Chemical Bonds

NOBLE GASES (Group VIII)
inert - no (almost) reactions
electronic configuration - filled outer shell
high ionization energy - E needed to remove an electron
$H_{h e}$ - only material that does not freeze at normal pressure superffuid at $T<1 \mathrm{~K}$
flows without friction
macroscopic quantum mechanical properties
like superconductors
IO $\operatorname{NIC} \mathcal{B O} \mathcal{N}(D-$ typically "salts" valence electrons - those in incomplete
highest energy orbitals
ion - atom that has gained or lost an electron
usually to complete a shell
charged!
typically between
Group I - alkali metals have an extra electron
Group VII - halogens need one more electron
transfer of electron(s) completes (fills) orbitals in donor and recipient creates oppositely charged ions

attractive electrical force hold ions together
$\operatorname{COVALEN}(\mathcal{B O} \mathcal{N}(\mathcal{D}$ - holds molecules together
MO LECULE - smallest unit of a substance that can have a stable independent existence.

Gilbert N. Lewis (1875-1946)
chemist \dagger
1st to isolate feavy water
H replaced by deuterium
sharing electrons can achieve
Noble Gas structure
filled shells

Table 14-8 LEWIS STRUCTURES OF HYDROGEN THROUGH ARGON

I	II	III	IV	V	VI	VII	VIII

H. He: draw dots so that electrons can be shared

| |
| :---: | $\mathrm{Na} \cdot \cdot \mathrm{Mg} \cdot \cdot \dot{\mathrm{Al}} \cdot \dot{\mathrm{S}} \cdot \quad \cdot \ddot{\mathrm{P}} \cdot \quad \ddot{\mathrm{S}} \cdot \underset{\mathrm{C}}{\mathrm{C}} \cdot: \ddot{\mathrm{A}}:$

$1 s 1 s$
dash notation also indicates
single, double, or triple bonds
Goal: get 8 (or 2) dots near each atom
Table 14-9 LEWIS STRUCTURES OF SOME COVALENT MOLECULES

Substance	Lewis Structure	Dash Formula	Substance	Lewis Structure	Dash Formula
Bromine	: Br : $\ddot{\mathrm{Br}}$:	$\mathrm{Br}-\mathrm{Br}$	Carbon dioxide	. $\ddot{\mathrm{O}}: \mathrm{C}: ~: ~ \ddot{\mathrm{O}}$.	$\mathrm{O}=\mathrm{C}=\mathrm{O}$
Chlorine	$: \ddot{\mathrm{Cl}}: \ddot{\mathrm{Cl}}$:	$\mathrm{Cl}-\mathrm{Cl}$	Ammonia	$\begin{gathered} \mathrm{H}: \ddot{\mathrm{N}}: \stackrel{H}{\mathrm{H}} \mathrm{H} \end{gathered}$	
Fluorine	: $\ddot{\mathrm{F}}: \ddot{\mathrm{F}}$:	$\mathrm{F}-\mathrm{F}$			
Iodine	: $\mathrm{I}:$: I :	I-I	Methane	$\begin{gathered} \mathrm{H}: \underset{\mathrm{H}}{\mathrm{C}}: \mathrm{H} \\ \end{gathered}$	
Hydrogen	$\mathrm{H}: \mathrm{H}$	$\mathrm{H}-\mathrm{H}$		$\ddot{\mathrm{Cl}}$	Cl
Oxygen	$\ddot{\mathrm{O}}: \stackrel{\text { : }}{\text { O}}$	$\mathrm{O}=\mathrm{O}$	Carbon tetrachlonide	$\begin{gathered} : \ddot{\mathrm{Cl}}: \ddot{\mathrm{C}}: \ddot{\mathrm{Cl}}: \\ \quad: \ddot{\mathrm{Cl}}: \\ : \end{gathered}$	
Nitrogen	: $\mathrm{N}: \mathrm{E}$:	$\mathrm{N}=\mathrm{N}$			

PO LAR MO LECTLES
unequally shared electrons
in covalent bond
has + and - "poles"
important example: $\mathrm{H}_{2} \mathrm{O}$ oxygen holds electrons tighter than hydrogen
sydrogen 6ond

Ability of an atom to attract an electron gives:

Electronegativitios of the Elements

EN diff	BOND type	electron distribution
0	non-polar covalent	shared equally
$0-1.7$	polar covalent	shared unequally
>1.7	ionic	complete transfer

What type of bond is $\mathcal{H}-O ?$ CL-Cl? 代 \mathcal{F} ?

METALLIC $\mathcal{B O} \mathcal{N} \mathcal{D}$
outer electrons
conduction electrons
shared among all atoms ${ }^{\text {Ag+ }}{ }_{\mathrm{e}}$.
positive charge remains
 around each nucleus
opposite of Thomson's Plum Pudding atom model conduction electrons hold metal together
they are free to move and give
high electrical and thermal conductivity
non-directional bond
atoms can move relative to each other
malle able - can be rolled or hammered into shape
ductile - can be drawn into wires

