Solutions

Homogene ous (uniform) Mixture
of two or more non-reacting substances

Solvent - component in greater amount
Solute (s) - lesser component(s)

Dilute - small amount of solute
Concentrated - large amount of solute

Water - universal solvent dissolves so many other substances
Polar Mole cule
electronegativity
H 2.1
O 3.5
Where are the electrons?

RULE: Like dissolves like.
oil (non-polar) does not dissolve in water

Solutions are not just liquids! See Table 17-7.

Adding solute to pure solvent:

RAISES boiling point

LOWERS freezing point (salt in snow)

Acids and Bases
$\mathfrak{A C I D}$ - Robert Boyle
compound that in water solution will taste sour ("acidus" \Rightarrow "sour")
turn litmus dye from blue \Rightarrow red neutralizes bases react with some metals producing H_{2}
Arrfenius Theory:
$\mathfrak{A C I D}$ - substance in water solution that
increases concentration of hydrogen (hydronium) ions
$\mathbf{H A} \Leftrightarrow \mathbf{H}^{+}+\mathbf{A}^{-}$where $\mathbf{A}=$ anything
molecules ions
Acid dissociation constant
$K_{a}=\frac{\left[H^{+}\right]\left[A^{-}\right]}{[H A]}$
determines strength of the acid:
acid Formula \% strength
acetic $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} 1.3$ weak
nitrous $\quad \mathrm{HNO}_{4} \quad 1.5$
sulfurous $\mathrm{H}_{2} \mathrm{SO}_{3} \quad 20$ moderate
phosphoric $\quad \mathrm{H}_{3} \mathrm{PO}_{4} 27$
sulfuric $\quad \mathrm{H}_{2} \mathrm{SO}_{4} \quad 61$ strong
hydrochloric HCl 92
$\mathcal{B A S E}$ - compound that in water solution will
taste bitter
have a soapy feel
turn litmus dye from red \Rightarrow blue
neutralizes acids
increase hydroxide ion concentration

$$
\mathrm{B}+\mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{BH}^{+}+\mathrm{OH}^{-}
$$

Water $\operatorname{Dissociates:~} \mathbf{H}_{\mathbf{2}} \mathbf{O} \Leftrightarrow \mathbf{H}^{+}+\mathbf{O H}^{-}$
with Ionization Constant:

$$
K_{I}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{O}\right]}
$$

in pure water and dilute solutions
$\left[\mathrm{H}_{2} \mathrm{O}\right]$ = concentration of $\mathrm{H}_{2} \mathrm{O}$ in water = constant, so

$$
\mathbf{K}_{\mathbf{I}}\left[\mathrm{H}_{\mathbf{2}} \mathrm{O}\right]=\mathcal{K}_{w}=\left[\mathcal{H}^{+}\right] /[O \mathcal{H}]=10^{-14} \text { mole }{ }^{2} / \text { fite } r^{2}
$$

in $\mathcal{N e}$ utral solution $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]=10^{-7}$ mole $/$ fiter (\mathfrak{M})
Acidic solution $\left[\mathrm{H}^{+}\right]>\left[\mathrm{OH}^{-}\right],\left[\mathcal{H}^{+}\right]>10^{-7} \mathcal{M}$ Basic solution $\left[\mathrm{H}^{+}\right]<\left[\mathrm{OH}^{-}\right],\left[\mathcal{H}^{+}\right]<10^{-7} \mathrm{M}$
$\begin{array}{cr}{\left[\mathrm{H}^{+}\right]} & 10^{-14} \\ & \text { BAS } \\ p \mathcal{H} & 1 \\ & \\ p \mathcal{H} \text { Scale }\end{array}$
Sven Sörensen (1868-1939)

$$
\begin{aligned}
p \mathcal{H} & =-\log _{10}\left[\mathcal{H}^{+}\right] \\
& >7 \mathcal{B a s i c} \\
& =7 \mathcal{N e u t r a l} \\
& <7 \text { Acidic }
\end{aligned}
$$

Extremely important for many biological processes

17-19

Agriculture soil pH~6
Seawater pH~8
many marine organisms die if $\mathrm{pH}<7.5$
Blood $7.3<\mathrm{pH}<7.5$
death if $\mathrm{pH}<7$ or $\mathrm{pH}>7.8$
Rain water normal pH ~ 5.7
passed through polluted air $\mathrm{pH} \Rightarrow 3$
acid rain

