PSC2121 Exam III Review

Electricity and Magnetism

Electric Charge - unit: coulomb, positive or negative Charge is conserved. Like charges repel, unlike attract. Inverse square law (like gravity) $F = K q_1 q_2 / r^2$ $K = 9 \times 10^9 Nm^2 / C^2$ $q_{proton} = -q_{electron} = 1.6 \times 10^{-19} C$ Electroscope measures static charge. Electric current I = q/t ampere = coulomb/sec Electrons move in solids - flow is opposite to direction of current. insulators glass, plastic, rubber, diamond semiconductors silicon, germanium conductors metals, graphite superconductors lead, tin, mercury (when T < 4 K) no resistance Electric potential V = W/q volt = joule/coulomb W = qVResistance R = V/I ohm = volt/amp $\Omega = V/A$ Power P = V I = V^2/R = I^2R watt = volt-amp Energy W = Pt kilowatt-hour Magnetism caused by moving electric charge

applies force to moving charge

Quantum Theory

X-rays electromagnetic radiation $\lambda \sim 1 \text{ Å} = 0.1 \text{ nm} = 10^{-10} \text{ m}$ γ -rays electromagnetic radiation $\lambda \sim 10^{-4}$ Å = 10^{-5} nm α -particles heavy, positive charge, He nucleus 2p + 2n β -particles light, negative charge, electrons = cathode rays which ones are deflected by electric or magnetic fields? energy of quantum: $E = hf = hc/\lambda$ h = Planck's constant = 6.6×10⁻³⁴ joule-sec Photoelectric Effect - explained by Einstein dim Blue light (high f) \Rightarrow ejects electrons from metal bright Red light (low f) \Rightarrow no electron emission Duality - sometimes wave-like sometimes particle-like Matter waves: De Broglie wavelength $\lambda = h/mv$

Periodic Table element - elementary substance atom - smallest unit nucleus

protons, p + charge neutrons, n neutral mass 1.67×10⁻²⁷ kg p and n = nucleons mass 9.1×10⁻³¹ ka electron cloud atomic number Z A = mass number gives isotope = # of protons 20 = # of electrons Symbol mass number A Z = atomic number = # of nucleons (redundant) = p + n isotope - same element (Z), different mass (A) atomic mass - amu - based on abundance of isotopes standard: carbon-12 = 12.00000 Periodic Table row **Period** - increasing atomic number column Group - related chemical properties outer (valence) electrons Quantum (wave) mechanics explains Periodic Table Schrödinger Equation - wave properties of particles Heisenberg Uncertainty Principle can not know both position AND momentum exactly Pauli Exclusion Principle - only ONE electron in each state 4 quantum numbers - specify electron state in atom $n - level \Rightarrow period$ 1 - orbital \Rightarrow group m - magnetic - suborbital s - spin ±

Chemical Bonding

Group VIII - Noble gasses inert - no bonding attempt to complete shell, achieve inert gas configuration Lewis diagram - try for 8 dots (2 for Group I)

	ionic	polar covalent	non-polar covalent	metallic
electron	transfer	unequal share	equal share	share all
electrical	insulators			conductors
electronegativity difference	> 1.7	0-1.7	0	