

Presented by: Erica R. Goldstein, CISSN, CSCS

Caffeine Supplementation Increases Upper Extremity Strength in

Resistance-Trained Women

CAFFEINE

- Water soluble; readily absorbed by intestinal tract
- ↑ plasma levels: 15-45 min
- Peak concentration: 1 hr post consumption
- Metabolized by liver
- Clearance from bloodstream relatively fast:
 - ↓ by 50-75% at 3-6 hrs
- Excreted by kidneys: ~3-10% expelled unchanged
- † lipid solubility: easily passes bloodbrain barrier

DID YOU KNOW?

	Lab	Design	Outcome
Source/Form	Graham et al. (1998)	Comparison of coffee to capsule	CAFFEINE CAPSULE ↑ ENDURANCE BEYOND OTHER 4 TREATMENTS
Habituation	Bell and McLellan (2002)	Users: ≥300 mg/d Nonusers: ≤50 mg/d	Users only showed significant \(\) at 1 and 3 hr post ingestion; 6 hrs for nonusers

POTENTIAL MECHANISMS

- Modulation of specific neurotransmitter processes
- ✓ Alteration of substrate metabolism during exercise
- Enhanced plasma catecholamine levels: ↑ in fat oxidation and subsequent sparing of glycogen utilization
- Results conflicting

POTENTIAL MECHANISMS

- Pharmacological reviews have suggested caffeine acts to compete with adenosine at receptor sites
- Adenosine is an inhibitory neurotransmitter
- Acts to compete with or diminish concentration of other neurotransmitters, dopamine
- Dopamine, responsible for feelings of arousal, motor control

- •† in adenosine levels in exercising muscle interstitium (Hellsten et al. (1998)
- potentially lead to ↑ CNS fatigue
- Process can potentially be altered by: caffeine supplementation

ADENOSINE ANTAGONIST

 Adenosine and Dopamine receptors colocalized: functionally interact (Garrett and Griffiths, 1997)

Potential ↑ neuroexcitability

STRENGTH (RT MALES)

Lab	Design	Outcome
Beck et al. (2006) n = 37	✓1 year, 3-4 d/w ✓BP and LE 1RM ✓80% 1RM reps to max ✓201 mg	✓↑ BP, but not LE 1RM ✓No↑ muscular endurance
Astorino et al. (2008) n = 22	✓TB Minimum 2 d/w✓BP and LP 1RM✓60% reps to max✓6 mg/kg	✓No ↑ BP or LP 1RM ✓No ↑ muscular endurance
Williams et al. (2008) n = 9	✓3 d/w ✓BP and LD 1RM ✓80% 1RM reps to max ✓ 300 mg	✓No↑BP or LD 1RM ✓No↑ muscular endurance

STRENGTH, CAFFEINE, AND CV RESPONSE

Lab	Design	Outcome
Astorino et al. (2007)	✓RTTB 2 d/w, 6 years ✓Consumed caffeine 4 d/wk ✓30-600 mg p/d ✓BP and LP 1RM ✓60% reps to max ✓6 mg/kg	Acute caffeine ingestion significantly ↑ SBP: ✓ At rest ✓ Immediately after RT ✓ ↑ HR by 10 bpm (pre-ex and post bench press) ✓ No difference for DBP
Astorino et al. (2008)	✓RT males ✓TB Minimum 2 d/w ✓BP and LP 1RM ✓60% reps to max ✓6 mg/kg	✓SBP also significantly ↑ pre-exercise

CAFFEINE AND WOMEN

Lab	Design	Outcome
Bruce et al. (2000) n = 8	✓ Competitive oarswomen ✓ 6 and 9 mg/kg ✓ 2,000-m row	✓ Women responded favorably to 9 mg/kg (sig. improvement in time trial performance)
Ahrens et al. (2007) n = 26	✓Untrained women ✓8 min treadmill walking at 3.5 mph ✓3 and 6 mg/kg	 ✓ Had to pull 9 mg dose from design ✓ 6 mg = Sig. ↑ energy expenditure of 7 kcals/30 min of walking ✓ No changes for 3 mg/kg
Ahrens et al. (2007) n = 20	✓ Untrained women ✓ Aerobic dance bench stepping ✓ 3 and 6 mg/kg	✓ No changes for 3 or 6 mg/kg

WHAT DO WE KNOW?

- Results vary, RT Men
- Significant improvement in performance (2,000-m row) with high dose of caffeine, trained women
- Varied results with moderate dose of caffeine, untrained women

- Double-blind placebo controlled crossover research design
- n = 15
- Resistance-Trained women
- Age: 18-45
- Determined as: ability to bench press 70% of bodyweight

- SUPPLEMENTATION:
- 6 mg/kg of caffeine
 Anhydrous powder form
 (Scivation, Graham, NC)
- 16.9 fluid ounces Propel flavored water (20 kcal; 5 g CHO)
- Packaging and taste was masked
- Prepared by someone not associated with data collection and analysis

✓1RM

- Standardized barbell bench press
- Review of proper technique and mechanics,
 NSCA
- Warm-up: 12-15 reps at 50% of anticipated max

Familiarization			
50%	5		
60%	3		
70%	?		

Exercise Trials			
60%	5		
75%	3		
90%	1		
100%	Est. 1RM		

- 1RM determined in 3-6 sets
- 2-min rest intervals between sets
- Rest for 5 minutes
- Complete test for muscular endurance
- Complete as many BP reps as possible at 60% 1RM
- Within 5 sec of final rep: HR, BP, and RPE recorded
- TOTAL WEIGHT LIFTED = repetitions x weight

RESULTS

- One-way ANOVA for repeated measures
- p < 0.05
- PHYSICAL DEMOGRAPHICS OF FEMALE SUBJECTS (MEANS ± SD):
- ✓ Age: 25 ± 7 years
- ✓ Body mass: 64 ± 8 kg
- ✓ Height: 166 ± 9 cm

RESULTS: STRENGTH AND ENDURANCE

Table 1. Strength and endurance data (means ± SD)					
	Placebo Caffeine				
Bench Press					
1RM (kg)	52.1 ± 11.7	52.9 ± 11.1*			
60% 1RM	23.0 ± 7.1	23.1 ± 6.2			

RESULTS: CV PARAMETERS

Table 2. Heart rate data (means ± SD)				
	Placebo	Caffeine		
Heart rate (bpm)				
Rest	68.3 ± 10.3	68.5 ± 13.3		
6o-min post supplementation	67.3 ± 10.2	70.0 ± 10.4		
Immediately post exercise	90.0 ± 14.0	94.0 ± 16.0		

RESULTS: CV PARAMETERS

Table 3. Diastolic blood pressure data (means ± SD)				
	Placebo	Caffeine		
Diastolic Blood Pressure (mmHg)				
Rest	63.3 ± 5.0	65.0 ± 6.5		
6o-min post supplementation	63.0 ± 4.4	64.4 ± 5.3		
Immediately post exercise	63.0 ± 4.5	64.3 ± 5.2		

RESULTS: CV PARAMETERS

Table 4. Systolic blood pressure data (means ± SD)				
	Placebo	Caffeine		
Systolic Blood Pressure (mmHg)				
Rest	109.4 ± 5.5	110.3 ± 5.2		
6o-min post supplementation	111.6 ± 6.8	111.0 ± 5.6		
Immediately post exercise	112.9 ± 4.9	116.8 ± 5.3 *		

RESULTS:

NUTRIENT CONSUMPTION

Table 5. Nutrie	ent consump	tion th	iree da	ays pri	or to	each
experimental	protocol (me	ans ± S	SD)			

	Placebo	Caffeine
Total energy (kcal)	2160 ± 1008	2083 ± 1095
Protein (g)	103 ± 46	102 ± 39
Carbohydrate (g)	252 ± 144	256 ± 186
Fat (g)	145 ± 274	117 ± 181

- Major finding of this study:
- ✓ Acute caffeine supplementation (6 mg/kg) appears to be effective for enhancing strength performance in resistance-trained women
- ✓ As demonstrated by significant ↑ in bench press 1RM

- ✓ Data gathered from the Daily Caffeine Intake Questionnaire (Appendix D):
- ✓ Participants consumed caffeine on a daily basis in range of 0-416 mg/d
- ✓ 3 of 15 participants
- ✓ Consumed either 0-41 mg/d
- Exhibited intense emotional responses: expressed inability to verbally communicate, focus, and/or remain still, feeling of wanting to cry

- 2 of 3 participants, who experienced an intense emotional response...
- ✓ Performed more repetitions to failure at 60% of individual 1RM

- Astorino et al. (2008):
- ✓ 13 of 22 subjects
- Reported symptoms:
- ✓ Restlessness, tremor, greater energy, and elevated heart rate
- ✓ Feelings augmented in subjects who consumed little caffeine on a daily basis
- ✓ Possible, the magnitude of effect is greater for those individuals non-habituated to caffeine
- ✓ Bell et al. (2002)

Discussion

Graham and Spriet (1995):

"On the basis of subjective reports of some subjects it would appear that at that high dose [9 mg/kg] the caffeine may have stimulated the central nervous system to the point at which the usually positive ergogenic responses were overridden"

Findings of current study indicated:

Results may not be applicable to all RT women, specifically those who exhibited or may exhibit an intense emotional response

On the other hand, a moderate dose of caffeine may be an effective strategy for enhancing strength performance in RT women

- Astorino et al. (2007):
- ✓ SBP ↑ ~8-10 mmHg following caffeine ingestion and RE
- Astorino et al. (2008):
- ✓ Following caffeine ingestion, SBP significantly ↑ pre-exercise
- Results comparable to present investigation
- ✓ Sig. ↑ SBP, ~4 mmHg

- Clinical relevance of ↑ in pressure (~4 mmHg) can be significant, depending on population
- Specifically, in persons diagnosed as hypertensive
- Possible that in a non-normotensive population, supplementing with caffeine while participating in RE may adversely affect parameters of CV functioning
- In normal, healthy trained individuals, ↑ in SBP does not seem to warrant concern as a potential healthrelated risk factor

CONCLUSION

- Major finding of this study:
- ✓ 6 mg/kg dose of caffeine was effective for enhancing strength but not muscular endurance in RT women
- ✓ This is a novel finding: the 1st investigation to examine caffeine supplementation in this population (*RT women*)

IMPLICATIONS FOR FUTURE RESEARCH

- It is of interest to determine: if lower dose of caffeine would stimulate similar ↑ in strength performance (as indicated by results of this study) but without intense emotional response experienced by some of the participants
- It is of importance to examine: if lower dose of caffeine would prevent an ↑ in SBP following RE, without subsequent loss of performance

QUESTIONS?

