E&M Prof. Voss

Page 1

ELECTROSTATICS

electric charge at rest

Thales of Miletus (~600 BC)

rub amber attracts small particles elektron - Greek word for amber Ben Franklin 2 types of electric charge

Positive - Negative

Law of Electrical Charges

like charges repel unlike charges attract

Electroscope measures

electric charge by movement of thin metal leaves

Early but unsuccessful practical jokes

es+ es- charge induct1 induct2 charge2

ELectron Theory of Matter Modern View

Matter composed of Atoms with

positive Nucleus Proton (p): positive (+) charge Neutron (n): electrically neutral

negative Electron cloud

Electron (e⁻): negative (-) charge model: "orbit" nucleus

quantum mechanics: fill probability cloud

Las Chryleges

Electric forces hold atoms in matter together molecules - liquids - solids determine bulk properties and chemistry determines electric conduction properties

Conservation of Charge

Electric charge can not be created or destroyed. The total charge in the universe is constant.

Force between Electric Charges

Coulomb's Law - inverse square law - like gravity

Electric Charge is Quantized - Milliken

charge on proton = -charge on electron, e EXACTLY! = 1.6×10⁻¹⁹ C Quarks (3 quarks make a neutron or proton) have charges ±e/3 or ±2e/3

VOLTAGE - Electric Potential

work done (in Joules) to move 1 Coulomb
of charge between 2 points
depends on other charges
Electric Potential = work/charge V = W/Q
volt = Joule/Coulomb
units: V = J/C
usually used as W = QV

In a typical TV picture tube each electron is accelerated by passing through an electric potential of ~20 kV. E&M Prof. Voss

If the electron mass is 9.1×10⁻³¹ kg, how much KE does it gain? how fast is it going?

$$\begin{split} W &= QV = (1.6 \times 10^{-19} \text{ C})(20 \times 10^3 \text{ V}) = 3.2 \times 10^{-15} \text{ J} \\ KE &= \frac{1}{2} \text{mv}^2, \ v^2 &= 2 \text{KE/m} = 2(3.2 \times 10^{-15} \text{ J})/(9.1 \times 10^{-31} \text{ kg}) \\ v^2 &= 0.703 \times 10^{16} \text{m}^2/\text{s}^2, \quad \text{so} \ v = 8.4 \times 10^7 \text{ m/s} \quad 28\% \text{ of c!} \end{split}$$

<u>CURRENT</u> - moving Electric Charge

current = (quantity of charge moving past a point)/time

I = Q/t units: ampere = coulomb/second A = C/s (amps)

charge on 1 electron, $-e = 1.6 \times 10^{-19} C$ so $1 C = (1 C)(1 electron/1.6 \times 10^{-19} C) = 6.2 \times 10^{18} electrons$

A 60 watt lightbulb has a current of 0.5 A. What quantity of charge flows through it in 1 hour?

I = Q/t, so Q = It = (0.5 A)(1 hr)(3600 s/hr) = 1800 C

Electrons move in solids (not protons)

flow opposite to current direction (thanks to B. Franklin)

Classification of Solids by Electrical Resistance

how easy electrons flow

INSULATORS	no flow glass, plastic, rubber, diamond
SEMICONDUCTORS	small flow, depends on T Silicon, Germanium
CONDUCTORS	easy flow metals, graphite
SUPERCONDUCTORS	no resistant at all! no friction Lead, Tin, Mercury T < 8 K

<u>OHM'S LAW</u> - Resistance Georg Simon Ohm (1787-1854) How current flows in Conductors.

for a given conductor at fixed temperature:

 $\frac{\text{SUPPLIED VOLTAGE}}{\text{MEASURED CURRENT}} = \frac{V}{I} = R = \text{RESISTANCE}$ units: Ohm = Volt/ampere $\Omega = V/A$

A VCR draws 0.5 A from a 110 V wall socket. What is R?

 $R = V/I = (110 V)/(0.5 A) = 220 \Omega$

Series Circuit:

if one R breaks, all current stops $R_{total} = R_1 + R_2 + R_3 + ...$

Parallel Circuit:

if one R breaks, other current continues

$$\frac{1}{R_{total}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots$$


```
remember: power = work/time P = W/t
electric: W = QV
so electric power: P = QV/t
but Q/t = I = current
giving: power = current × voltage P = IV
units: watt = ampere×Volt
```

```
with Ohm's Law

V = IR or I = V/R, so

P = I^2R or P = V^2/R
```

```
Energy used = total work = Power × time
typical unit: kilowatt hour (kW-hr)
```

If FPL charges \$0.10/kW-hr, how much does it cost to keep a 100 W light bulb on for a day?

```
energy = Pt = (100 W)(1 kW/1000 W)×(1 day)(24 hr/day) = 2.4 kW-hr
cost = (2.4 kW-hr)($0.10/kW-hr) = $0.24
```

- A single Car headlight draws 6 amps from the 12 Volt battery.
- a) What is its resistance?
- b) How much power does it use?
- c) Are car headlights connected in series or parallel? Sketch a circuit diagram.
- d) How much power do 2 headlights use?
- e) If 3 headlights are connected in series, how much current would flow? What is the power?

```
For a single headlight: I = 6A, V = 12V, so:
a) R = V/I = (12 V)/(6 A) = 2.0 Ω
b) P = I<sup>2</sup>R = (6 A)<sup>2</sup>×(2.0 Ω) = 72 W, or P = V<sup>2</sup>/R = (12 V)<sup>2</sup>/(2.0 Ω) = 72 W or P = IV = (6 A)(12 V) = 72 W
c) parallel, so if one burns out the other can still work
d) 2 headlights use twice the power of one, P = 144 W
e) 3 in series, R's add, so R<sub>total</sub> = 3 × (2.0 Ω) = 6.0 Ω
```

```
I_{total} = V/R_{total} = (12 V)/(6.0 Ω) = 2.0 A
P = IV = (2.0 A)(12 V) = 24 W
```

Magnetism

E&M Prof. Voss

from moving electric charge - currents

spinning nucleus nuclear magnetism - MRI

orbiting electrons

magnetic atoms - Iron, Nickel domain atoms aligned together permanent magnet - domains aligned

currents - coils of wire - electromagnets force between current and magnetic field basis of motors and generators

