Reviewed Scientific Articles in RDF form on Hydroxycut.com
 - 1) Caffeine, and 2) Epigallocatechin Gallate (EGCG)

How much is there?

2 Caplets 3xs/day

Supplement Facts Serving Size 2 Rapid Release Caplets Servings Per Container 15

· ·	
Amount Per Serving	% Daily Value
Calcium (as hydroxycitrate)*** 156 mg	16%
Chromium (as polynicotinate)** 133 mcg	111%
Potassium (as hydroxycitrate)*** 218 mg	6%
Hydroxagen Plus® 1.32 g	
Garcinia cambogia extract (rind)***	t_
Standardized for 60% hydroxycitric acid	
Gymnema sylvestre extract (leaf)	
Standardized for 25% gymnemic acids	
Phosphatidylserine-enriched soy lecithin	†
Supplying 50% phosphatidylserine, 4% phosphatidylcholine, 2% phosphatidylethanola	amine
HydroxyTea [®] 473 mg	†
Green tea extract (as Camellia sinensis) (leaf)	†
Standardized for 90% polyphenols, 75% catechins 45% epigallocatechin gallate - 117 mg EGCG	i,
Caffeine anhydrous	†
White tea extract (as Camellia sinensis) (leaf)	
Standardized for 50% polyphenols, 35% catechins 15% EGCG	i,
Oolong tea extract (as Camellia sinensis) (leaf)	†
Standardized for 50% polyphenols, 25% catechins 15% EGCG	i,
Supplying 200 mg of caffeine	
Ginger extract (as Zingiber officinale) (root)	†
Standardized for 5% gingerols	
Raspberry ketone	†
Quercetin dihydrate (as Fava d'anta)	t
†Daily Value not established.	

DTHER INGREDIENTS: MICROCRYSTALLINE CELLULOSE, HYDROXYPROPYL-CELLULOSE, COATING (POLYVINYL ALCOHOL, TITANIUM DIOXIDE POLYETHYLENE GLYCOL, TALC), SODIUM CARBOXYMETHYLCELLULOSE CROSPOVIDONE, STEARIC ACID, MAGNESIUM STEARATE, SILICA CESULFAME-POTASSIUM.

Study 1 & 2: Background

- (-)-hydroxycitric acid (HCA)
- Niacin-bound chromium (NBC)
- Gymnema Sylvestra Extract (GSE)
 - All help to regulate appetite and burn fat

- Purpose: To examine the efficacy of optimal doses of HCA-SX alone and in combination with NBC and GSE given on an empty stomach in human volunteers
- N: 30 (study 1) and 60 (study 2) (BMI= 30-55 kg/m2), 21-50 yo in India
- Methods: Randomized, double-blind placebo-controlled

- 3 groups:
 - > 1: HCA-SX: HCA-SX 4,677mg (60% providing 2,800 HCA/day)
 - > 2: HCA-SX Formula: HCA-SX 4,677mg (60% providing 2,800 HCA/day) AND NBC 4mg (400ug Cr) AND GSE 400mg (100mg gymnemic acid)
 - > 3: placebo

- Oboth study 1 & 2 took 3 doses/day 30-60 minutes before each meal for 8 weeks
- Walked 30 min 5 days/wk
- 2,000 kcal diet
 - 17% Protein, 25% Fat, 58% Carbs
- Tested at 0, 4, 8 weeks
- No Serious adverse affects
 - > No diff b/w groups

Study 1 & 2: Results

	1-A	2-A	1-B	2-B	1-C	2-C
BODY WT	<u>12.1LBS</u>	9.97 LBS	14.96 LBS	13.11 LBS	3.06 LBS	3.52 LBS
BMI	6.39%	<u>5%</u>	7.9%	<u>6.1%</u>	1.7%	2%
APPETITE	<u>4%</u>	<u>15.6%</u>	<u>14.1%</u>	<u>21.2%</u>	2.8%	NC
SERUM LEPTIN LEVELS	36.6%	39.2%	40.5%	44.3%	.3%	2%
SEROTONIN	<u>40%</u>	-	<u>50%</u>	-	21%	-
URINARY FAT METABOLITES	<u>125-</u> 258%	35.6- 106.4%	<u>146-</u> 281%	<u>56-134</u> <u>%</u>	SLIGHTLY ACON	6.2-21%

BLUE DECREASE, BLACK = INCREASE, UNDERLINE = STATISTICAL SIGNIFICANCE

Study 1 & 2 Results

	1-A	2-A	1-B	2-B	1-C	2-C
LDL	<u>12.3</u>	<u>13.2</u>	<u>17.9</u>	<u>19</u>	.8	SLIGHT
HDL	<u>10.7</u>	<u>8</u>	<u>20.7</u>	<u>22</u>	NC	NC
TRI-G	<u>8.6</u>	<u>5.9</u>	<u>18.1</u>	20.2	NC	NC
VLDL	NC	NC	NC	NC	NC	NC
TOTAL	<u>6.3</u>	<u>7.2</u>	<u>9.1</u>	<u>9.5</u>	NC	NC

BLUE= DECREASE, BLACK=INCREASE, UNDERLINE= STATISTICAL SIGNIFICANCE

Results

- Want leptin to decrease
 - protein encoded by obesity regulatory gene
 - directly associated with fat in body
 - > HCA down regulates leptin
- Want serotonin to increase
 - Controls eating behavior and body wt
- Want urinary fat oxidation to increase
 - > Biomarkers of fat oxidation
- Want appetite to decrease
 - More food left on plate
 - Measured in g/wk

Conclusions:

> HCA-SX produces positive effects in obesity management, while HCA-SX plus NBC and GSE produce even greater effects.

• Purpose:

- > 1) to examine the extent to which daily administration of capsules containing a green tea extract (catechin polyphenols and caffeine) would stimulate thermogenesis and increase daily EE
- > 2) to determine whether the effects of green tea extract on the metabolic rate and substrate oxidation in humans would be greater than that explained by its caffeine content

- N= 10 men, 8-30% body fat, no exercise, less than 200mg caffeine/day
- Methods: Randomized, double-blind placebo-controlled, human clinical
- 3 days in 24hr metabolic chamber, 1 of 3 treatments 3xs/day:
 - 1) Green Tea Extract: 50mg caffeine (150mg/day), 90mg (270mg/day) ECGC (375mg catechins total/day)
 - > 2) Caffeine 50mg (150mg/day)
 - > 3) Placebo

- 5-10days between each trial (5-6wk study)
- Ate 13% Protein, 40% Fat, 47% Carbs in chamber
 - > Calories 1.4x BMR
 - > No caffiene

Study 3: Results

- Energy Expenditure
 - > SD for diurnal EE
 - GT 4.5% greater than placebo
 - Caff 3.2% greater than placebo
 - > SD total 24hr EE
 - GT 3.5% greater than placebo
 - Caff 2.8% greater than placebo
 - > 6/10 increased EE w/ GT
 - > 2/10 Increased EE w/ Caff

Study 3: Results

- RQ and Substrate Oxidation
 - > SD for diurnal, nocturnal, total 24hr RQ
 - GT lower values at all 3 times than other 2
 - RQ Decreased in 8/10 w/ GT
 - » BC urinary N2 stayed same, can say that fat oxidation increased
 - Fat oxidation in 24hr was 41.5% which was SD from placebo at 31.6%
- No HR difference

Study 3: Results

• Conclusion: Oral administration of GTE stimulated thermogenesis and fat oxidation and thus has a potential to influence body wt and body comp via changes in both EE and substrate utilization.

• Purpose:

- 1) To assess impact of 4 mixtures on GT and Caffeine on a) 24hr EE, b) RQ, c) substrate oxidation compared to placebo
- > 2) determine if there was a dose related effect of ECGC and if so, which produces a greater increase in EE and fat oxidation w/o inducing sign cardio-stimulatory effects when combined w/ caff

- N= 14 men, 20-50 yo, BMI 20-27kg/m2, no exercise, no caffeine
- Methods: randomized, placebo controlled, double-blind, cross-over design
- Spent 5 days in metabolic chamber, received one of 5 treatments 3xs/day:

- 5 treatments: 4 received 600mg/day caffeine and diff ECGC
 - > 1) 270mg/day
 - > 2) 600 mg/day
 - > 3) 900 mg/day
 - > 4) 1200 mg/day
 - > 5) placebo (no caff, no ECGC)
- 5-10 days bw tests

Results:

- SD for CHO oxidation, 24hr dBP (increase 5mmg)and 24hr EE (increase 8%)GT, amount ECGC didn't matter
- Changes for increase in sleep metobolism and 24hr sysBP (increase 7mmHG) in GT
- No effect on RQ, lipid oxidation, catecholamine excretion
- Key findings: Beyond a certain threshold, EGCG content of a compound only produces a small, non-signficant additional increase in 24hr EE

Occidence Occidence

EGCG and caffeine mix should aid in weight loss in addition to nutritional counseling. This will help with body weight loss decrease in EE and a decrease in cardio-stimulatory effects.

So does Hydroxycut work?

Ingredient	Tested	Hydroxycut
HCA	2,800mg/day (1,2)	2,376mg /day
NBC	400 mcg/day (400ug Cr) (1,2)	399 mcg/day
GSE	.4g/day (100mg gymnemic acid) (1,2)	~.90-3.96g/day
Caffeine	150mg/day (3) 600mg/day (4)	600 mg/day
EGCG	270mg/day (3,4) 600mg/day (4) 900mg/day (4) 1200mg/day (4)	351 mg/day

Does the evidence support the claims?

- 1. Lose more weight, faster!
 - > Yes, study 1 and 2
- 2. Keep your appetite in check to make eating better a lot easier.
 - > Yes, study 1 and 2
- O 3. Burn more calories to look leaner and more muscular than ever before.
 - > Yes, study 3 and 4

Overall Conclusion

- Objective of the property o
 - Need to test mixture of ingredients at recommended doses
 - Not sketchy scientists
 - > Recent studies
 - > Won't link to papers with negative results

Overall Conclusion

- > 1,000 of research on each ingredient
- Dr. Nick Evans "remunerated," to pay, recompense, or reward for work, trouble, etc.
- Negative papers are only case studies
- w/ diet and exercise (1,2 control d&e, 3,4 neither)

References

- Preuss, H.G., Bagchi, D., Bagchi, M., Sanyasi Rao, C.V., Satyanarayana, S., & Dey, D.K. (2004). Efficacy of a novel, natural extract of (-)-hydroxycitric acid (HCA-SX) and a combination of HCA-SX, niacin-bound chromium and Gymnema sylvestre extract in weight management in human volunteers: A pilot study. Nutrition Research, 24, 45-58.
- 2. Preuss, H.G., Bagchi, D., Bagchi, M., Sanyasi Rao, C.V., & Satyanarayana, S. (2004). Effects of a natural extract of (-)-hydroxycitric acid (HCA-SX) and a combination of HCA-SX plus niacin-bound chromium and Gymnema sylvestre extract on weight loss. Diabetes, Obesity, and Metabolism, 6, 171-180.
- 3. Dulloo, A. G., Duret, C., Rohrer, D., Girardier, L., Mensi, N., Fathi, M., & Chantre, P. (1999). Efficacy of a green tea extract rich in catechin polyphenols and caffeine in increasing 24-h energy expenditure and fat oxidation. *American Journal of Clinical Nutrition*. 70, 1040–1045.
- 4. Berube-Patent, S., Pelletier, C., Core, J., & Tremblay, A. (2005). Effects of encapsulated green tea and Guarana extracts containing a mixture of epigallocatechin-3-gallate and caffeine on 24h energy expenditure and fat oxidation in men. British Journal of Nutrition, 94, 432-436.
- 5. (2009). Hydroxycut Ingredient Research. Retrieved February 23,
 2009 from Web site:
 http://www.hydroxycut.com/products/hydroxycut/hydroxycut_ingredients_research.shtml
- 6. Mohr, C.R. (2008). Weight Loss Ingredients. In Antonio, J., Kalman, D., Stout, J., Greenwood, M., Willoughby, D.S., & Haff, G.G. (Eds.), Essential of Sports Nutrition and Supplements (443-449). Totowa, NJ: Human Press.