Reaction Rates

Equation - What happens?
Rate - How fast? - almost instantaneous to years

What changes the Reaction Rate?

1. Nature of the Reactants

How easy is it for different reactants to "touch"?

gas - easy
liquid - stirring helps
solids
increasing surface area grind or powder
 increases rate
2. Temperature: increasing $\mathbf{T} \Rightarrow$ increases rate
example: $\mathrm{H}_{2}+\mathrm{O}_{2}$
at $20^{\circ} \mathrm{C}$: stable for years
at $700^{\circ} \mathrm{C}$: explodes
Collision The ory: reactions only possible with certain collisions
must exceed Energy Barrier
or Activation Energy
for reactants to get close enough
most collision do not have
enough energy

Evare. E

2HI

16-10a

16-09a
3. Concentration: number of atoms/molecules in a given volume

Law of Mass Action

for reaction $A+B \rightarrow C$ rate $=k[A][B]$
$k=$ constant
[A] = concentration of A
$[B]=$ concentration of B
increasing $[A]$ or $[B]$ increases rate
4. Catalyst
increases rate by providing new path with lower E_{a}
left unchanged after reaction

16-13a

Enzyme
large protein molecule catalyst in biological reactions

Chemical Equilibrium

Reversible Reaction:

$$
A+B \Leftrightarrow C+D
$$

start with A \& B no C \& D only forward reaction

$$
\mathrm{A}+\mathrm{B} \rightarrow \mathrm{C}+\mathrm{D}
$$

as $\mathrm{A} \& \mathrm{~B}$ decrease
C \& D increases reverse reaction starts $\mathrm{C}+\mathrm{D} \rightarrow \mathrm{A}+\mathrm{B}$
final state:

Dynamic Equilibrium

forward AND reverse reactions both occur but concentrations do not change in time.

Rates?
rate forward $=r_{f}=k_{f}[A][B]$
rate backward $=r_{b}=k_{b}[C][D]$
Equilibrium Constant, Kdetermined by $\mathbf{r}_{\mathbf{f}}=\mathbf{r}_{\mathbf{b}}$
$K=\frac{k_{f}}{k_{b}}=\frac{[C][D]}{[A][B]}$
when $\mathrm{a} A+\mathrm{bB} \Leftrightarrow \mathrm{cC}+\mathrm{dD}, \mathrm{K}=\frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}$
when \mathcal{K} is very big $\mathbf{k}_{\mathbf{f}} \gg \mathbf{k}_{\mathbf{b}}$
reaction is mostly forward, little A,B much C,D
when \mathcal{K} is very small $\mathbf{k}_{\mathbf{f}}<\mathbf{k}_{\mathbf{b}}$
reaction is mostly reverse, much A,B little C,D

Le Châtelier's Principle

when stress imposed on an equilibrium system, equilibrium shifts to minimize effect of the stress

Effect of Concentration on Equilibrium
for $A+B \Leftrightarrow C+D, \quad K=\frac{[C][D]}{[A][B]}$
increase $[\mathbf{A}]$ or $[B]$ (left side)
increase for ward reaction $\Rightarrow[C]$ and $[D]$ increase equilibrium shifts to the right
increase [C] or [D] (right side)
increase reve rse reaction $\Rightarrow[A]$ and $[B]$ increase
equilibrium strifts to the left

Effect of Temperature on Equilibrium

$$
\mathrm{H}_{2}+\mathrm{I}_{2} \Leftrightarrow 2 \mathrm{HI}+\text { heat }
$$

forward reaction generates heat - exothermic reverse reaction absorbs heat - endothermic

What happens if heat is added?

```
increase (rigft side)
    equilibrium sfifts to the left
    increase reverse reaction }=>\mathrm{ more }\mp@subsup{\textrm{H}}{2}{}\mathrm{ and }\mp@subsup{\textrm{I}}{2}{
```

