PS C2121 Exam I I Review

$\mathcal{H E A T}$ random Kinetic energy

ENTROPY measure of disorder
TEMPERATURE SCALES - conversion

$$
{ }^{\circ} \mathrm{C}=\left({ }^{\circ} \mathcal{F}-32\right) \times(5 / 9) \quad{ }^{\circ} \mathcal{F}={ }^{\circ} \mathrm{C} \times(9 / 5)+32
$$

A6solute temperature $\mathcal{K}={ }^{\circ} \mathrm{C}+273$
$\mathcal{K I} \mathcal{N E T I C} \mathcal{T H E O R \mathcal { R }}$ matter $=$ moving particles

$$
\mathcal{X E}=1 / 2 m v^{2}=3 \times 1 / 2 \mathcal{K T}
$$

$$
\mathcal{K}=\text { Boltzman's constant }=1.38 \times 10^{-23} \mathrm{~g} / \mathcal{K}
$$

SPECIFIC $\mathcal{H E A T}$ add heat, \mathcal{T} increases

$$
\mathcal{H}=m c\left(\mathcal{T}_{2} \cdot \mathcal{T}_{1}\right)=m c \Delta \mathcal{T}
$$

$S \mathcal{T A T E S}$ of $\mathfrak{M A T I E R}$ solid, liquid, gas
$\subset \mathcal{H} \mathcal{N} G \mathcal{E}$ of $\mathcal{S T A T E}$
solid \Leftrightarrow liquid $\quad \mathcal{H}=m L_{f}$
liquid \Leftrightarrow gas $\quad \mathcal{H}=m L_{v}$
$\mathcal{T H E R M A L} \operatorname{EXPANS}$ ION allgases: $\mathcal{V} / \mathcal{V}^{\prime}=\mathcal{T} / \mathcal{T}^{\prime}$
solids de pend on material: $\Delta \mathcal{L}=\alpha L\left(\mathcal{T}_{2}-\mathcal{T}_{1}\right)=\alpha L \Delta \mathcal{T}$
$\mathcal{T H E R N A L} \operatorname{CONDULTION}$

ENERGY CONVERS ION
1st Law of Thermodynamics - in a closed system total \mathcal{E} including feat is constant
all otfier forms may be completely converted to feat
$1 \mathrm{cal}=4.186 \mathrm{~g}$
2nd Law of Thermodynamics - in a closed system entropy (randomness) of total system increases Geat engine efficiency $=\left(\mathcal{T}_{\mathscr{H}}-\mathcal{T}_{C}\right) / \mathcal{T}_{\mathcal{H}}$
$\mathcal{W} \mathcal{A}$ E disturbance carries energy through medium WAVE MOTION PULS \mathcal{E} or PERIODIC
period \mathcal{T} frequency $f \quad \mathcal{T}=1 / f$
WُVELENGTH λ
$\mathcal{W A V E} \mathcal{E Q U A T I O N} \quad v=\lambda / \mathcal{T}=\lambda f$

$$
v_{\text {light }}=c \approx 3 \times 10^{8} \mathrm{~m} / \mathrm{s} \quad v_{\text {sound }} \approx 340 \mathrm{~m} / \mathrm{s}
$$

AMPLIT UDE
TVPES TRANS VERS EONGITUDINAL
$\mathcal{D O P P L E R} \mathcal{E F F E C T}$ change in f and λ with moving source
$S \mathcal{A} \mathcal{N D I N G} \mathcal{W} \mathcal{A} \mathcal{E}$ E Goundary conditions
node $=$ no motion antinode $=$ maximum motion
$\mathcal{F U N} \mathcal{D A M E X} \mathcal{N} \mathcal{A L} \mathcal{F} \mathcal{R E} Q$ UEN(CY

Exam II review Prof. Voss
$S P E E D O \mathcal{F} L I G \mathcal{H T}$ constant in vacuum
same for all electromagne tic radiation
in matter $v<c \quad$ index of refraction $n=c / v>1$
REFLECTION angle of incidence =angle of reflection
REFRACTION Gends at interface, depends on n
DIFFRACIION spreads around corners
DIS PERSION prism, different f, λ different v
$\operatorname{CONVERGING}$ LENS
DIVERGING LENS
ELECTROMAGNETIC SPECTRUM
radio, microwave, $I \mathbb{R}$ visible, $\mathcal{U V}, X$-ray, gamma ray $\operatorname{COLOR} \Rightarrow f, \lambda$ Red-Green-Blue Yellow-Magenta-Cyan

