PSC2121 Exam I Review

UNITS and conversion

MASS kg (g) LENGTH m (in, ft, km) TIME s (hr, yr SPEED (VELOCITY) m / s ACCELERATION $\mathrm{m} / \mathrm{s}^{2}$ FORCE (WEIGHT) $N\left(\mathrm{~kg} \mathrm{~m} / \mathrm{s}^{2}\right)$ MOMENTUM $\mathrm{kg} \mathrm{m} / \mathrm{s}$ IMPULSE $N S=\mathrm{kg} \mathrm{m} / \mathrm{s}^{2} \quad$ WORK (ENERGY) $\mathrm{J}=\mathrm{N}$ POWER W (watt) $=\mathrm{J} / \mathrm{s}=\mathrm{Nm} / \mathrm{s}^{2}$

Concepts and Laws

SCALAR vs VECTOR quantities
Ptolemy's System: Earth at center, Circular Orbits Copernican System: Sun at center, Circular Orbits Acceleration due to Gravity: $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$
Inverse Square Law of Gravitation: $F=G m_{1} m_{2} / R^{2}$ Kepler's Laws of Planetary Motion:

1) Ellipse 2) Equal areas in equal times 3) $T^{2}=R^{3}$ Newton's Laws of Motion:
2) Inertia 2) $F=m a 3$) action-reaction

Conservation of Momentum: $m_{1} v_{1}+m_{2} v_{2}$ unchanged
Impulse: change in momentum $=F \dagger$
Work: Force \times Distance
Power: rate of doing Work

Kinetic Energy: energy of motion
Potential Energy: available or stored energy
Conservation of Energy: KE + PE unchanged
EQUATIONS

$$
\begin{array}{lll}
v_{a v}=s / t & v_{a v}=\left(v_{i}+v\right) / 2 & a=\left(v-v_{i}\right) / t \\
v=v_{i}+a t & s=v_{i} t+a t^{2} / 2 & p=m v \\
T^{2}=R^{3} & F=m a \quad F=G m_{1} m_{2} / R^{2} \\
W=F s & P=W / t \\
K E=m v^{2} / 2 & P E=m g h
\end{array}
$$

