Chemical Formula and Equations

$\operatorname{COMPO~ULND}$

pure substance composed of 2 or more elements that are chemically combined in a definite proportion by mass.
smallest unit mole cule
$\mathcal{F} O$ RMULA - represents compound
$\mathfrak{N a C l}$ - sodium chloride
$\mathcal{H}_{2} \mathrm{O}$ - water
CaCl_{2} - calcium chloride
subscripts denote \# of atoms
Molecular Mass - sum of all atomic masses in molecule
Formula Mass - sum of all atomic masses in formula
more general. e.g. NaCl not a molecule
\% Composition of compound
$\%=($ Total Mass of Element) $/$ (Formula Mass) $\times 100 \%$
examples: $\mathrm{H}_{2} \mathrm{O} \quad \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}$ (aspirin)

Amadeo \mathcal{A} vogadro (1776-1856)
Equal volumes of ALL gasses at same T and P contain the same number of molecules.

$G R A M-\mathcal{A T O}$ MIC MASS - mass of element in grams
equal to atomic mass. $H=1.0 \mathrm{~g}, \mathrm{~N}=14.0 \mathrm{~g}$
Contains same number of atoms for all elements.
GRAM $\mathcal{M O}$ LECULAR $\mathcal{M A S S}$ or GRAM \mathcal{F} ORMULA $\mathcal{M A S S}$
molecular/formula mass in grams
Contains same number of molecules for all compounds.
$\mathcal{M O L E}$ - used for any of the above
Refers to the same number of atoms/molecules \Rightarrow AVOGADRO'S NUMBER $\left(N_{A}\right)=6.02 \times 10^{23}$
$=$ number of atoms $/$ molecules in 1 Mole
= number of atoms/molecules in 22.4 liter of a gas at $0^{\circ} \mathrm{C}$ and 1 Atmosphere pressure.

36 g of $\mathrm{H}_{2} \mathrm{O}$ contains

Chemical Formula Prof. Voss
how many $\mathrm{H}_{2} \mathrm{O}$ molecules?
how many H atoms?
how many O atoms?
$\mathrm{H}_{2} \mathrm{O}$ formula mass $=18.0 \mathrm{amu}$, gram-formula mass $=18 \mathrm{~g}=1$ mole
$36 \mathrm{~g}=2$ mole $=2 \times \mathrm{N}_{\mathrm{A}}=12.04 \times 10^{23} \mathrm{H}_{2} \mathrm{O}$ molecules
each $\mathrm{H}_{2} \mathrm{O}$ molecule has 2 H and $1 \mathrm{O} \Rightarrow 24.08 \times 10^{23} \mathrm{H}$ atoms, $12.04 \times 10^{23} \mathrm{O}$ atoms

Information carried by Chemical Symbols and Formula
Ni 1. the element nickel
2. one atom of nickel
3. one atomic mass of nickel: 58.7 amu
4. one gram-atom (gram-atomic mass) of nickel: 58.7 g
5. one mole of nickel atoms $=N_{A}=6.02 \times 10^{23}$ atoms
CO_{2} 1. carbon dioxide
2. one molecule of carbon dioxide
3. one molecular mass of carbon dioxide: 44.0 amu
4. one gram-molecular mass of carbon dioxide: 44.0 g
5. one mole of carbon dioxide molecules

$$
=N_{A}=6.02 \times 10^{23} \text { molecules }
$$

CHEMICAL EQUATIONS

Reactants \rightarrow Products
$\mathrm{Al}+\mathrm{Fe}_{2} \mathrm{O}_{3} \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}+\mathrm{Fe}$ unbalanced equation
symbol meaning
$+\quad$ plus
$\rightarrow \quad$ yields, produces
$\Leftrightarrow \quad$ reversible reaction
$=$ equilibrium

Law of Conservation of $\mathcal{M a s s}$
in a chemical reaction bonds are made or broken, atoms are rearranged
atoms are not created or destroyed must have the same number of atoms of each element before and after the reaction requires \Rightarrow
Balanced Equation
equal numbers of atoms of each element on each side

Chemical Formula Prof. Voss

1. Adjust coefficients

2. Reduce to lowest whole numbers (common denominator)

Galance:

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2} \\
& \mathrm{Zn}+\mathrm{H}_{3} \mathrm{PO}_{4} \\
& \rightarrow \mathrm{Zn}_{3}\left(\mathrm{PO}_{4}\right)_{2}+\mathrm{H}_{2} \\
& \mathrm{~N}_{2}+\mathrm{H}_{2} \rightarrow \mathrm{NH}_{3}
\end{aligned}
$$

