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Abstract

Ancient Maya settlement patterns exhibit fractal geometry both within communities and across regions. Fractals are self-similar
sets of fractional dimension. In this paper, we show how Maya settlement patterns are logically and statistically self-similar. We
demonstrate how to measure the fractal dimensions (or Hausdorff-Besicovitch dimensions) of several data sets. We describe
nonlinear dynamical processes, such as chaotic and self-organized critical systems, that generate fractal patterns. As an illustration,
we show that the fractal dimensions calculated for some Maya settlement patterns are similar to those produced by warfare,
supporting recent claims that warfare is a significant factor in Maya settlement patterning.
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1. Introduction

Human settlement patterns are typically highly com-
plex and exhibit variation at many scales. Archaeolo-
gists have had only limited success describing, modeling,
and predicting ancient settlement patterns. Part of the
weakness in the archaeological approach to settlement
stems from a failure to appreciate and apply models of
settlement from modern geography. Modern geogra-
phers have found nonlinear science to be a fertile source
of spatial models of settlement. This article focuses on
the fractal analysis of Maya settlement, which will serve
as an example of nonlinear description and analysis of
ancient settlement.

The ancient Maya lived in the Mexican states of
Campeche, Quintana Roo, Yucatan, and the eastern parts
of Chiapas and Tabasco; all of Guatemala and Belize; and
the western parts of Honduras and El Salvador (Fig. 1).
From obscure origins in the early first millennium B.C.E.,
the Maya developed a powerful and refined civilization
that persisted in its aboriginal form until the Spanish
Conquest. Maya settlement is distinctive, although it
exhibits both regional and temporal variation.
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Ancient Maya settlement is fractal in various ways. It
is fractal at both the intra-site and the regional levels.
Within archaeological sites, settlement is fractal because
the buildings form a pattern of repeated, complex,
nested clusters of clusters. The spatial organization of
the buildings is logically and geometrically self-similar
and mathematically of fractional dimension. One can
infer that the self-similarity of the pattern is structurally
related to the kinship and social systems that generated
it. At the regional level, settlement is fractal in several
ways: (1) the size—frequency distribution of settlements is
fractal; (2) the rank-size relation among sites is fractal;
and (3) the geographical clustering of sites is fractal. The
regional fractality of settlement may be attributable to
warfare or to the economic and political factors that
drive the development of central place hierarchies and
lattices. To understand what these facts mean and what
they imply for our vision of prehistoric Maya society,
one must understand what fractals are and how they
form.

2. Fractals

Fractals are self-similar sets of fractional dimension.
A pattern is self-similar if it is composed of smaller-scale
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Fig. 1. Map of the Maya area showing location of major archaeologic:
generally on [46, p. 21].)

copies of itself. Here, the term “similar” carries the
mathematical denotation of objects that have the same
shape but differ in size. One should envision an infinite
regression of smaller and smaller images that constitute
a whole that is similar to its parts. Think of a fern: it is
composed of branches that look like little ferns; those
branches in turn are made of smaller but structurally
identical elements. Because of self-similarity, fractals are
also “scale invariant.” Scale invariance means that frac-
tals appear (mathematically, if not visually) to be the

al sites and cultural subregions. Drawn by Lynn A. Berg. (Subregions based

same at all scales of observation. Why does one have to
include a scale in a photograph of a rock? Rocks appear
the same at all scales of observation. Looking at a
photograph, the observer cannot know what the scale
really is unless there is an object of known size in the
picture. This phenomenon occurs, of course, because
rocks are natural fractals.

The second part of our definition says that fractals
must have “fractional dimension,” by which we mean
that when it is measured the fractal dimension should be
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a fraction, not an integer. For a thing to be fractal,
therefore, it is not enough for it to be self-similar. The
self-similar elements must also be related in scale by a
non-integral power-law. The fractal dimension of the
pattern measures the power-law. The familiar concept of
Euclidean dimension only includes integers: 0 for a
point, 1 for a line, 2 for a plane, and so forth. Modern
mathematicians have developed a number of other ways
of measuring dimensions that are fractional, and there-
fore, strictly speaking, non-Euclidean. These methods
include the correlation dimension, the information
dimension, the capacity dimension, and others, all of
which are mathematically related. Here we will refer to
the “fractal” or “Hausdorff—Besicovitch” dimension.

The fundamental parameter of a fractal set is its
fractal dimension. The dimension is described by the
following relation:

a=5 (1

where « is the number of self-similar “pieces”, s is the
linear scaling factor of the pieces to the whole, and D is
the dimension to be calculated. D can be calculated as:

loga
D=—| — 2)
(logs >

For fractals, by definition, D is not an integer. D
measures the complexity of the set and expresses the
power law that relates the self-similar parts to the whole.
For example, a fractal curve will have a fractal dimen-
sion between 1 (the Euclidean dimension for a line) and
2 (the Euclidean dimension for a plane). The more
complex the curve, the closer the dimension will be to 2.
The theoretical maximum dimension for a fractal curve
is 2, when it becomes so complex it fills the plane. The
dimension of a fractal object captures important infor-
mation about the character of the phenomenon. The
fractal dimension is also a guide to the type of nonlinear
process that generated the pattern. As we examine
empirical fractal patterns, we will consider the nonlinear
processes that generate patterns with comparable fractal
dimensions. Most of this paper involves estimating the
dimensions of empirical cultural fractal patterns.

Any kind of set can be a fractal: points, lines,
surfaces, multi-dimensional data, or time series. In this
paper, we will be concerned with (1) fractal frequency
distributions and (2) fractal geometric patterns embed-
ded in two dimensions. Mandelbrot [63, pp. 341-348]
developed the concept of the fractal distribution. Gen-
erally, a fractal distribution is one that exhibits a power-
law relation, because that is the only kind of statistical
distribution lacking a characteristic or inherent scale [93,
pp. 1-2]. Therefore, they are scale invariant and
self-similar, which are diagnostic qualities of fractals.

Conceptually, the self-similarity occurs in the fre-
quencies of sizes or magnitudes: smaller pieces are
exponentially more common than large ones. A large
variety of natural and sociological phenomena exhibit
fractal distributions [81, pp. 103-120].

Natural fractal distributions include the number—area
relation for islands [62], the size-order relation for
streams [93, pp. 183-187], the frequency-magnitude
relation for earthquakes [93, pp. 57-62], the size
(i.e., thickness)-frequency relation for geological strata
[8, pp. 78-80], the size—frequency relation for rock
fragments [92], and the size—frequency distribution for
biological taxa [22,23]. Cultural fractal distributions
include Zipf’s law of word frequencies [63, pp. 344-347],
Pareto’s distribution of incomes [63, pp. 347-348], the
rank-size distribution of settlements [14, pp. 48-55; 42],
the size—frequency relation for archaeological debitage
[20], the size—frequency relation for wars [76], and the
size—frequency distribution of US corporations [7].
Many of these phenomena have characteristic fractal
dimensions that serve as a guide to the types of
nonlinear processes that created them.

Mandelbrot [61] also developed the idea of the fractal
curve. Complex curves like contour lines, coastlines,
river plan views, and the shapes of mountains, clouds,
lakes, and trees are all fractals, as are the outlines of
lithic tools [52]. Fractal curves are ubiquitous in nature.

Many textbooks and popular works on fractals are
available (e.g., [14,47,56,63,74,81,93]). We refer the
readers to these works for a longer and more detailed
treatment of fractals and the methods of fractal analysis.

The determination that an object is a fractal and the
measurement of the fractal dimension are, in themselves,
essentially descriptive exercises. Fractals are patterns
(or, technically, “sets”), and so the first step in under-
standing them is describing them accurately and pre-
cisely. While the accurate description of these
complicated patterns is not trivial, we do, nevertheless,
think of description as a prelude to further explanation.
We expect explanation to reveal the underlying pro-
cesses that lead to pattern formation. It is, of course, a
dictum of modern archaeology that the archaeological
record is the static picture of past cultural dynamics
(e.g., [17]). We wish to use the static fractal pattern to
infer the underlying dynamical historical process. There-
fore, we want to know what kinds of processes create
fractals.

Dynamical processes of various kinds can generate
fractal patterns. Iterated function systems, cellular
automata, and diffusion-limited aggregation, for
example, all produce fractal patterns and can be used to
simulate known fractals that are widely observed in
nature and culture [74,101]. Two major classes of non-
linear dynamic systems are well known for generating
fractal patterns: chaotic systems and self-organized
critical systems.
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Whereas a fractal is a set, chaos is a characteristic of
deterministic dynamic systems. Chaotic systems are
common, perhaps more common than stable, non-
chaotic ones. A deterministic dynamic system is said to
be chaotic if “solutions that have initial conditions that
are infinitesimally close diverge exponentially” [93,
p- 219]. This fundamental characteristic of chaos is also
called “sensitive dependence on initial conditions.” It
only occurs in strongly nonlinear systems. To under-
stand this concept, one should envision arbitrarily close
orbits shooting off at divergent trajectories. This is not
stochastic behavior. Chaotic behavior occurs in systems
that are completely deterministic. The solution set of a
chaotic system is called a strange attractor. Strange
attractors are fractals.

That arbitrarily close deterministic solutions can di-
verge exponentially means that even simple systems,
such as a compound pendulum, can behave unpredict-
ably. The behavior of such systems becomes mathemat-
ically unpredictable because any error or perturbation,
no matter how small, propagates until it overwhelms
the underlying pattern. This is popularly known as the
“butterfly effect,” whereby a tiny force (such as the
beating of a butterfly’s wings) can have a dramatically
disproportionate (nonlinear) effect (causing a proverbial
tornado in Texas). The practical significance of chaotic
behavior is that it defies prediction. Naturally, this goes
right to the heart of any philosophy of science that takes
as its goal the discovery of predictive laws.

“Self-organized criticality” is another concept that
helps link dynamical systems and fractals [8,9]. Certain
complex nonlinear dynamical systems exhibit self-
organized criticality. “Criticality” refers to a marginally
stable state toward which these systems spontaneously
evolve. The classic model of this phenomenon is a sand
pile to which sand is added one grain at a time.
Eventually, the slope of the pile will reach a critical
state—the angle of repose—after which the addition of
more sand causes avalanches. Study of the avalanches
indicates that they possess no natural scale, and they
exhibit fractal statistics in both space and time. The
avalanches allow the system to evolve back to a critical
state, where the further addition of sand will cause more
avalanches. Thus, after perturbation, the system evolves
back to marginal stability. The fractal characteristics
of the avalanches appear to explain several natural
phenomena, including the fractal size—frequency distri-
bution of geologic strata, the general fractality of
erosional landscapes and hydrological systems [8,
pp. 80-84], and the statistics of forest fires [76]. Some
physical systems appear to unite all three concepts of
fractals, chaos, and self-organized criticality: simula-
tions of meandering rivers indicate that the system
evolves to a critical state that oscillates between stability
and chaos [86]. For the reader thinking of archaeological
and human systems, self-organized criticality will inspire

not only explanations for site stratigraphy and tapho-
nomy, or settlement patterns, but also systemic models
of historic patterns, such as the rise and collapse of early
states or the pulsations of galactic polities [89].

3. Ancient Maya settlement

Ancient Maya settlement has been a subject of intense
study for many years because of its implications for
social complexity, urbanism, and cultural evolution.
Modern analyses began in the 1950s with the mapping of
Mayapan [51] and Willey’s work in the Belize River
valley [98]. Interest in settlement patterns has led to
the creation of detailed maps of several Maya sites
(Tikal, Guatemala: [24]; Copan, Honduras: [35]; Coba,
Quintana Roo, México: [36]; Calakmul, Campeche,
México: [38]; Sayil, Yucatan, México: [78]; Dzibil-
chaltun, Yucatan, México: [87]; Seibal, Guatemala:
[91]), as well as a number of atlases of regional settle-
ment (Yucatan, México: [39]; Quintana Roo, México:
[69]; Campeche, México: [70]; Chiapas, M¢xico: [75]).
The overall corpus of data, however, remains spotty and
incomplete, which makes it impossible to evaluate di-
rectly some hypotheses about settlement. The statistical
tests used below, therefore, reflect the availability of
appropriate types of data.

The body of literature in modern geography on the
fractal characteristics of human settlement is significant
and growing [10-16,18, pp. 144-149; 26,33, pp. 20-38;
34,59,60,97]. Several different kinds of modern settle-
ments have been shown to be fractal in form. A number
of investigators have studied the boundaries of modern
cities and concluded that they are fractal curves that can
be modeled by a process called diffusion limited aggre-
gation (e.g., [10,14,15]). Others have discovered fractal
patterns in the complex, maze-like streets of Tokyo [77].
Central Place lattices are ideal fractals [4,5,14, pp.
48-56]. Settlement hierarchies that obey the rank-size
rule are fractal because the rank-size rule is a fractal
relation [25,57]. The size—frequency relation for sites in
many settlement patterns, including some Lowland
Maya data, is a fractal (power-law) relation [19,27,
pp. 17-19]. The segmentary internal structure of some
traditional settlements is also fractal [18, pp. 144-149;
33, pp. 20-38; 34].

But not all settlement patterns are fractal. For
example, the orthogonal grid pattern of an archetypal
Roman city tends to be Euclidean rather than fractal,
although its fractality depends on the details of the grid
squares. Imagine a Roman grid centuriated with 10
insulae on a side. In our grid, which is clearly self-
similar, from Eq. (2) we have a=100 squares, each scaled
as s=1/10th the length of the side of the large square.
Therefore, D=2, which is the correct Euclidean (and
fractal) dimension. Thus, although the grid is self-
similar, it is not fractal because the dimension is an
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integer not a fraction. If, however, one were to leave out
certain grid squares from the pattern, it could quickly
become a fractal like a “Sierpinski Carpet.” Thus, for
example, the internal grid layout of Teotihuacan might
not be fractal (but see Oleschko et al., 72), while its
irregular outline might well be fractal. In sum, the
fractality of settlement patterns cannot be assumed. It
must be demonstrated by argument and measurement.
We will now see whether Maya settlement is fractal.

3.1. Inter-site settlement

On a regional level, the size-frequency distribution of
Maya settlement is fractal. The calculation of the fractal
dimension for a frequency distribution like this is simple.
The fractal relation for such distributions is:

NCGr)=Mr? (3)

where N(>r) is the number of objects with a character-
istic size greater than r, D is the fractal dimension, and
M is a constant of proportionality [93, p. 42], cf. [92,
p. 19211 [27, pp. 17-19]. The exponent D characterizes a
specific distribution. It is a measure of the relative
abundance of objects of different sizes. Thus:

(Ve W
In(r)

To estimate D empirically, one plots the logarithm of the
cumulative frequency [In (N(>r))] against the logarithm
of size, In(r). If this relation is linear, then the phenom-
enon is fractal. An estimate of the fractal dimension is
provided by the “best fit” least squares linear regression
line. The slope of the line is the negative of D.

As an example, let us examine some of Adams and
Jones’s data on site size based on courtyard counts [2,
Table 1]. The true sizes of Maya sites are usually
unknown because of the difficulty of performing survey
in the rainforest.! For this reason, Adams and Jones
[1,2] developed courtyard counts as a proxy for ranking
sites by size. Although these data are far from ideal, they
are the only rank-size data that exist for the Maya
lowlands. The data should be taken with several caveats.
For example, the various regions have not been ident-
ically surveyed, and it is clear that in all regions the
smallest sites are under-represented [2, p. 307]. Never-
theless, the Rio Bec region exhibits a fractal distribution.
The relation is fractal because it is clearly linear (for the
regression line, r°=0.96, P=8.1 x 10~ 7) (Fig. 2). The

' The work of de Montmollin (e.g., [31,32]) is an exception to this
rule: the topography and vegetation of highland Chiapas has allowed
him to develop detailed settlement data for an extensive area. These
Chiapas data remain anomalous, however, because of the small size of
the settlements and presumed polities, and their multiethnic character,
and their apparently peripheral relation to the Classic Maya lowlands.
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Fig. 2. Fractal distribution of settlement size based on courtyard
counts, Rio Bec region (data from [1]).

fractal dimension D=1.08, which is comfortably close to
the common and canonical value of 1. On the other
hand, it should be noted that the Rio Bec region is even
today poorly surveyed. The bush is as thick and impen-
etrable as in any part of the Maya lowlands, and it is
possible if not likely that sites of almost any magnitude
might still be unknown. In addition, the Rio Bec area
has some sites, like Rio Bec itself, that are unusually
dispersed and that blend imperceptibly into dense rural
settlement [71,90]. Therefore, the true sizes of sites are
uncertain and ambiguous, and the reliability of court-
yard counts as a proxy is even less certain.

Settlement hierarchies that obey the rank-size rule
are fractal because the rank—size rule is a fractal relation
[25,57]. The rank-size rule is an empirical observation
that expresses the relationship between settlement size
(population) and settlement rank (its numerical position
in the series created by ordering all the settlements in the
system from large to small). The idea that settlement size
and rank have a systematic relationship was popularized
by Zipf [100], who expressed it as:

Pl
P==tr=12. (5)
r

where P, is the size of the settlement of r-th rank in the
system and k is a constant, which is typically of
the magnitude of 1, in the ideal case described by Zipf.
The exponent k is calculated empirically by plotting the
logarithm of rank against the logarithm of size: k is the
slope of the best-fit line. The rank-size rule has been
applied to archaeological data in various contexts (e.g.,
[25,48,57,73]). It is noteworthy that this is an empirical
rule and does not depend on any sociological theory,
like Zipf’s “Law of the Least Effort.” Rank-size has
been used to analyze ancient settlement data from
the Maya area and other parts of Mesoamerica
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Fig. 3. The fractal rank-size relation for Adams [1] Data for the central Peten region.

[1,43,50,53,54]. There has also been study of the devi-
ation of settlement systems from the expectations of the
rank-size rule [48,100, pp. 374-375, 416-444], such as,
for example, primate settlement systems that may be
related to colonialism. Consequently, use of the rule is
not merely a mechanistic exercise, but an informative
model.

The fractal reformulation of the rank-size rule
provides an important theoretical advantage over the
original. The inherent self-similarity of the fractal rela-
tion means that a regional sample can be extrapolated to
a whole settlement system [25,57]. The fractal dimension
is related to the rank-size rule by:

D=—— 6)

[25, p. 62]. Thus, for k=1, Zipf’s “classic” case, D=1
also. We used Adams’s [1] data on site size for the
Central Peten region to examine the fractal dimension of
the rank-size relation for Maya settlement. We dropped
the seven smallest sites to eliminate a “tail” in the plot
that commonly occurs [57]. As one can see, the remain-
ing sites form a highly linear, and thus a fractal, relation
(Fig. 3). The exponent k=—0.83 and therefore D=1.2.
This result is different from those reported for other
regions [57].

To evaluate fully the fractality of regional Maya
settlement, one should map every structure in some large
region and then test to see if the pattern is self-similar
and scale invariant across all scales of observation.
Because this is a practical impossibility, we must resort
to the examination of a variety of data sets that contain
data at more restricted ranges of observation. Thus, we
will instead look at the spatial distribution of sites in one
region.

A geographical distribution of points or objects can
be fractal when the pattern is self-similar. In the case of

a pattern that is embedded in two (Euclidean) dimen-
sions, self-similarity is commonly expressed as hierarchi-
cal, nested clusters, that is, clusters of clusters of clusters,
ad infinitum. As with the other phenomena discussed,
the fractality can be ideal or statistical. With empirical
data sets, the fractality is usually statistical. This is the
kind of fractal pattern that a distribution of sites across
a landscape may exhibit.

The method used to evaluate the fractality of
this kind of phenomenon, and to calculate the fractal
dimension, is called the box-counting method. It is
logically and methodologically linked to the Hausdorff—-
Besicovitch and capacity dimensions and normally pro-
vides an accurate estimate of them. The idea is this: one
overlays a grid of squares on the points or curve to be
measured, and one counts the number of boxes crossed
by the curve or containing one or more points. The
number of squares, N, required to cover the curve or
points will depend on the size of the squares, s, so N is a
function of s, or we can write N(s). Now one reduces the
size of the grid repeatedly, recording the two variables,
N, and 5. One plots the log of N(s) vs. the log of s. If the
slope of the least-squares regression line is d, then
the fractal dimension is D=—d.

This procedure is difficult to perform by hand, but it
is easily automated. A number of programs exist that
perform some or all of the process. We used a program
written by DiFalco and Sarraille called FD3 Version 0.3
[79] that was “inspired by” an algorithm devised by
Liebovitch and Toth [58]. This program takes as input a
series of coordinates for points, with one set of coordi-
nates for one point on each line. The number of columns
depends on the embedding dimension of the figure; our
embedding dimension was 2, just x, y coordinates
describing the locations of archaeological sites. Then it
calculates the difference between the maximum and
minimum values in the data set and uses this figure to
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determine the cell sizes. It begins with a single box, the
sides of which are the length of the difference between
the max and min values. This box is then divided into
four cells by bisecting each side of the original box. The
next division is into sixteen cells by subdividing each side
into four segments. The next division is into sixty-four
cells by a linear division of each side into eight segments,
and so on. To accelerate computation, the program
shifts and rescales the data set. Logarithms of base 2 are
used in the calculation of dimension. The base of the
logarithms does not affect the dimension because it is
the ratio of two logarithms, which is the same regardless
of the base.

To estimate the fractal dimension of Maya settlement
on a regional scale, we chose the part of the Maya area
that has been most completely surveyed: the state of
Yucatan, México. We combined the data in the Atlas
Arqueologico del Estado de Yucatan [39] with the newer
supplementary data in Dunning [32, Table 5-1] to create
a single list of 1107 sites within UTM Zone 16 in the
state of Yucatan.

The contemporaneity of all these sites is an issue of
concern. Unlikely though it may seem, we believe that
all of these sites almost certainly had some level of
occupation during the Late and Terminal Classic period,
as represented mainly by the Cehpech (and to a lesser
extent, the Sotuta) ceramic complexes [82]. Late and
Terminal Classic settlement is ubiquitous in the region.
This even applies to sites that are mainly occupied
during other phases. Thus, Mayapan, the largest Late
Postclassic site, has a Late Classic component repre-
sented by occasional potsherds and some Puuc style
building stones that were reincorporated in the later
architecture. Similarly, Komchen, a major Formative
site, also has Late Classic remains [3]. Some sites are
little investigated or poorly known. We judge, however,
that it is extremely unlikely that any significant number
of sites lack Late/Terminal Classic occupations. If a
small number of sites are not contemporaneous, that
fact is unlikely to alter significantly the statistical
outcome of the estimate we are making.

Possibly more important is the lack of information
from those parts of southern and eastern Yucatan that
have not been surveyed extensively. There is little to be
done about those lacunae now except to note that some
investigators do believe that some of the lacunae are real
gaps in settlement, rather than merely gaps in survey
coverage (Bruce Dahlin, personal communication).

We converted the UTM coordinates from both works
to full numeric coordinates and used them as Cartesian
X, y coordinates for input to the FD3 program. FD3
calculated a fractal (capacity) dimension of D=1.51.2

2 Cell sizes (in m), before shifting and rescaling, used in the calcu-
lation of dimension, followed by the number of occupied cells:
425300/1, 212650/2, 106325/6, 53163/19, 26581/63, 13291/178, and

Since this value is clearly a fraction, not an integer, the
pattern is fractal.

Joyce Marcus and others have argued that Classic
Maya settlement conforms to the pattern of hexagonal
lattices predicted by Central Place theory for a hierarchy
that maximizes administration [37,64-66]. Arlinghaus
[4,5] has shown that Central Place lattices are ideal
fractals. Therefore, a fractal settlement pattern is clearly
not inconsistent with one formed by the socioeconomic
forces invoked by Central Place theory. Marcus’s appli-
cation of Central Place theory does have detractors,
most prominently, Peter Mathews ([67,68,80]; see also
[44, pp. 16-17; 45, pp. 275-276]). Most of the dispute,
though, has focused on the degree to which emblem
glyph references reflect hierarchical relations among
centers. Little discussion has addressed Marcus’s use of
Central Place theory itself. Nevertheless, Central Place
theory remains attractive and relevant to Mayanists [50],
and we believe it merits additional research. Our
purpose here, though, is neither to debate the theory nor
to assert that fractal analysis “proves” it, but only to
emphasize the compatibility of these two settlement
geometries, Central Place and fractal.

3.2. Intra-site settlement

The intra-site spatial organization of Maya architec-
ture is also fractal. Maya residential settlement is a
complex pattern that has proven difficult to describe or
quantify. Archaeologists have found that Maya residen-
tial settlement consists of small groups of buildings
around formal or informal plazas. The house groups or
plazuelas often coalesce into clusters of different sizes;
the clusters sometimes form larger clusters that are like
neighborhoods or quarters. In existing descriptions of
Maya sites, we are often provided counts and measure-
ments of different kinds of buildings and sometimes the
statistics of building densities or inter-building distances.
However accurate, these descriptions leave much to be
desired. Some indefinable yet fundamental quality of the
pattern typically eludes us. We believe that the ineffable
quality that leads to endless patterned variations on a
theme is fractal self-similarity. This exhibits itself in the
clusters of clusters of clusters of domestic buildings (e.g.,
[6, pp. 46-58; 19, pp. 127-148; 21,30, pp. 53, 244; 31,
p- 8; 55, pp- 73-81; 99 pp. 81-83]). To demonstrate that
this pattern is fractal, we will measure the fractal dimen-
sion of the buildings on a part of the map of the Late
Postclassic site of Mayapan, Yucatan, México [51].

Although the density of residential settlement at
Mayapan is higher than at typical Classic period sites,
the overall patterns are otherwise similar. Despite exten-
sive investigation no one has ever discovered a structure

6645/408. The R? of the regression is 0.996, indicating a highly linear
relation.
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Fig. 4. Detail of square Y of the Carnegie Institution map of Mayapan. Drawn by Lynn A. Berg.

at Mayapan that is not Late Postclassic in date,
although there is some evidence of earlier occupations in
the form of both ceramics and re-used building stones.
Thus, all the buildings on the map appear to be generally
contemporaneous.

The pattern formed by the buildings on the map of
Mayapan is embedded in two (topological) dimensions,
and it must therefore be measured by the box-counting
method. We created the input points for the FD3
program from a digitized copy of a portion of the
Mayapan map [51] by “pointilizing” the structures in the
selected area. We first traced a part of Square Y (Fig. 4)
using a digitizing pad and a computer-aided drafting
(CAD) program. Then we deleted all the elements (text,

contour lines, grid lines, roads, etc.) that were not,
apparently, buildings. Limiting ourselves to the con-
structions, then, we replaced each line with a series of
points spaced 1 m apart. We exported this drawing
information to a drawing exchange file (dxf) format and
edited it with macros to extract x, y coordinates. This
coordinate file was used as input to the FD3 program.
The fractal dimension measured for this section of the
Mayapan map is D=1.37, very clearly a fraction rather
than an integer.

We also measured the fractal dimension of two other
squares, K and R, using a commercial computer
program entitled “Benoit”, published by TruSoft
International, Inc (reviewed in Science by Steffens [85]).
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This program implements the standard box counting
algorithm. It operates on an input file in the form of a
black and white bitmap file for which it calculates the
fractal dimension of the white pixels. We scanned these
squares from the Mayapan map using a Hewlett—
Packard Scanjet 5300c set at 600 dpi. We manipulated
the bitmap image using Adobe Photo Deluxe Business
Edition. First, we created a black and white image from
the color scan. Then, we created a “negative” image
from the bitmap file so that the architecture would
appear as white pixels. We erased the labels, grid lines,
contour lines, and so forth, and also cleaned up stray
white pixels from dust on the scanner or foxing on the
map.

The results are very similar to those from Square Y.
Square R has a fractal dimension D=1.38 and Square K
has a fractal dimension D=1.31. We also attempted to
analyze a single bitmap image of Squares K and R. The
program evidently could not process an image as large
as 33 megabytes (the result of scanning at 600 dpi),
possibly because of the architecture or configuration of
our computer or operating system. Therefore, we re-
duced the resolution of the image to 300 dpi, which in no
way affected the clarity of the delineation of the struc-
tures in the image. The resulting analysis estimated the
fractal dimension of the two squares as D=1.33, which
seems plausible because it falls between the estimates
for the two squares taken individually. In total, we
have measured the fractal dimension of 0.7279 km? of
Mayapan (Square Y has an area of 0.2279 km?). The
whole site within the great wall measures approximately
4.2 km®. We think it is beyond question that residential
settlement at Mayapan is fractal with dimension
D=1.35+0.05.

Earlier in this paper, we discussed the Euclidean
internal arrangement of some cities built on an ortho-
gonal grid, and we noted that their exterior outline
might nevertheless be a fractal curve. In contrast, at
Mayapan the internal organization is fractal, while the
perimeter, marked by the course of the 9 km long great
wall that approximates the boundary of the community,
is essentially a Euclidean curve; D for the wall is very
close to 1.0.

We thought that the fractal dimension of residential
settlement would vary from site to site because of
local and regional variation in architecture, settlement,
and geomorphology. As a test, we measured the fractal
dimension of a small portion of Dzibilchaltun, a very
large site near the north coast of Yucatan, México.
Dzibilchaltin ~ was occupied from the Middle
Formative period through the Late Postclassic and
into the Colonial period. More than 90% of the visible
architecture, however, dates from the Late and
Terminal Classic periods (Early Period II-Pure
Florescent Period), during the Copo 1 and 2 phases
[55, p. 39].

We evaluated the fractal dimension of a small area in
the southwest part of Sheet L:L [87]. The area examined
begins at the southwest corner of the map sheet and runs
550 m (in map units) north and 400 m east. This
particular spot was selected rather arbitrarily because it
was intermediate between the ceremonial center (we did
not want to include civic—ceremonial architecture in the
sample) and the sparsely populated hinterland. It also
appears to a fairly representative slice of habitation. We
scanned this section of the map sheet and treated the
resulting bitmap file as described above. We had to
decrease the resolution of the image to 300 dpi to reduce
the file size. We were surprised to find that the fractal
dimension of this area was D=1.23, closer to the value
for Mayapan than we expected. The lower value prob-
ably reflects the somewhat different and more dispersed
character of the clusters at Dzibilchaltin. The distinctive
settlement pattern at Dzibilchaltin is probably caused
by a combination of sociological and geomorphological
factors. For example, the settlement at Mayapan is quite
dense, perhaps because everyone felt a need to live
within the great defensive wall. The low but steep relief
at the site also significantly influences settlement: almost
all the buildings are on high ground (residual karst
ridges and knolls) [19]. At Dzibilchaltan there is no wall,
and settlement feathers lightly and indefinitely to the
horizon. There is also no topographic relief. The terrain
is flat and settlement patterns are not constrained in
the same ways they are at Mayapan. The value of the
fractal dimension reflects the overall effect of these
differences.

The discovery of the fractality of Maya residential
settlement is an important advance. First, the fractal
dimension provides a quantitative characterization of a
pattern that has been difficult to describe efficiently. As
we have seen, the value of D varies among different
kinds of sites. Further research will show in more detail
how this parameter varies from one type of site to
another. Second, we can now assert that Maya intra-site
settlement patterns are self-similar. This is a key concept
that coincides perfectly with an analysis of Maya settle-
ment patterns as consisting of nested groups of groups.

This settlement pattern reproduces quite accurately a
social system in which the family is a microcosm of the
lineage, which in turn is a reduced version of the clan,
which itself replicates the state. The self-similarity of the
family-lineage—clan—state hierarchy is characteristic of
segmentary lineage systems, segmentary states [83], and
galactic polities [88,89], which are among the prevailing
models of Maya socio-political organization [28, p. 146;
29, p. 823]. For example, the idea of the galactic polity
is based on the state as a mandala, and a mandala is
structurally self-similar.

At a surface level the cosmological account gives a
magnificent picture of the exemplary center pulling
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together and holding in balance the surrounding
polity. But we can properly appreciate in what man-
ner the center attempted to hold the remainder—the
centripetal role of the center—only after we have
properly understood the decentralized locational pro-
pensity of the traditional polity and its replication of
like entities on a decreasing scale; in other words,
only after we have grasped the structure of the
galactic constellation, which is a far cry from a
bureaucratic hierarchy in the Weberian sense [89
p- 266].

The structure of segmentary lineage systems is also
self-similar, as Southall’s description of the structure of
the Alur segmentary state reminds us.

(5) Several levels of subordinate foci may be distin-
guishable, organized pyramidally in relation to the
central authority. The central and peripheral authori-
ties reflect the same model, the latter being reduced
images of the former. Similar powers are repeated at
each level with a decreasing range, every authority
has certain recognized powers over the subordinate
authorities articulated to it, and formally similar
offenses differ in significance according to the order of
authorities involved in them [83, p. 249].

This is a description of a self-similar structure. The
overall structure is composed of structural replicas at
increasing smaller scales.

This type of self-similarity is also evident ethnologi-
cally among the Maya. Vogt calls it “replication.” “The
patterned aspect of Zinacanteco culture that impresses
me most is the systematic manner in which structural
forms and ritual behaviors are replicated at various
levels in the society ...” [94, p. 571].

Structural replication is manifested in both the social
and ritual systems. In the social system, the settlement
pattern takes the form of an aggregate of aggregates
ranging from the house, or houses, of a single dom-
estic group up to the total municipio with its ceremo-
nial center forming the focal point of tribal activities.
Similarly, the social structure consists of units of
increasing scale: the domestic group occupying a
house compound; the sna composed of one or more
localized patrilineages; the waterhole groups com-
posed of two or more snas; the hamlet; and finally the
ceremonial center. All social levels are found in the
large parajes, but smaller parajes may, for example,
consist of a single waterhole group [94, p. 572].

In short, the fractal settlement pattern is a physical
outline of the self-similar structure of Maya society as
deduced from historical and ethnological sources.

It is important to note, however, that nothing inher-
ent in the fractality of the ancient settlement patterns
tells us that the ancient descent system was necessarily

lineal. Gillespie [40,41] has recently argued that the
Maya had bilateral or cognatic descent groups called
“houses.” Presumably, any kind of descent group can
produce a fractal settlement pattern provided the rules
of descent and the demography generated the proper
scaling relations among the sizes of the nested units of
organization. To distinguish among the various kinds
of settlement patterns produced by different types of
descent groups, one should conduct ethnological or
ethnohistorical studies of their genealogy, demography,
and settlement. As an alternative, social group patterns
like these could be usefully studied through simulations
using fairly simple rules. It is possible that different rules
of descent would tend to produce different scaling
relations among the hierarchically ordered social units.
Nevertheless, we believe all the ethnohistorical and
ethnological evidence points to lineal social organiz-
ations for the various Maya subcultures; we find the
evidence for Maya “houses” presented by Gillespie to be
weak and unpersuasive. We believe the prevailing uni-
lineal and bilineal models of Maya descent have much
stronger evidentiary foundations [19, pp. 484-571].
None of the arguments that follow, however, depend
upon the Maya having possessed any particular type of
descent group.

4. Inferences

What can we learn about the ancient Maya from the
fractal nature of their settlement patterns? The fact that
Maya settlement is fractal carries important implications
for our understanding of the society that produced
them. First, one can infer that traditional Maya social
structure is fractal just like the ancient settlement pat-
terns. Second, one can learn about the dynamics of such
fractal societies by modeling them using fractal pro-
cesses. Zubrow [101] has simulated ancient Maya settle-
ment patterns using fractal methods. It also appears that
Maya settlement can be modeled using a process called
random fractal curdling with a probability of 0.5 [18,
pp. 92-101; 63]. Such modeling can lead to greater
insight into the underlying dynamics of the social pro-
cesses that created the settlement patterns. It also seems
reasonable to infer that some aspects of the ancient
Maya social system were chaotic or self-organized
critical. Chaos theory and self-organized criticality also
can offer new insights into ancient social processes.

For example, Roberts and Turcotte [76] have re-
viewed the well known “forest fire” model of self-
organized criticality. The model works like this. Let
there be a grid of points. At each time step or iteration of
the model, either a tree or a match (i.e., a spark) is
dropped on a randomly selected point. If a tree
is dropped on a vacant point, it takes root. If a spark
drops on a vacant point, nothing happens. If a match is
dropped on a tree, it catches fire, and then it ignites any
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trees on adjacent points. Those trees in turn ignite any
trees adjacent to them, propagating the fire throughout
the extent of the contiguous cluster of trees. As this
process of growth and destruction is repeated through
many time steps, it creates clusters of trees with a fractal
size-frequency distribution. As the clusters ignite and
burn, a fractal size—frequency distribution of forest fires
is generated. The sizes of the forest fires are analogous to
the sizes of the avalanches in the sand pile model
described earlier. When the frequency of sparks is high,
the process is dominated by many small fires: clusters
tend to burn before they grow to large size. When the
sparking frequency is low, the size—frequency distri-
bution is dominated by a few large fires that sweep
across the entire grid: large clusters of trees develop
before finally burning. Roberts and Turcotte show that
the fractal dimensions of the size—frequency distribution
of forest fires generated by the model closely match the
fractal dimensions of actual, empirical forest fire stat-
istics. Although Roberts and Turcotte do not mention
it, empirical vegetation patches are spatial fractals [47,
pp. 119-133]. The fractality and dimensions of the
vegetation patches may well be related to forest fire
dynamics as well as other factors.

Roberts and Turcotte [76] go on to analyze the
intensity—frequency distributions of wars using various
historical data sets representing two different measures
of the intensity of war. They find that the fractal
dimensions of the frequency relation for the intensity of
war are similar to those for forest fires. They conclude
that war may also be a result of a self-organized critical
process in a metastable world system. They suggest that
war can spread like a conflagration through groups of
countries. The values of fractal dimension for the key
data sets range from D=1.27—1.54, the same as those
for some Maya settlement described here.

Notwithstanding earlier theories that the Maya were
peaceful farmers and astronomers, archacologists now
believe that the Maya lowlands were plagued by chronic
internecine war. The original, and still compelling,
evidence for brutal warfare among the Maya was the
murals of Bonampak, Chiapas, discovered in the late
1940s. It is now known that a number of sites, both
Classic and Postclassic, were fortified. Even more
significant evidence for warfare comes from the monu-
mental inscriptions. They speak incessantly of conquest,
capture, and domination. David Webster is the most
persistent and prominent student of Maya warfare. In
detailed recent reviews (e.g., [95,96]), he argues persua-
sively for the significance of warfare in Maya socio-
political evolution. It is clear that Maya warfare
occurred on many scales, from minor raids aimed at
capturing prisoners to major conflicts between large
states. There can be no reasonable question that warfare
influenced ancient Maya demographics and settlement
patterns across a range of scales.

We can document, then, fractal patterns of Maya
settlement, some of which have the fractal dimensions
of the same magnitude as those for forest fires and
wars, and archaeological, iconographic, and epigraphic
evidence for chronic, incessant warfare at many scales
throughout Maya history. The settlement patterns
and the historical patterns fulfill all of the criteria and
expectations of a self-organized critical model.

To these facts, we must add Joyce Marcus’s [66]
theory of “dynamic cycling.” She argues that Maya
polities passed through repeated cycles of geographical
growth and fragmentation. These observations have
attracted widespread interest (e.g., [30, p. 53; 31, pp.
249-267; 49,84, p. 59]). Marcus describes historically
[66, pp. 157-170] the periodic coalescence of regional
states followed by their collapse into smaller constituent
polities. In the terminology of current systems theory,
her model is a qualitative description of self-organized
criticality. We do not believe that this is an accident. We
believe that analysis of the archaecological record will
eventually show that early states were self-organized
critical systems that were far from equilibrium. A non-
linear system can react dramatically to a disproportion-
ately small impetus. This would explain why some early
states were evidently susceptible to major changes in the
face of minor forces. Therefore, it may not be necessary
for archaeologists to identify a major change in politics,
technology, demography, or environment to explain the
sudden growth or collapse of a state: a minor pertur-
bation may be all that is necessary because it acts like a
grain of sand that causes an avalanche.

We do not claim to have proven that Maya society
was a self-organized critical system, but rather we sug-
gest this as an hypothesis to be investigated through
further archaeological research. The verification or
falsification of the model will come from the statistics of
Maya warfare, and through the archaeological and
epigraphic documentation of its extent and intensity
throughout Maya history and prehistory. Similarly, if
the sizes of Maya polities exhibit fractal statistics
through time and space, it would be virtual proof of
Maya political evolution as a self-organized critical
system. This then is the type of explanation that we
can expect from nonlinear analyses of archaeological
remains.

5. Conclusion

Fractal theory provides a simple and coherent way
of understanding very complex phenomena. Fractal
phenomena appear to be widespread in archaeology. As
we have seen, fractal analysis is not an isolated statistical
method. Fractal analysis includes a large range of
analytical methods for study of the irregularity and
complexity. Many of those methods are related to
better-known statistics (such as the Zipf distribution, the



1630 C.T. Brown, W.R.T. Witschey | Journal of Archaeological Science 30 (2003) 16191632

rank-size rule, or, in geomorphology, the variogram).
These methods are the ones, and often the only ones,
that are mathematically appropriate for fractal phenom-
ena. Traditional statistical methods usually will not yield
consistent estimates of fractal parameters. Therefore, it
is indispensable for archaeologists to recognize fractals
and to analyze them correctly. In this article, we have
not only shown that Maya settlement is fractal, but we
have also illustrated the types of systems theoretical
explanations that may be responsible for the patterns.
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