Chemical Equilibrium Prof. Voss

Reaction Rates

Equation - What happens? Rate - How fast? - almost instantaneous to years

What changes the Reaction Rate?

crease T by 10°C at room temperature changes average E by 3% but almost doubles high E collisions $H_2 + I_2 \Rightarrow$

3. Concentration: number of atoms/molecules in a given volume Law of Mass Action

Reactante

for reaction $A + B \rightarrow C$ rate = k[A][B] k = constant [A] = concentration of A [B] = concentration of B increasing [A] or [B] increases rate

4. Catalyst

Enzyme

large protein molecule catalyst in biological reactions

Chemical Equilibrium

Reversible Reaction: start with A & B no C & D only forward reaction $A + B \rightarrow C + D$ as A & B decrease C & D increases reverse reaction starts $C + D \rightarrow A + B$

final state:

Dynamic Equilibrium

forward <u>AND</u> reverse reactions both occur but concentrations do not change in time.

Rates?

rate forward = r_f = k_f[A][B] rate backward = r_b = k_b[C][D] Equilibrium Constant, K determined by r_f = r_b

Products

ubstrate 2

enzyme

16-13a

Chemical Equilibrium Prof. Voss

$$K = \frac{k_f}{k_b} = \frac{[C][D]}{[A][B]}$$

when $aA + bB \Leftrightarrow cC + dD$, $K = \frac{[C]^{c} [D]^{d}}{[A]^{a} [B]^{b}}$

when K is very big $k_f \gg k_h$

reaction is mostly forward, little A,B much C,D

when K is very small $k_f \ll k_h$

reaction is mostly reverse, much A,B little C,D

Le Châtelier's Principle

when stress imposed on an equilibrium system, equilibrium shifts to minimize effect of the stress

Effect of Concentration on Equilibrium

for $A + B \Leftrightarrow C + D$, $K = \frac{[C][D]}{[A][B]}$

increase [A] or [B] (left side)
increase forward reaction ⇒ [C] and [D] increase
equilibrium shifts to the right

increase [C] or [D] (right side)
increase reverse reaction ⇒ [A] and [B] increase
equilibrium shifts to the left

Effect of Temperature on Equilibrium $H_2 + I_2 \Leftrightarrow 2HI + heat$

forward reaction generates heat - exothermic reverse reaction absorbs heat - endothermic

What happens if heat is added?

increase (right side) equilibrium shifts to the left increase reverse reaction \Rightarrow more H₂ and I₂