PSC2121 Exam III Review

Electricity and Magne tism

Electric Charge - unit: coulomb, positive or negative
Charge is conserved.
Like charges repel, unlike attract.
Inverse square law (like gravity)

$$
\begin{aligned}
& \mathcal{F}=\mathcal{K} q_{1} q_{2} / r^{2} \quad \mathrm{~K}=9 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2} \\
& q_{\text {proton }}=-q_{\text {electron }}=1.6 \times 10^{-19} \mathrm{C}
\end{aligned}
$$

Electroscope measures static charge.
Electric current $I=q / t$ ampere $=$ coulomb $/ \mathrm{sec}$
Electrons move in solids - flow is opposite to direction of current.
insulators glass, plastic, rubber, diamond
semiconductors silicon, germanium
conductors metals, graphite
superconductors lead, tin, mercury (when $T<4 \mathrm{~K}$) no resistance
Electric potential $\mathcal{V}=\mathcal{W} / q$ volt $=$ joule/coulomb $\mathcal{W}=q \mathcal{V}$
Resistance $R=\mathcal{V} / I$ ohm = volt/amp $\Omega=\mathrm{V} / \mathrm{A}$
Power $P=V I=V^{2} / \mathcal{R}=I^{2} R$ watt = volt-amp
Energy $\mathcal{W}={ }_{P} t$ kilowatt-hour
Magnetism caused by moving electric charge applies force to moving charge

Quantum Theory

x-rays electromagnetic radiation $\lambda \sim 1 \AA=0.1 \mathrm{~nm}=10^{-10} \mathrm{~m}$
γ-rays electromagnetic radiation $\lambda \sim 10^{-4} \AA=10^{-5} \mathrm{~nm}$
α-particles heavy, positive charge, He nucleus $2 p+2 n$
β-particles light, negative charge, electrons $=$ cathode rays which ones are deflected by electric or magnetic fields?
energy of quantum: $\mathcal{E}=\kappa f=\kappa c / \lambda$
$h=$ Planck's constant $=6.6 \times 10^{-34}$ joule-sec
Photoelectric Effect - explained by Einstein dim Blue light (high f) \Rightarrow ejects electrons from metal bright Red light (low f) \Rightarrow no electron emission
Duality - sometimes wave-like sometimes particle-like
Matter waves: De Broglie wavelength $\lambda=\pi / m v$

[^0]nucleus
protons, $\mathbf{p}+$ charge
ne utrons, n neutral
p and $\mathrm{n}=$ nucleons \quad mass $1.67 \times 10^{-27} \mathrm{~kg}$
electron cloud mass $9.1 \times 10^{-31} \mathrm{~kg}$
\[

$$
\begin{aligned}
& \text { atomic number Z } \\
& =\text { \# of protons } \\
& =\text { \# of electrons } \\
& \text { mass number } A \\
& =\# \text { of nucleons } \\
& =p+n
\end{aligned}
$$
\]

=in
isotope - same element (Z), different mass (A)
atomic thass - amu - based on abundance of isotopes
standard: carbon-12 $=12.00000$
Periodic Table
row Pe riod - increasing atomic number
column Group - related chemical properties outer (valence) electrons
Quantum (wave) mechanics explains Periodic Table
Sckrödinger Equation - wave properties of particles
\mathscr{H} e is enterg Uncertainty Principle -
can not know both position AND momentum exactly
Paufi Exclusion Principle - only ONE electron in each state
${ }_{4}$ quantum numbers - specify electron state in atom
n - level \Rightarrow period
1- orbital \Rightarrow group
m - magnetic - suborbital
$s-\operatorname{spin} \pm$

Chemical Bonding

Group VIII - Noble gasses inert - no bonding attempt to complete shell, achieve inert gas configuration Le wis diagram - try for 8 dots (2 for Group I)

	ionic	polar covalent	non-polar covalent	metalfic
electron	transfer	unequal share	equal share	share all
electrical	insulators			conductors
electronegativity difference	> 1.7	0-1.7	0	

[^0]: Periodic Table
 ele trent - elementary substance
 atom - smallest unit

