Quantum Theory of Radiation and Matter

around 1900 Scientists thought they knew it all! except (of course)
for a few minor details

Newton's Laws
Mechanics, gravity
Maxwell's Equations
Electromagnetism
Thermodynamics
Statistical Mechanics

Numerous experiments could not be explained the accepted laws would occasionally fail!
large distances, fast speeds \Rightarrow Re lativity
small distances, atomic sizes \Rightarrow Quantum Mectranics

Atomic Spectra
spectrograpf separates light according to λ, f
continuous spectrum

sun

hot filament

line spectrum
each element unique fingerprint for identification
now spectrographs use
diffraction grating mirror etched with fine lines

Some materials give off light when "excited"
i.e. when they gain extra energy (gas discharge above)

Ffuorescence - light for a very short time ($\sim \mathrm{msec}$)
Phosphorescence - (glow-in-the-dark) lasts minutes - hours

Radiation and Radioactivity - mysterious "rays"
smashing as an experimental method use electric potential - High Voltage to accelerate charged particles smash them into something
noticed that nearby
fluor/phosphorescent screens would glow!

DANGER

high voltage

some rare materials - radium, uranium would also cause screens to glow!

x - Rays - Roentgen

November 8, 1895
X = unknown
electromagnetic radiation
$\lambda \sim 1 \AA=10 \mathrm{~nm}$ penetrates many materials exposes film in dark

Radioactivity
release of energy from an unstable atomic nucleus

Marie and Pierre Curie Nobel prizes Marie twice!
classification into different types can electric or magnetic fields bend path of the "rays"?

人 $\mathfrak{A L P H} \mathcal{H}$ particles - "heavy" positive charge
He nucleus - 2 protons +2 neutrons
$\boldsymbol{\beta}_{\mathcal{B E T}}$ particles - "light" negative charge
high energy electrons

```
G\mathcal{MMMA}}\mathrm{ particles - no observable charge or mass
    very high frequency (small }\lambda\mathrm{ ) radiation }=>\mathrm{ waves
    more energetic than X-rays
```

CATHODE RAIS from CRT (Cathode Ray Tube) TV/monitor $=$ electrons $=\beta$ particles

Path of charged "rays" is deflected (bent or changed) by electrically charged plates or magnetic fields.

Remember Electromagnetic spectrum!

Early Models of the Atom

Neutral - must have equal positive and negative charge
9.9. Thoms on (shown with Rutherford) discovered electron in 1897 early cathode ray tube plum pudding model of the atom electrons as raisins in continuous positive pudding

Rutherford Model of the Atom
test of how electric charge distributed in solids α particles shot at gold foil most went straight through or with small scattering but a few came straight back!

Conclusion positive charge must be highly concentrated! then light electrons must "orbit" positive nucleus as planets around sun Rutherford's model of the atom
Problem:
moving charges lose energy by radiation Maxwell's equations
electrons would fall into nucleus
atoms would collapse
Wry don't electrons in "orbits" radiate energy?

Planck's Quantum Hypothesis
$\mathcal{W} \mathcal{A} \mathcal{V}$ - electromagnetic radiation
LIGHT acts as a
PARI I CLE - PHOTON or quantum
known as $\mathcal{D U A L I T \mathcal { T }}$
nature doesn'† follow our prejudices

Energy of Quantum (photon) proportional to Frequency
$E=h f \quad h=$ Planck's constant $=6.63 \times 10^{-34}$ joule-s
for light
$c=\lambda f$ so $f=c / \lambda$ and $E=h c / \lambda$
Energy of a photon (light quantum) depends only on f (or λ)
NOT on brightness of light
brightness \Rightarrow number of photons/sec

Photoelectric Effect

explained by Einstein \Rightarrow Nobel Prize
shine dim high f light
(BLUE) on a metal:
Electrons emitted!
shine bright low f light (RED) on same metal:

No electrons emitted!

Photoelectric effect

Metal:

work function $\mathbf{W}=$ minimum energy needed to eject electron related to L_{v}
measured in $e v$ (electron volts) small unit of energy
$1 \mathrm{eV}=\left(1.6 \times 10^{-19} \mathrm{C}\right)(1 \mathrm{~V})=1.6 \times 10^{-19}$ joule
low f RED light $h f$ < W, electrons remain trapped!
high f BLUE light $h f>W$, electrons ejected!

In the photoelectric effect, light behaves as a particle (photon) with energy hf.
In dispersion through a prism, light behaves as a wave with wavelength λ.

If light (a wave) can behave as a particle (photon), then particles must also behave like waves.
The quantum wavelength of a particle
depends on its velocity v and mass m :

$$
\lambda=h / m v \quad \mathrm{mv}=\text { momentum }
$$

Note: quantum effects involve h (Planck's constant).
A bullet of mass 10 gm travels at $1000 \mathrm{~m} / \mathrm{s}$, what is λ ?
$\boldsymbol{\lambda}=\mathrm{h} / \mathrm{mv}=\left(6.63 \times 10^{-34} \mathrm{js}\right) /\left(10^{-2} \mathrm{~kg}\right)\left(10^{3} \mathrm{~m} / \mathrm{s}\right)=6.63 \times 10^{-35} \mathrm{~m}$

For macroscopic (normal, bigger than microscopic) objects quantum λ too small to have observable effects.

Electrons in atom \Rightarrow standing waves in a string lowest energy level \Rightarrow fundamental frequency only certain f (energies) allowed

Bohr Ene rgy-Level $\mathcal{A t o m}$ explains atomic spectra
Electron "orbits" have different sizes larger orbits \Rightarrow larger energy E
Quantum resonance: wavelength must match size only certain sizes/energies, unlike planets around sun
allowed energies are quantize d (discrete, not continuous) called energy le vels, or permitted orbits depend on Z, number of protons in nucleus

Excitation of Atoms

energy is required to move from one level to another
Upward \mathcal{T} ransition electron gains energy

$$
\Delta \mathcal{E}=\mathcal{E}_{\text {upper }}-\mathcal{E}_{\text {lower }} \quad \text { very precise }
$$

energy can come from

1) collision with other atoms
2) absorption of a electromagnetic phioton with exactly the correct energy/wawelength

$$
\Delta E=E_{\text {photon }}=h c / \lambda
$$

04-05
Downward Iransition - Emission - atoms are lazy (like people!)
short time in excited upper level $\sim 10^{-9}$ to $10^{-6} \mathrm{sec}$. excited electron falls back to ground state (lowest energy state)
emits a photon with $E_{\text {photon }}=\Delta E=h c / \lambda$
same energy for emission as needed for absorption
but direction random
explains atomic spectra
emission and absorption lines at same λ

