ELECTROSTATICS

electric charge at rest

Thales of Miletus (~600 BC) rub amber attracts small particles elektron - Greek word for amber
Ben Franklin
2 types of electric charge
Positive - Negative

Law of Electrical Charges
like charges repel unlike charges attract

Early but unsuccessful practical jokes

Electroscope measures
electric charge
by movement of thin metal leaves

es+	es-	charge	induct1	induct2	charge2

ELectron Theory of Matter

Modern View

Matter composed of Atoms with

positive \mathfrak{N} ucle us

Proton (p): positive (+) charge Neutron (n): electrically neutral
negative Ele ctron cloud

Ele ctron (e^{-}): negative (-) charge model: "orbit" nucleus
quantum mechanics: fill probability cloud

Electric forces
hold atoms in matter together molecules - liquids - solids
determine bulk properties and chemistry

Electron movement between atoms
determines electric conduction properties
conductors
semiconductors insulators

Conservation of Charge

Electric charge can not be created or destroyed.
The total charge in the universe is constant.

Force between Electric Charges
Coulomb's Law - inverse square law - like gravity

Electric Charge is Quantized - Milliken
charge on proton $=$-charge on electron, e
EXACT Ly!
$=1.6 \times 10^{-19} \mathrm{C}$
Quarks (3 quarks make a neutron or proton) have charges $\pm e / 3$ or $\pm 2 e / 3$

VOLIAGE - Electric Potential

work done (in Joules) to move 1 Coulomb
of charge between 2 points depends on other charges
Electric Potential = work/charge $V=\mathcal{W} / Q$
volt $=$ Joule/Coulomb
units: $\mathcal{V}=g / C$
usually used as $\mathcal{W}=Q \mathcal{V}$
In a typical TV picture tube each electron is accelerated by passing through an electric potential of $\sim 20 \mathrm{kV}$.

If the electron mass is $9.1 \times 10^{-31} \mathrm{~kg}$, how much KE does it gain? how fast is it going?
$\mathcal{W}=Q \mathcal{V}=\left(1.6 \times 10^{-19} \mathrm{C}\right)\left(20 \times 10^{3} \mathrm{~V}\right)=3.2 \times 10^{-15} \mathrm{~g}$

$v^{2}=0.703 \times 10^{16} \mathrm{~m}^{2} / \mathrm{s}^{2}$, so $v=8.4 \times 10^{7} \mathrm{~m} / \mathrm{s} \quad 28 \%$ of $c!$

CURRENI - moving Electric Charge

current = (quantity of charge moving past a point)/time

$$
I=Q / t \text { units: ampere }=\text { coulomb } / \text { second } \mathcal{A}=C / s \text { (amps) }
$$

charge on 1 electron, $-e=1.6 \times 10^{-19} \mathrm{C}$
so $1 C=(1 C)\left(1\right.$ electron $\left./ 1.6 \times 10^{-19} C\right)=6.2 \times 10^{18}$ electrons
A 60 watt lightbulb has a current of 0.5 A.
What quantity of charge flows through it in 1 hour?
$I=Q / t$, so $Q=I t=(0.5 \mathrm{~A})(1 \mathrm{hr})(3600 \mathrm{~s} / \mathrm{hr})=1800 \mathrm{C}$

Electrons move in solids (not protons)
flow opposite to current direction (thanks to B. Franklin)

Classification of Solids by Electrical Resistance
how easy electrons flow

INS ULATORS	no flow glass, plastic, rubber, diamond
SEMICONDUCTORS	small flow, depends on T Silicon, Germanium
CONDULTORS	easy flow metals, graphite
SUPERCONDUCIORS	no resistant at all! no friction Lead, Tin, Mercury T<8K

OHM'S $\mathcal{H} \mathcal{A W}$ - Resistance
Georg Simon Ohm (1787-1854)
How current flows in Conductors.

for a given conductor at fixed temperature:
$\frac{\text { SUPPLIED VOLTAGE }}{\text { MEASURED CURRENT }}=\frac{V}{I}=\mathcal{R}=$ RESISTANCE
units: Ohm $=$ Volt/ampere $\Omega=\mathrm{V} / \mathrm{A}$

A VCR draws 0.5 A from a 110 V wall socket. What is R ?
$\mathcal{R}=\mathcal{V} / I=\left(\begin{array}{ll}110 & \mathcal{V}\end{array}\right) /(0.5 \mathcal{A})=220 \boldsymbol{\Omega}$

Series Circuit:
if one R breaks, all current stops
$R_{\text {total }}=R_{1}+R_{2}+R_{3}+\ldots$

all R have
same current
voltages add

Paralle L Circuit:
if one R breaks, other current continues

$$
\frac{1}{R_{\text {total }}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\ldots
$$

remember: power = work/time $\mathcal{P}=\mathcal{W} / t$
electric: $\mathcal{W}=Q \mathcal{V}$
so electric power: $P=Q \mathcal{V} / t$
but $Q / t=I=$ current
giving: power $=$ current \times voltage $P=I \mathcal{V}$
units: watt $=$ ampere \times Volt
with Ofm's Law
$V=I R$ or $I=V / R$, so

$$
P=I^{2} \mathcal{R} \quad \text { or } \quad P=V^{2} / \mathcal{R}
$$

Energy used $=$ total work $=$ Power \times time
typical unit: kilowatt hour (k W- kr)

If FPL charges $\$ 0.10 / \mathrm{kW}-\mathrm{hr}$, how much does it cos \dagger to keep a 100 W light bulb on for a day?
energy $=P_{t}=(100 \mathrm{~W})(1 \mathrm{~kW} / 1000 \mathrm{~W}) \times(1 \mathrm{day})(24 \mathrm{kr} /$ day $)=2.4 \mathrm{~kW} \cdot \mathrm{kr}$
cost $=(2.4 \mathrm{KW} \cdot \mathrm{Kr})(\$ 0.10 / \mathrm{kW} \cdot \mathrm{Kr})=\$ 0.24$

A single Car headlight draws 6 amps from the 12 Volt battery.
a) What is its resistance?
b) How much power does it use?
c) Are car headlights connected in series or parallel? Sketch a circuit diagram.
d) How much power do 2 headlights use?
e) If 3 headlights are connected in series, how much current would flow? What is the power?

For a single headlight: $I=6 A, V=12 V$, so:
a) $R=V / I=(12 \mathrm{~V}) /(6 \mathrm{~A})=2.0 \Omega$
b) $P=I^{2} R=(6 A)^{2} \times(2.0 \Omega)=72 \mathrm{~W}$, or $P=V^{2} / R=(12 \mathrm{~V})^{2} /(2.0 \Omega)=72 \mathrm{~W}$ or $P=I V=(6 A)(12 \mathrm{~V})=72 \mathrm{~W}$
c) parallel, so if one burns out the other can still work
d) 2 headlights use twice the power of one, $P=144 \mathrm{~W}$
e) 3 in series, R^{\prime} s add, so $R_{\text {total }}=3 \times(2.0 \Omega)=6.0 \Omega$

$$
\begin{aligned}
& I_{\text {total }}=\mathrm{V} / R_{\text {total }}=(12 \mathrm{~V}) /(6.0 \Omega)=2.0 \mathrm{~A} \\
& P=I V=(2.0 \mathrm{~A})(12 \mathrm{~V})=24 \mathrm{~W}
\end{aligned}
$$

from moving electric charge - currents
spinning nucleus
nuclear magnetism - MRI
orbiting electrons
magnetic atoms - Iron, Nickel
domain atoms aligned together
permanent magnet - domains aligned

currents - coils of wire - electromagnets
force between current and magnetic field basis of motors and generators

