GLY 4200C
MINERALOGY AND CRYSTAL CHEMISTRY
4 Credits

PREREQUISITES:
GLY 2010 and 2010L or equivalent. One semester college chemistry and one year college physics. All students should have these courses before taking GLY4200C. Students are strongly advised to take one year of college chemistry. Students who choose to ignore prerequisites often do poorly.

TERM AND LOCATION:
Fall Semester, 2011, Section 86632, Physical Science 337, Monday, Wednesday, 9:00-10:20 a.m., (Lecture) and Physical Science 355, Wednesday, 10:30-12:20 p.m. (Laboratory)

Class begins on Monday, August 22, 2011

DATES: August 22 through December 7, 2011 excluding September 5, 2011 and November 24-25

INSTRUCTOR:
Dr. David L. Warburton
Physical Sciences Building Room 356a
(561) 297-3312 FAX (561) 297-2745
E-mail Warburto@FAU.EDU

Please note: Under State of Florida law, all e-mails to or from FAU are public records. Do not say anything in an e-mail you would not want to see in a newspaper, etc.

Office Hours: The instructor will be in or around PS 356 during the following hours each week, beginning August 22, 2011 through December 7, 2011
- M 10:30 - 1:30 p.m.
- T-R10:00 - 11:30 a.m. or by appointment

GRADUATE TEACHING ASSISTANT:
Ms. Katy Jackson
Physical Sciences Building Room 354
(561) 297-3250
E-mail: <kjacks37@fau.edu>
Office Hours: Wednesday 12:30 - 3:00 p.m.
- Friday 12:00 - 3:00 p.m.

COURSE DESCRIPTION:
This course provides geology majors with basic background in mineralogy and optical mineralogy. Students will become familiar with atomic scale properties, and their usefulness in understanding macroscopic properties, as well as information which can be extracted from minerals concerning the past history of the earth, as well as changes in the earth's environment over time. The laboratory serves to familiarize students with non-silicate minerals and the use of the petrographic microscope.

COURSE OBJECTIVES:
The course provides background in one of the six areas tested on the Professional Geology license examination, and prepares students for the Petrology of Igneous and Metamorphic Rocks course.

COURSE EVALUATION:
Two midterms exams, each worth 15% of the total grade.
A cumulative final exam worth 18% of the total grade. Laboratory assignments and laboratory exams,
36% of the total grade. Homework will be worth 16% of the total grade.

GRADING:

The grading scale used is as follows:

<table>
<thead>
<tr>
<th>Percent</th>
<th>Grade</th>
<th>Percent</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>93-100 %</td>
<td>A</td>
<td>73-76.9 %</td>
<td>C</td>
</tr>
<tr>
<td>90-92.9 %</td>
<td>A-</td>
<td>70-72.9 %</td>
<td>C-</td>
</tr>
<tr>
<td>87-89.9 %</td>
<td>B+</td>
<td>67-69.9 %</td>
<td>D+</td>
</tr>
<tr>
<td>83-86.9 %</td>
<td>B</td>
<td>63-66.9 %</td>
<td>D</td>
</tr>
<tr>
<td>80-82.9 %</td>
<td>B-</td>
<td>60-62.9 %</td>
<td>D-</td>
</tr>
<tr>
<td>77-79.9 %</td>
<td>C+</td>
<td>< 60 %</td>
<td>F</td>
</tr>
</tbody>
</table>

Attainment of the lowest grade average in any category will assure that your grade is not lower than the indicated grade, with one exception. **Anyone failing the laboratory examinations will receive a grade no higher than D+**, regardless of the overall score. For geology majors, a grade of less than C must be repeated in order to graduate. Note that this includes grades of C-.

Examinations will be returned and discussed in class. If you miss a class, you may come to the instructor’s office during office hours. Grades will not be posted. Overall grade distributions and class averages are posted on the examination key, which will be available on the course web pages after the examination.

Incomplete grades will be given only when a student is unable to complete the course within the semester due to unforeseen circumstances, with a considerable impact on the student’s life, and beyond the student’s control. Such events are rare. Therefore, incomplete grades are rare.

Attendance at the laboratory sessions is essential for satisfactory performance in the course.

LATE WORK AND MISSED EXAMINATIONS:
Exams will be announced at least one week in advance. It is the student’s responsibility to take the tests on the announced date. Failure to take any test will result in a grade of zero (F) on that test. Exceptions, for truly unusual circumstances only, may be obtained by consultation with the instructor prior to the test. Similarly, homework and lab assignments are due on the date announced when the assignment is made. Late assignments will be heavily penalized.

CLASSROOM ETIQUETTE:
In order to enhance and maintain a productive atmosphere for education, personal communication devices such as cellular telephones, are to be disabled in class sessions. (University policy which applies to all classes - see http://www.fau.edu/academic/registrar/catalogRevs/academics.php) Any use of these devices during a quiz or examination will be considered to be cheating, and will be penalized accordingly. Communication devices (cell phones, laptop computers, etc.) must be turned off and out of reach during all examinations.

DISABLED STUDENTS:
In compliance with the Americans with Disabilities Act (ADA), students who require special
accommodation due to a disability to properly execute coursework must register with the Office for Students with Disabilities (OSD) - in Boca Raton, SU 133 (561-297-3880); in Davie, MOD 1 (954-236-1222); in Jupiter, SR 117 (561-799-8585); or at the Treasure Coast, CO 128 (772-873-3305) - and follow all OSD procedures.

HONOR CODE POLICY STATEMENT:
Students at Florida Atlantic University are expected to maintain the highest ethical standards. Academic dishonesty is considered a serious breach of these ethical standards, because it interferes with the university mission to provide a high quality education in which no student enjoys an unfair advantage over any other. Academic dishonesty is also destructive of the university community, which is grounded in a system of mutual trust and places high value on personal integrity and individual responsibility. Harsh penalties are associated with academic dishonesty. For more information, see University Regulation 4.001 at http://www.fau.edu/regulations/chapter4/4.001_Code_of_Academic_Integrity.pdf

TEXT:
Manual of Mineral Science, Cornelis Klein and Barbara Dutrow, 23rd edition, John Wiley, 2007. ISBN: 978-0-471-72157-4. The price on Amazon for a new book is $111.92. New and used copies are available from Amazon resellers, from $40 for a new copy on June 24th. The J. Wiley book site shows a list price of $168.95, or $101.50 for an e-book. (http://www.wiley.com/WileyCDA/WileyTitle/productCd-EHEP000641.i1tml) Use caution - some used books are marked, and many are missing the CD-ROM that accompanies the text. Do not buy any edition before the twenty-third, because there were substantial improvements with the new book. All assignments are keyed to the 23rd edition.

ADDITIONAL SUPPLIES:
One hand lens (10X) - should have a metal case - 20X is also useful but 10X is better for most purposes.

HOLIDAYS:
Labor Day, September 5, 2011
Thanksgiving, November 24-25, 2011

METHOD OF INSTRUCTION:
The material for the lecture part of the course will be presented in lecture format, usually accompanied by PowerPoint presentations. The laboratory portion of the course will consist of a number of exercises done during the Monday afternoon laboratory section, with write-ups done outside of class.

COURSE WEB PAGES:
Web pages for the course are located at http://www.geosciences.fau.edu/Resources/CourseWebPages/Fall2011/GLY4200C_F11/index_4200_F11
An enhanced syllabus, an index page with a great deal of information, a laboratory schedule, and other documents are located at this site. Notices, including any changes in dates, etc. will be posted on the web site. The lecture schedule, which summarizes the material covered during lecture, as well as assignments made and their due dates, will be updated after each lecture, and will serve as an up-to-date indicator of course progress. Students need to check this site frequently (at least once per week).

EXAMINATION SCHEDULE:
The approximate schedule of lecture examinations is as follows - actual examination dates may vary in accordance with the above outlined policy:
First Midterm Exam - Wednesday, September 21, 2011
Second Midterm Exam - Wednesday, October 26, 2011
Final Examination - Friday, December 2, 2011 7:45 - 10:15 a.m.

Lecture exams consist of a variety of questions, including true-false, multiple choice, matching, fill-ins, problems, definitions, and occasional essay or discussion questions.
The approximate laboratory examination schedule is as follows:

Lab Quiz 1 Labs 1-3 (Physical properties, Native elements, Sulfides, Sulfosalts, Oxides and Hydroxides) September 28, 2011
Laboratory Quiz 2 (Symmetry-K & H, Chapter 2, 20-100) - October 19, 2011
Laboratory Quiz 3 (Halides, Sulfates, Borates, Carbonates, Bicarbonates, Phosphates) November 2, 2011
Laboratory Final (Optical Mineralogy Techniques) - Wednesday, December 7, 2011 10:30 a.m. - 1:00 p.m.

Laboratory quizzes and examinations are hands-on exercises involving the identification of minerals, and determination of mineral properties, including optical properties using the petrographic microscope.

Make-up tests and quizzes will be given under truly unusual circumstances, which involve a problem or problem beyond the students control, and which could not be foreseen a reasonable time in advance of the examination. Students who know of a problem are urged to contact the instructor two weeks before the examination, to see if alternative arrangements can be made. Anyone missing a quiz or exam must contact the instructor as soon as possible after the exam. Don not wait until the next class! Make-up exams are often in different format than the original examination, and many students consider the make-up exams to be more difficult than the original.

TOPICS COVERED:
Introduction
Physical properties, crystal habit, form, mineral physics, piezoelectricity, pyroelectricity
Crystal chemistry, composition of the earth's crust, atoms, ions, quantum numbers, bonding, Pauling's Rules, crystal structures, and crystalline solution

MIDTERM I
Crystallographic concepts, symmetry elements and operations, order, overview of point group symmetry
Mineral reactions, crystallization, crystal growth

MIDTERM 2
Mineral stability, phase diagrams, exsolution, metamict minerals, pseudomorphism, twinning,
origin of color, magnetic properties, radioactivity

Optical Properties of Minerals, Reflection, Refraction, Critical Angle, Isotropic and Anisotropic Crystals, Polarized Light

FINAL EXAMINATION - includes review questions from midterms

REFERENCE LIST

The following books are on three-hour reserve in the library. They may prove useful if you are having trouble with a particular subject area, or would like more information.

Mineralogy for Students - M. H. Battey
QE 363.2 B33 1975

Modern Mineralogy - Keith Frye
QE 363.2 F79 1974

Mineralogy - John Sinkankas
QE 363.2 S47 1970

An Introduction to Mineralogy for Geologists - W.J. Phillips & N. Phillips
QE 363.2 P44

Mineralogy - Concepts and Principles - Tibor Zoltai and James H. Stout
QE 363.2 Z 65

The book by Frye describes chemical bonding and close packing well in Chapter 1, and has a very good discussion of color and luster in Chapter 5. The Sinkankas book contains excellent descriptions of minerals, including the origin of mineral name, methods of identification, and noteworthy occurrences of type or museum grade specimens. Also included are many illustrations of crystals showing common crystal faces and interfacial angles. The theoretical sections are relatively uncomplicated and thus easier to understand than some textbooks, although detail is sacrificed. The Phillips book contains a great deal of information on crystal structure, a subject not emphasized in this course, and the habits and stereo-representations of many rock-forming minerals. The growth and twinning of crystals is also discussed. The book by Zoltai and Stout was formerly used as the textbook for this course, and contains a wealth of detailed information on many of the theoretical aspects of mineralogy.