Fall 2001: PSC2121 Homework Assignments
 Solutions due Nov 1, Ch. 13 and 14

Ch. 13:

1. (a) lead. (b) tin. (c) mercury. (d) silver. (e) silicon.
2. (a) K
(b) Na
(c) P
(d) Al
(e) F
3.

(a) ${ }^{19} \mathrm{~F}$	9 electrons	9 protons	10 neutrons
(b) ${ }^{32} \mathrm{~S}$	16 electrons	16 protons	16 neutrons
(c) ${ }^{75} \mathrm{As}$	33 electrons	33 protons	42 neutrons
(d) ${ }^{88} \mathrm{Sr}$	38 electrons	38 protons	50 neutrons
(e) ${ }^{201} \mathrm{Hg}$	80 electrons	80 protons	121 neutrons

10. (a) N has 7 protons, so mass 13 gives $13-7=\mathbf{6}$ neutrons.
(b) K has 19 protons, so mass 41 gives $41-19=\mathbf{2 2}$ neutrons.
(c) Pb has 82 protons, so mass 207 gives 207-82 $=\mathbf{1 2 5}$ neutrons.
11. (a) 4 electrons $=$ berylium.
(b) $\mathrm{Ne}+1$ electron $=$ sodium.
(c) $\mathrm{Ar}+9$ electrons $=$ cobalt.
(d) 35 electrons $=$ bromine.
(e) $\mathrm{Kr}+14$ electrons $=$ tin.
12. Atoms in the third period contain consecutive electons filling the $n=3$ levels (s then p).
13. Members of the nitrogen family (column V) all have [$]^{2} \mathrm{p}^{3}$ configuration of outer electrons corresponding to a Lewis dot diagram with 5 dots.
14. A. (c)
B. (c)
C. (a)
D. (d)
E. (d) F. (b)
G. (c)
H. (b) I. (b) J. (c)

Ch. 14:

1. Helium He, Neon Ne, Argon Ar, Krypton Kr, Xenon Xe, Radon Rn
2. The number of dots is given by the column in the period table:

3. Try to "share" dots to get 2 (for Na) or 8 around each element. In some cases, double or triple bonds are needed. BF_{3} has 2 possibilities.

4. (a) $\mathrm{S}=$ group VI, 6 electrons.
(b) $\mathrm{C}=$ group IV, 4 electrons.
(c) $\mathrm{Mg}=$ group II, 2 electrons.
(d) $\mathrm{Ne}=$ group VIII, 8 electrons.
(e) $\mathrm{B}=$ group III, 3 electrons.
5. (a) F forms a single covalent bond. (b) O forms 2. (c) N forms 3. (d) C forms 4.
6. Use electronegativity values for prediction:
$\mathrm{Br}=2.8, \mathrm{~F}=4.0, \mathrm{Li}=1.0, \mathrm{Na}=1.0, \mathrm{~K}=0.9, \mathrm{~S}=2.5, \mathrm{~N}=3.0, \mathrm{Ne}=$ inert
(a) Br and F , difference $=1.2$, polar covalent.
(b) Li and Na , difference $=0.0$, predicts non-polar covalent, but these are metals so expect metallic bond.
(c) K and S , difference $=0.6$, polar covalent.
(d) N and Ne, Ne is inert so expect no bond.
7. Cu forms metallic bonds in which the outer electrons are shared between all atoms and the electrons can flow easily.
8. A. (d) B. (c) C. (a) D. (c) E. (c) F. (d) G. (c) H. (a) I. (a) J. (b)
