PSC2121 Exam IV Review

Chemical Formula and Equations $\mathrm{H}_{2} \mathrm{O}_{2}$
Molecular/Formula Mass (amu) - each element + total
\% Composition
Gram Atomic/Molecular/Formula Mass
mass in $\mathrm{gm} \Rightarrow$ mole $=$ Avogadro's Number $N_{A}=6.02 \times 10^{23}$
like dozen
$36 \mathrm{gm} \mathrm{H}_{2} \mathrm{O}$ has how many molecules? atoms

Chemical Equations Reactants \rightarrow Products
Conservation of Mass
same \# of atoms on each side balance equation

Reaction Rates $\quad \mathrm{A}+\mathrm{B} \rightarrow \mathrm{C} \quad \mathrm{K}_{\mathrm{f}}[\mathrm{A}][\mathrm{B}]$
to increase rate:
powder - increase surface area
increase Temperature
activation energy
more high E collisions
increase concentration
better chance of finding partner
catalyst
enzyme - organic molecules

Equilibrium Reactions $\quad \mathrm{A}+\mathrm{B} \Leftrightarrow \mathrm{C}+\mathrm{D}$
Dynamic Equilibrium
simultaneous forward and reverse reactions

$$
K=\frac{k_{f}}{k_{b}}=\frac{[C][D]}{[A][B]}
$$

Le Châtelier's Principle
$K=$ constant
when stress imposed on an equilibrium system,
equilibrium shifts to minimize effect of the stress

Solutions
solvent - solute polar molecules
dilute - concentrated
Colloid
small particles, collections of molecules
remain suspended
Suspension
larger particles
eventually settle out
various combinations of solid, liquid, gas
identify:
pure air, salt water, brass,
paint, blood, milk, ink,
dental amalgam, soda water
$\mathfrak{A C I D S}$ - excess H^{+}
$\mathcal{B A S}$ ES - excess OH^{-}
$p \mathcal{H}$
$\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=10^{-14}$ mole $^{2} / \mathrm{liter}^{2}$
Base $p \mathscr{H}>7 \quad\left[\mathrm{H}^{+}\right]<\left[\mathrm{OH}^{-}\right]$
Neutral $p \mathcal{H}=7 \quad\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]=10^{-7} \mathrm{M}$
Acid $p \mathscr{H}<7 \quad\left[\mathrm{H}^{+}\right]>\left[\mathrm{OH}^{-}\right]$

EARIH R ~ 6400 km
Crust O 47\% Si 28\% density $2.8 \mathrm{gm} / \mathrm{cc}$
Mantle
Outer Core liquid iron $+\mathbf{N i}$
Inner Core solid iron $+\mathrm{Ni} \sim 13 \mathrm{gm} / \mathrm{cc}$
Vibrations - Earthquakes - Seis mograpt
Body Waves: q longitudinal - fast s transverse - slow (not in liquid)
Surface Waves: \llcorner sideways
Relliptic
RO СК mixture of minerals
Igne ous from molten magma
sedimentary deposits, contains fossils
me tamorpfic heat + pressure inside Earth
Volcanos - magma - Cava
Plate Tectonics modern theory explains
Continental Drift 250 MYA Pangea Panthalassa
Laurasia in north Gondwana in south
Seafloor Spreading - Mid-Atlantic ridge
plate boundaries
divergent Mid-Atlantic ridge
convergent Himalayan mountains
transcurrent/transform San Andreas fault
Age of Earth 4.6 billion years
pre-Cambrian Eon from 3800 to 570 Million Years Ago
ended when 1st visible fossils found
OCEAX $\mathbf{7 1 \%}$ of Earth's surface 1350 million km^{3}
Pac if ic largest, $1 / 3$ of Earth's surface
Atlantic growing, most coastline
average depth 4 km , deepest 11.5 km in trenches
temperature $1-3^{\circ} \mathrm{C}$ worldwide below 2 km
seawater 3.5% salt NaCl
ions $\quad \mathrm{Cl}^{-} 55 \% \quad \mathrm{Na}^{+}$(31\%)
Tides - Moon's gravity elongates Earth and oceans
2 high and 2 low tides each day
biggest Moon-Earth-Sun in line Spring \mathcal{T} ide
lowest Moon-Earth-Sun right angle Neap Tide
$\mathcal{A T M O} \mathcal{S} \mathcal{P H E R E}$
Exospfere
500 km
Thermospfere
80 km
Me sosphere
50 km Ionosphere upward, ions reflect radio
Stratosphere - ozone layer
10 km
Troposphere $-\mathrm{N}_{\mathbf{2}} \mathbf{7 8 \%} \mathrm{O}_{\mathbf{2}} \mathbf{2 1 \%} \mathrm{Ar} \mathbf{1 \%}$
Greentiouse Effect regulates surface temperature
CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ transparent to visible radiation
block IR, trap heat
Ozone Layer 30 km, blocks harmful UV radiation
CFC's ChloroFluoroCarbons
with $\mathrm{UV} \Rightarrow$ free Cl

$$
\mathrm{Cl}+\mathrm{O}_{3} \rightarrow \mathrm{ClO}+\mathrm{O}_{2} \text { transparent to UV }
$$

Wind from high to low pressure
warm air expands \Rightarrow low pressure
cool air contracts \Rightarrow high pressure
near shore: heat capacity of water $4 \times$ land
Day: land warmer, wind onshore, from sea, sea breeze
Night: land cooler, wind offshore, toward sea, land breeze

