Fall 2001: PSC2121 Homework Assignments Solutions due Oct 9, Ch. 9 and 10

Ch. 9:
7. The velocity of sound depends on the temperature T in ${ }^{\circ} \mathrm{C}$:

Using equation (9-5): $\mathrm{v}_{\mathrm{T}}=\mathrm{v}_{\mathrm{o}}+2.00 \mathrm{~T}$ where $\mathrm{v}_{\mathrm{o}}=1087 \mathrm{ft} / \mathrm{s}, \mathrm{T}=30^{\circ} \mathrm{C}$

$$
\mathrm{v}_{\mathrm{T}}=1087 \mathrm{ft} / \mathrm{s}+2.00 * 30 \mathrm{ft} / \mathrm{s}=1147 \mathrm{ft} / \mathrm{s}
$$

Once we know the velocity, $\mathrm{s}=\mathrm{vt}=(1147 \mathrm{ft} / \mathrm{s})(6.0 \mathrm{~s})=\mathbf{6 8 8 2} \mathbf{~ f t}$
Using the equation in the notes (same as $9-4$): $\mathrm{v}_{\mathrm{T}}=331 \mathrm{~m} / \mathrm{s}+0.6 * \mathrm{~T}$
gives $\mathrm{v}_{\mathrm{T}}=349 \mathrm{~m} / \mathrm{s}$, so $\mathrm{s}=\mathrm{vt}=(349 \mathrm{~m} / \mathrm{s})(6.0 \mathrm{~s})=2094 \mathrm{~m}$
and we need to convert m to $\mathrm{ft}:(2094 \mathrm{~m})(100 \mathrm{~cm} / \mathrm{m})(1 \mathrm{in} / 2.54 \mathrm{~cm})(1 \mathrm{ft} / 12 \mathrm{in})=6870 \mathrm{ft}$
Often the problem is easier if you read the book.
9. Again we need the velocity of sound in ft / s at $20.0^{\circ} \mathrm{C}$.

Using equation (9-5): $\mathrm{v}_{\mathrm{T}}=\mathrm{v}_{\mathrm{o}}+2.00 \mathrm{~T}=1087 \mathrm{ft} / \mathrm{s}+2.00 * \mathrm{~T} f / \mathrm{s}=1127 \mathrm{ft} / \mathrm{s}$.
We then use the wave equation: $v=\lambda f$ or $\lambda=v / f$ to find λ.
(a) λ at $16 \mathrm{~Hz}=(1127 \mathrm{ft} / \mathrm{s}) /(16 \mathrm{~Hz})=\mathbf{7 0 . 4 4} \mathbf{f t}$ (the 74 in the book is wrong!)
λ at $20,000 \mathrm{~Hz}=(1127 \mathrm{ft} / \mathrm{s}) /(20,000 \mathrm{~Hz})=\mathbf{0 . 0 5 6} \mathbf{~ f t}$
(b) For water at $20^{\circ} \mathrm{C}$ we use table $9-2: \mathrm{v}=4794 \mathrm{ft} / \mathrm{s}$
λ at $16 \mathrm{~Hz}=(4974 \mathrm{ft} / \mathrm{s}) /(16 \mathrm{~Hz})=\mathbf{3 0 0} \mathbf{~ f t}$
λ at $20,000 \mathrm{~Hz}=(4974 \mathrm{ft} / \mathrm{s}) /(20,000 \mathrm{~Hz})=\mathbf{0 . 2 4} \mathbf{~ f t}$
11. The question is asking for the number of waves in 1 second.

This is the frequency. From the wave equation $v=\lambda f$, so
$f=v / \lambda=(16.3 \mathrm{~m} / \mathrm{s}) /(100 \mathrm{~m})=0.163 \mathrm{~Hz}=\mathbf{0 . 1 6 3}$ waves $/ \mathbf{s}$
13. Back to the wave equation: $v=\lambda f$, using light $v=c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
(a) $\mathrm{f}=\mathrm{c} / \mathrm{\lambda}=\left(3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)(100 \mathrm{~cm} / \mathrm{m}) /\left(6.06 \times 10^{-5}\right)=\mathbf{4 . 9 5} \times \mathbf{1 0}^{\mathbf{1 4}} \mathbf{~ H z}$
(b) period, $\mathrm{T}=1 / \mathrm{f}=1 /\left(4.95 \times 10^{14}\right)=\mathbf{2 . 0 2} \times \mathbf{1 0}^{-\mathbf{- 1 5}} \mathbf{~}$
14. Again: $v=\lambda f$, using light $v=c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
$\lambda=\mathrm{c} / \mathrm{f}=\left(3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right) /\left(10^{6} \mathrm{~Hz}\right)=\mathbf{3 0 0} \mathbf{~ m}$
23. For an open pipe (see Figure 9-40):
$\mathrm{L}=\lambda / 2$, so fundamental wavelength $\lambda=2 \mathrm{~L}=2(0.5 \mathrm{~m})=1.0 \mathrm{~m}$ we get fundamental frequency from λ and wave equation $v=\lambda f$

$$
\mathrm{f}=\mathrm{v} / \lambda=(340 \mathrm{~m} / \mathrm{s}) /(1 \mathrm{~m})=\mathbf{3 4 0} \mathbf{~ H z}
$$

For a closed pipe (see Figure 9-39):
$\mathrm{L}=\lambda / 4$, so fundamental wavelength $\lambda=4 \mathrm{~L}=4(0.5 \mathrm{~m})=2.0 \mathrm{~m}$ $\mathrm{f}=\mathrm{v} / \lambda=(340 \mathrm{~m} / \mathrm{s}) /(2 \mathrm{~m})=\mathbf{1 7 0} \mathbf{~ H z}$
30. For the first 3 standing wave modes in a string see Figure 9-37:
$\mathrm{L}=\lambda_{0} / 2$, so $\lambda_{0}=2 \mathrm{~L}=2(2 \mathrm{~m})=\mathbf{4} \mathbf{m}$
$\mathrm{L}=\lambda_{1}$, so $\lambda_{1}=\mathrm{L}=\mathbf{2} \mathbf{m}$
$\mathrm{L}=3 \lambda_{2} / 2$, so $\lambda_{2}=2 \mathrm{~L} / 3=\mathbf{1 . 3 3} \mathbf{~ m}$
40. A. (c) B. (b) C. (a) D. (d) E. (a) F. (b) G. (b) H. (c) I. (b)

Ch. 10:
2. (a) $\mathrm{s}=\mathrm{ct}=(299,792 \mathrm{~km} / \mathrm{s})(1 \mathrm{yr})(365$ day $/ \mathrm{yr})(24 \mathrm{hr} /$ day $)(60 \mathrm{~min} / \mathrm{hr})(60 \mathrm{~s} / \mathrm{min})=\mathbf{9 . 4 5} \times \mathbf{1 0}^{\mathbf{1 2}} \mathbf{~ k m}$ (b) $\mathrm{s}=\left(9.45 \times 10^{12} \mathrm{~km}\right)(1 \mathrm{mi} / 1.6 \mathrm{~km})=\mathbf{5 . 9 0} \times 10^{\mathbf{1 2}}$ miles
3. (a) $\mathrm{s}=(40 \mathrm{ly})\left(9.45 \times 10^{12} \mathrm{~km} / \mathrm{ly}\right)=\mathbf{3 . 7 8} \times \mathbf{1 0}^{\mathbf{1 4}} \mathbf{~ k m}$
(b) $\mathrm{s}=(40 \mathrm{ly})\left(5.90 \times 10^{12} \mathrm{mi} / \mathrm{ly}\right)=\mathbf{2 . 3 6} \times \mathbf{1 0}^{\mathbf{1 4}} \mathbf{~ m i}$
4. For a reflection the pulse travels twice the distance 2 s .

$$
\mathrm{c}=(2 \mathrm{~s}) / \mathrm{t}, \text { so } \mathrm{s}=\mathrm{ct} / 2=\left(3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)\left(93.0 \times 10^{-6}\right) / 2=13950 \mathrm{~m}=\mathbf{1 3 . 9 5} \mathbf{~ k m}
$$

5. Wave equation $\mathrm{v}=\mathrm{c}=\lambda \mathrm{f}$, with $\lambda=(5890 \AA)\left(1 \AA / 10^{-10} \mathrm{~m}\right)=5.89 \times 10^{-7} \mathrm{~m}$

$$
\mathrm{f}=\mathrm{c} / \lambda=\left(3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right) /\left(5.89 \times 10^{-7} \mathrm{~m}\right)=\mathbf{5 . 0 9} \times \mathbf{1 0}^{\mathbf{1 4}} \mathbf{H z}
$$

7. $\mathrm{t}=\mathrm{s} / \mathrm{c}=\left(5 \times 10^{3} \mathrm{~km}\right)\left(10^{3} \mathrm{~m} / \mathrm{km}\right) /\left(3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)=\mathbf{1 . 6 7} \times \mathbf{1 0}^{-\mathbf{2}} \mathbf{s}$
8. Violet. See Figure 10-49.
9. X-rays have the shorter wavelength and the higher frequency. See Figure 10-19.
10. $\mathrm{n}=\mathrm{c} / \mathrm{v}=\left(3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right) /\left(1.5 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)=\mathbf{2 . 0}$
11. Wave equation $v=c=\lambda f$, so $\lambda=c / f$

$$
\begin{aligned}
& \text { for } \mathrm{f}=900 \mathrm{Mhz}=(900 \mathrm{Mhz})\left(10^{6} \mathrm{~Hz} / \mathrm{Mhz}\right)=9 \times 10^{8} \mathrm{~Hz} \\
& \lambda=\mathrm{c} / \mathrm{f}=\left(3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right) /\left(9.0 \times 10^{8} \mathrm{~Hz}\right)=\mathbf{0 . 3 3 3} \mathbf{~ m} \\
& \text { for } \mathrm{f}=2560 \mathrm{Mhz}=(2560 \mathrm{Mhz})\left(10^{6} \mathrm{~Hz} / \mathrm{Mhz}\right)=2.56 \times 10^{9} \mathrm{~Hz} \\
& \lambda=\mathrm{c} / \mathrm{f}=\left(3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right) /\left(2.56 \times 10^{9} \mathrm{~Hz}\right)=\mathbf{0 . 1 1 7} \mathbf{~ m}
\end{aligned}
$$

23. See Figure 10-47.
(a) the complement of blue is yellow
(b) the complement of yellow is blue
(c) the complement of magenta is green
24. The index of refraction $n=c / v$. Since the velocity of light in matter $\mathrm{v}<\mathrm{c}, \mathrm{n}>1$.
25. See Figure 9-23. When light passes from low n (air) to high n (water) it is bent toward the normal. From water to air it is bent away from normal. Use Table 10-1 for index of refraction values:
(a) lower n (air $\mathrm{n}=1.00$) to higher n (glass $\mathrm{n}=1.52$), toward normal
(b) lower n (water $\mathrm{n}=1.33$) to higher n (glass $\mathrm{n}=1.52$), toward normal
26. A. (c)
B. (a)
C. (b)
D. (c)
E. (d) F. (b)
G. (b)
H. (c)
I. (b) J. (c)
