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The Fractal Dimensions of Lithic Reduction
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The fractal distribution is the best statistical model for the size-frequency distributions that result from some lithic
reduction processes. Fractals are a large class of complex, self-similar sets that can be described using power-law
relations. Fractal statistical distributions are characterized by an exponent, D, called the fractal dimension. I show how
to determine whether the size-frequency distribution of a sample of debitage is fractal by plotting the power-law relation
on a log-log graph. I also show how to estimate the fractal dimension for any particular distribution. Using debitage
size data from experimental replications of lithic tools, I demonstrate a fundamental relationship between the fractal
dimension and stage of reduction. I also present archaeological case studies that illustrate the simplicity and utility of
the method. � 2001 Academic Press
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Introduction

L ithic debitage is the most ubiquitous and
plentiful of all artifacts, and its analysis is of
fundamental importance to archaeology. One

method of studying debitage consists of evaluating the
statistical size-frequency relation of assemblages. This
type of analysis was developed by Gunn, Mahula &
Sollberger (1976), who studied debitage from the
experimental replication of a bifacial tool. They exam-
ined the histogram of flake sizes to determine the
quantitative characteristics of the debitage from each
stage of reduction. This type of sieve analysis is not a
substitute for the examination of individual specimens,
but it does provide complementary information of
significance.

Several statistical methods for the analysis of debit-
age sizes have been proposed. Patterson (1990), for
example, thought that debitage sizes could be effec-
tively modelled using the logarithmic distribution,
while Shott (1994) suggested that the log skew Laplace
distribution might serve that purpose. The most rigor-
ous study of the debitage size-frequency relation is
that of Stahle & Dunn (1982, 1984). They replicated
Afton projectile points, a dart point from the North
American mid-continent. They segregated the debitage
by stage of reduction and then size-graded it using a
series of sieves. They compared the resulting empirical
frequency distributions to three theoretical ones: the
exponential, the Weibull, and the extreme value distri-
butions. Stahle and Dunn concluded that ‘‘the Weibull
is an accurate model of the size distribution for both
flake frequency and weight from biface reduction’’
(Stahle & Dunn, 1984: 13), ‘‘although no clear theor-
etical connections have been found’’. The lack of a
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theoretical basis is a fundamental problem of the
Weibull distribution, because it is not informed by any
physical theory. For this reason, Weibull himself was
obliged to argue in his original paper that ‘‘the only
practicable way of progressing is to choose a simple
function, test it empirically, and stick to it as long as
none better has been found’’ (Weibull, 1951: 293).

I believe that a better function has been found. In
this article, I will show that the fractal distribution is a
more appropriate and useful model than the Weibull
for some size-frequency distributions of debitage. I will
explain how to estimate the fractal parameters of
empirical debitage distributions. Then I will show how
the parameters of experimental debitage distributions
are fundamentally related to stage of reduction.
Finally, I examine several archaeological test cases that
demonstrate the practical utility of the method. It will
become apparent that fractal analysis of debitage size
distributions is both simpler and more effective than
the various methods that have been advocated in the
past (e.g., Ahler, 1989; Patterson, 1990; Shott, 1994:
97–98; Stahle & Dunn, 1984).
Fractals
Fractals are a relatively new concept in science—about
30 years old (Mandelbrot, 1967). Although today
fractal analysis is extensively employed in the physical,
chemical, and biological sciences, it remains a novel
concept in many of the social sciences. Fractals are
self-similar sets of fractional dimensional. A pattern is
self-similar if it composed of smaller-scale copies of
itself. One should envision a fractal as an infinite
regression of smaller and smaller images that constitute
� 2001 Academic Press
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a whole that is similar to its parts. Because of self-
similarity, fractals are also ‘‘scale invariant’’, or ‘‘scal-
ing’’. Scale invariance means that they appear
(mathematically, if not visually) to be the same at all
scales of observation. The fundamental parameter of
fractal sets is their fractal (or Hausdorff-Besicovitch)
dimension, which, in fractals, is always a fraction, not
an integer. Fractals form complex, irregular phenom-
ena like those that predominate in nature. ‘‘Clouds are
not spheres, mountains are not cones, coastlines are
not circles, and bark is not smooth, nor does lightening
travel in a straight line’’ (Mandelbrot, 1983: 1). Frac-
tals are the geometry of non-linear processes, like
chaos and self-organized criticality. Thus, they not
only accurately and parsimoniously describe natural
phenomena, but also indicate the underlying processes
that create them. Because fractals have been exten-
sively described in numerous popular works and text-
books (e.g., Batty & Longley, 1994; Mandelbrot, 1983;
Schroeder, 1991; Turcotte, 1997) I will not do so here.

A fractal can be any kind of set: points, lines,
surfaces, multi-dimensional data, or time series. This
paper is concerned mainly with fractal frequency dis-
tributions. The concept of the fractal distribution was
developed by Mandelbrot (1983: 341–348). Almost any
homogenous power-law distribution is fractal because
it is the only statistical distribution that does not
possess a characteristic or inherent scale (Turcotte,
1997: 1–2). Therefore, they are scale invariant and
self-similar, which are the diagnostic qualities of
fractals. The number and variety of natural and socio-
logical phenomena that exhibit fractal distributions is
almost endless (Schroeder, 1991: 103–120). Fractal
distributions include the number–area relation for
islands (Mandelbrot, 1975), the size-order relation for
streams (Turcotte, 1997: 183–187), the frequency–
magnitude relation for earthquakes (Turcotte, 1997:
57–62), the thickness frequency relation for geological
strata (Bak, 1996: 78–80), the size-frequency distribu-
tion for biological taxa (Burlando, 1990, 1993), Zipf’s
law of word frequencies (Mandelbrot, 1983: 344–347),
Pareto’s distribution of incomes (Mandelbrot, 1983:
347–348), and the rank-size distribution of settlements
(Batty & Longley, 1994: 48–55; Goodchild & Mark,
1987).

Fractal, or power law, distributions take the general
form

Y=aXb (1)

in which a is a constant and b is the parameter of
interest. If one takes the logarithm of both sides of the
equation, one obtains:

ln Y=ln a+b ln X (2)

This is a linear transformation of Equation 1. By
plotting the logarithms of the variables, one can obtain
an approximation of this linear relationship and
thereby estimate the parameters of the power law. I
have used natural logarithms in this example, as I will
throughout this paper, but one can also use common
(base 10) logarithms.
Fractal Fragmentation

Turcotte (1986, 1997; Turcotte & Huang, 1995) has
demonstrated that rock fragmentation creates a size-
frequency distribution of fragments that obeys the
fractal (power law) relation

N(>r)=r�D (3)

where N(>r) is the number of fragments with a char-
acteristic linear dimension greater than r, and D is the
fractal dimension (Turcotte, 1986: 1921, cf. 1997: 42).
The exponent D characterizes a specific distribution. It
is a measure of the relative abundance of objects of
different sizes. It is calculated as:

by taking the logarithms of both sides and solving for
D. Turcotte notes that when r is small, the fractal
relation is equivalent to the Weibull distribution (1986:
1921; 1997: 42–43), which is itself a power-law distri-
bution (Weibull, 1951).

Turcotte has shown that many natural fragmen-
tation phenomena exhibit fractal distributions with
dimensions in the range 1·89 to 3·54 (Turcotte, 1997:
44). Those data sets include broken coal, crushed
quartz, disaggregated gneiss, disaggregated granite,
glacial till, ash and pumice, terrace sands and gravels,
and a variety of other materials. Turcotte analysed two
physical models of fractal fragmentation, both of
which used the renormalization group approach.
Renormalization is a technique that relies upon scale
invariance, which in this case was implied by the fractal
distribution. The renormalization group models as-
sume that the catastrophic failure associated with
fragmentation is caused by the development of frac-
tures. It is noteworthy that a corpus of supporting
evidence exists suggesting that geological patterns
of fractures are fractal as well (e.g., Barton, 1995;
Borodich, 1997; Brown, 1995: 78–79; Hirata, 1989;
Korvin, 1992: 127–180; Turcotte, 1997: 67–71;
Turcotte & Huang, 1995: 14; Villemin, Angelier &
Sunwoo, 1995). It is also believed that the development
of microfractures or cracks is implicated in chert
fracture (Luedtke, 1992: 75–78). A number of fractal
models of fragmentation have recently appeared (e.g.,
Coutinho, Adhikari & Gomes, 1993; McDowell,
Bolton & Robertson, 1996; Mekjian, 1990; Steacy &
Sammis, 1991). One of the fundamental strengths of a
fractal theory of fragmentation is that it is soundly
based in both mathematics and physical theory.
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Figure 1. Fractal plot of debitage size—frequency relation for
Sollberger Distribution (Gunn, Mahula & Sollberger, 1976).
0 3.5

8

ln (r(mm))

y = –2.3926x + 11.743
R2 = 0.9873

ln
 N

(>
r)

3.02.01.51.00.5

1

2

3

4

5

6

7

2.5

Figure 2. Fractal plot of debitage size—frequency relation for
replication of a Clovis Point (Henry, Haynes & Bradley, 1976: 60).
Fractal Dimensions of Debitage
There are several reasons to expect that the process
of fragmentation associated with the manufacture of
stone tools will yield a fractal size distribution of
fragments: (1) as discussed above, it is known that raw
materials similar in composition to chert, flint, and
obsidian (i.e., quartz, quartzite, ash and pumice) ex-
hibit fractal fragmentation (Turcotte, 1997: 44); (2) the
Weibull distribution, which is known to be a good
model for some size-frequency distributions of debit-
age (Stahle & Dunn, 1984), is closely related to the
fractal distribution: for small values of r, the Weibull
distribution approximates a fractal distribution
(Turcotte, 1997: 41); (3) Kennedy & Lin (1986, 1988)
have shown that the planform outlines of bifaces are
empirical fractal curves, like coastlines and rivers; if the
pattern of overlapping flake scars along the edge of a
tool forms a fractal curve, it follows that the size
distribution of the flakes is fractal as well; (4) similarly,
Mecholsky & Mackin (1988) found that the fracture
surfaces of archaeological cherts were fractals, the
fractal dimensions of which varied with the toughness
(Kc) of the chert. Thus, there is reason to believe that
chert, obsidian, and other types of stone used to make
tools should fragment fractally.

To determine the fractal characteristics of debitage
size-frequency distributions, I will start by examining
data sets created by experimental knapping of replicas
of stone tools, beginning with the original Sollberger
distribution presented by Gunn, Mahula & Sollberger
(1976). The calculation is illustrated in Table 1. First,
one has to calculate N(>r), which from Equation (3), is
the cumulative frequency of fragments with a linear
dimension greater than r. One sums the raw fre-
quencies in the third column to form a cumulative
frequency shown in the fourth column. Then, one
calculates the logarithms of both the lower bound of
the size interval (r) and the cumulative frequency
(N>r). One should use the lower bound of the interval
as r because the fundamental form of the fractal
relation considers the proportion of fragments larger
than a given size to the total number of fragments. The
lower bound of the interval (or the size of the screen
aperture for sieve data) should represent the smallest
size debitage in the group.

The next step is to plot the logarithm of the flake size
r against the logarithm of the cumulative frequency
N(>r). The plot of these data is shown in Figure 1. For
the relation between the two variables to be fractal, this
plot must be linear. If it is, the slope of the least squares
regression line provides an estimate of D. Thus, from
Equation 4 we have D=1·52, which is merely the
negative of the slope. This is the fractal dimension of
the original ‘‘Sollberger distribution’’. The coefficient
of determination, the statistic that measures the pro-
portion of the variation in the data explained by the
regression, is a comfortably high 0·95, or 95%. This
demonstrates that the relation is highly linear, because
it is almost perfectly modelled by the linear regression.
The significance of the regression, taken from the
analysis of variance table, is P=0·000867.

Gunn and his colleagues understood the type of
statistical distribution they had discovered: ‘‘[T]he
curve is continuously rising and approaches infinity as
the shatter approaches the crystalline grain size of the
stone’’ (1976: 5). And, they explained it correctly,
though not quantitatively. ‘‘It is generally understood
by flintknappers that when a flake is removed smaller
flakes are simultaneously struck, mostly off the plat-
form of the larger flake. It seems reasonable that these
simultaneous removals would be much smaller than
the main flake, probably measuring in the very small
Classes 5 and 6, 2·25–10 mm. What the ratio of main
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Figure 3. Fractal plot of debitage size—frequency relation for three
experiments (Baumler & Downum, 1989). �, Exp 1; �, Exp. 5; �,
Exp. 19.
Table 1. Variables for the fractal plot of the Sollberger Distribution

Size interval
(mm)

Lower
bound

(r) Frequency

Cumulative
frequency

(N>r) ln (r) ln (N>r)

2·25–4·49 2·25 351 873 0·8109 6·7719
4·49–10 4·49 349 522 1·5019 6·2577

10–20 10 101 173 2·3026 5·1533
20–40 20 46 72 2·9957 4·2767
40–80 40 23 26 3·6889 3·2581

>80 80 3 3 4·3820 1·0986
flakes to simultaneous flakes would be is conjectural at
this point’’ (1976: 6). The fractal dimension quantifies
the conjectural ‘‘ratio of main flakes to simultaneous
flakes’’.

Other experimental data sets can be used to examine
the fractality of size distributions of debitage (Table 2).
Henry, Haynes & Bradley (1976: 60) published debit-
age size-frequency data from the replication of Clovis
points. In Figure 2, I plot the fractal relation for that
data set. Note that the dimension D=2·39 is very
different from that of the first example. The variability
of D between the two data sets suggests that D is
capturing a fundamental quality of the distribution,
one that can perhaps be used to characterize assem-
blages of debitage. I will further examine this property
for data sets from different reduction sequences with
other end products.

Both of the data sets examined above derive from
debitage from bifacial reduction of projectile points.
Other reduction trajectories also produce fractal distri-
butions of debitage sizes. In Figure 3, I plot the fractal
relation for three experimental replications conducted
by Baumler & Downum (1989). Experiments 1 and 5
consisted of ‘‘reduction of previously decorticated,
medium-sized nuclei (c. 8–15 cm maximum dimen-
sion), for the purpose of generating blades or elongated
flakes between 4 and 8 cm long’’. Experiment 19 was
one of several described as: ‘‘flakes and blades of
various sizes and shapes were selected for unifacial
retouching, producing what is commonly referred to as
‘scraper’ retouch on one or more edges of the blanks’’
(1989: 103). First, the linearity of the relations shown
in Figure 3 indicates that they are fractal. Thus,
non-bifacial reduction trajectories also produce fractal
size distributions of debitage. Second, the fractal di-
mensions for Experiments 1 and 5 (D=1·61, and
D=1·54, respectively) are similar, while that for the
scraper production, Experiment 19, is different from
the first two (D=2·28). This also suggests that similar
trajectories result in similar fractal dimensions. Table 2
shows that many experimental and ethnoarchaeologi-
cal data sets yield fractal relations.

Table 2 lists the fractal dimension (D), the coefficient
of determination (r2), and the probability (P) associ-
ated with a number of experimental data sets,
including those discussed above. In general each data
set represents a single replication of some sort of
stone tool. In a few cases, the data set resulted from
multiple replications of a similar reduction process
(e.g., Behm, 1983; Henry, Haynes & Bradley, 1976)
or from mixed debitage from many experiments
(Fladmark, 1982). The next columns in the table list, in
abbreviated form, the raw material and the reduction
trajectory as described by the original authors. The
reader is urged to consult the original sources for more
detail.

Not surprisingly, within this large number of exper-
iments there was significant methodological variability.
Different methods of measuring specimens appear to
produce different results, and, therefore, the exper-
iments are not all directly comparable. The different
methods appear to have little effect, however, on the
fractality of the relation. That so many of these repli-
cations, produced by many different artisans, yield
clear fractal relations is a strong indication of the
robustness of the technique.
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The data sets in Table 2 were restricted to ones that
fit the fractal model well. This was done by selecting
those that produced significant regressions, which en-
sures that they are linear relations. An arbitrary level
of significance was set for the regressions at �=0.02.
This requirement tends to exclude data sets in which
the debitage was grouped into a small number of size
intervals, because when calculating the fractal relation
each size category forms a case in the regression;
consequently, the more size intervals (i.e., the more
sieves), the more robust the regression because of the
larger number of cases. Thus, with only three or four
measured size intervals, a relation has to be almost
perfectly linear to be significant. This is true for any
distribution: modelling will only be meaningful with a
reasonable number of size intervals ranging across as
many orders of magnitude as possible. The use of only
three or four size intervals seriously weakens some
published analyses of debitage size distributions.

The data in Table 2 demonstrate the fundamental
relationship between the fractal dimension and stage of
reduction. Most reduction trajectories proceed from
coarser to finer work. Coarser work involves higher
loads and results in the removal of larger flakes on
average than the finer work of the later stages. Conse-
quently, it is generally accepted that earlier stages of
reduction produce proportionately more large flakes
while later stages generate an increasing proportion of
smaller flakes. When using the fractal dimension to
compare stages of reduction, therefore, one should
expect that D will increase with later stages of re-
duction. The data in Table 2 bear out this conclusion.
For example, the first six experiments by Baumler &
Downum (1989) shown in the table (BD1–BD6) repre-
sent an earlier stage of reduction than the remaining
four (BD7–BD9, BD19). The mean value of D for the
first six is 1·56, while for the later four the mean is
1·945. Similarly, the first two replications listed for
Behm (1983) (BE1–BE2) represent an earlier stage of
reduction than the other four listed (BE3–BE6). The
first two have lower values of D than the remaining
four. A similar situation obtains for experiments K1–
K3: splitting a cobble (K1–K2) is an earlier stage of
reduction than splitting a cobble and creating a projec-
tile point (K3) (Kalin, 1981). Again, among Root’s
replications (R1–R7) (Root, 1997), there is a progres-
sion of stages that is generally paralleled by an increase
in the value of D: ‘‘cobble testing’’ exhibits the lowest
value, ‘‘unprepared core reduction’’ is lower than ‘‘pre-
pared core reduction’’, and so forth. Another example
of this pattern comes from Ahler’s work (1986: 64–66,
Table 13). Cobble testing, again, has the lowest value
of D, hard hammer free-hand percussion the next
highest, and soft hammer bifacial thinning the highest.
Finally, the highest values of D in Table 2 are associ-
ated with production of Bayogoula and Afton points,
both of which are finely wrought bifaces. In sum, there
is a natural and systematic relationship between fractal
dimension and stage of reduction.
Archaeological Case Studies
A small number of archaeological examples will illus-
trate the practical utility of fractal analysis of debitage
for the archaeologist. The examples have been chosen
to demonstrate how the fractal dimension relates to
stage of reduction and also to show how fractal
analysis can contribute to archaeological interpretation
of lithic assemblages.
Methods
The size grading of the debitage in all the following
examples was performed, at least in part, by measuring
the ‘‘maximum dimension’’ of each specimen. This
process consisted of matching each specimen, by hand,
to the smallest circle or square of a graduated series
within which it fit. For the purposes of these analyses,
the next smaller size is considered the sieve aperture
upon which that specimen would have rested. There is
a small fallacy in this approach, however, because in
theory sieves sort pieces by their intermediate axis,
while our measurements were based upon the largest
axis. This fact does not invalidate the following analy-
ses, but it means that the results will differ from
analyses conducted with graduated sieves.

In addition, all these archaeological distributions
have been affected by their method of recovery. In
particular, the small size materials have been irregu-
larly recovered; the incomplete recovery results from
the sieving of soil through screens during excavation.
As the minimum dimension of an artifact approached
the aperture of the excavation screen, the likelihood
that it fell through the screen increased, regardless of
the artifact’s maximum dimension. This explains why
in some cases the number of flakes occurring in the
smaller sizes is less than would be predicted by the
fractal relation. For example, in the excavations car-
ried out at Mayapán (see below), we employed 1/4-inch
hardware cloth for sieving. The size of the square
aperture is therefore c. 6·35 mm, but along the diago-
nal the aperture is about 9 mm. In theory, we should
not have recovered anything smaller than 9 mm, but of
course we did. More important, some significant pro-
portion of debitage larger than 9 mm in maximum
dimension must have passed through the screen be-
cause its smallest axis fit through the aperture. There-
fore, our smallest size grades are missing specimens
that slipped through the excavation screen. This forced
us to exclude data from the smallest size grades be-
cause they were inconsistently recovered, and their
frequencies skewed the results.

The use of graduated sieves for granulometry, which
is the origin of the measurement techniques used here,
were designed by geologists for the description of
natural sediments. They therefore rely in some respects
on the natural tendency of geological particles to
approach a spherical form. For example, the ability of
geologists to convert from particle counts of given radii
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to masses depends on the assumption that particles are
approximately spherical. Of course, the particle shapes
of natural sediments are highly distinctive, and the
study of them is well developed. Lithic tool debitage is,
in contrast, a very different kind of phenomenon.

Most debitage is distinctively unnatural in shape.
Not only do most specimens exhibit attributes that are
rare in nature, like bulbs of percussion, faceted or
prepared platforms, and so forth, but many flakes are
unnaturally thin and flat. This tendency derives from
the exploitation of the properties of conchoidal frac-
ture to transform the natural shape of the material into
an implement useful to humans. The tendency of flakes
to be tabular rather than spherical contributes to the
difficulty of accurately and consistently performing
sieve analyses on this type of material. It implies that
for studies such as these hand measurement of individ-
ual specimens is preferable to the use of sieves; never-
theless, in the future it would be worthwhile to
experiment with hand measurement methods that
logically mimic sieving methods.
The Wetherington Island Site (8HI473)
The Wetherington Island Site is a large, stratified,
multicomponent site located near the eastern edge of
Tampa, Florida (Brown et al., 1996; see also Chance,
1982; Chance & Misner, 1984; Goodyear et al., 1983).
It lies along the north bank of Cow House Creek,
which flows seasonally in an abandoned channel of
the Hillsborough River. The site is one of a large
cluster of related and contemporaneous sites located
on the landform between Cow House Creek and the
Hillsborough River. The main component of the site is
a massive, stratified deposit of debitage derived from
quarrying of residual chert nodules and bedrock cherts
from the Tampa Limestone Member of the Hawthorne
Formation. Excavations revealed quarry pits, unmodi-
fied chert nodules, and modified bedrock cherts. The
cherts at the site include fossilized coral as well as more
common types of chert and chalcedony. The main
component is poorly dated, but a small number of
identifiable projectile points indicate that it falls in the
Middle and Late Archaic periods. The major occu-
pation is preceded by a deeply buried, fugitive compo-
nent associated with megafauna. This earliest
component is presumably Paleoindian. The latest
component was deposited after the Hillsborough
River, having burial the main component under allu-
vial sands, abandoned the Cow House Creek channel
in response to rising Holocene sea level. Cow House
Creek became a seasonal overflow channel for the new
Hillsborough River course. The underfit creek mean-
dered in the oversized channel, slowly filling it with a
complex series of interbedded sands and clays. In this
period, people camped repeatedly along the edge of the
slough, depositing materials within the slowly accreting
sediments. This youngest component that developed in
the infilling channel appears to be functionally different
from the adjacent quarrying site. There is little evi-
dence for chert exploitation or knapping beyond
what might occur in any hunting camp (Brown et al.,
1996).

The main component is characterized by enormous
quantities of debitage, including large cores measuring
over 1 m in length. This component of the site is
obviously a lithic procurement and primary reduction
locus. The evidence for this conclusion takes several
forms. First, we excavated at least one quarry pit and
exposed parts of a couple of others. Second, we ident-
ified areas where bedrock cherts had been exploited.
Third, we found unmodified chert nodules, along with
many modified fragments and cores. Fourth, the per-
centage of cortical debitage was quite high. Fifth, the
average size of flakes, as measured by weight, was
large. These are all indicia of lithic raw material
extraction and primary reduction. Nevertheless, there
is some internal variation and spatial structure within
this component. Quarry pits seem concentrated in
some areas, while knapping and reduction took place
in other areas (Brown et al., 1996).

The quantity of debitage recovered from the exca-
vations precluded analysis of every specimen. Only
selected proveniences were analysed fully, and, when
the number of artifacts from a single provenience was
large, a random sample of debitage was drawn for
analysis. The maximum dimension of each specimen
was measured by using a series of graduated circles on
a template to assign specimens to bins. For debitage
measuring 54 mm or less, the increment between circles
was 4·5 mm; thereafter, the increment was 18 mm
(Brown et al., 1996: 130–132)

Block D exhibited complex stratigraphy, but the
discovery of quarried chert bedrock at the bottom of
the excavation suggested that the matrix consisted of
mixed feature fill within a large quarry pit. The debit-
age from the unit clearly indicates an early stage of
reduction: the mean weight of specimens, the percent-
age of specimens with cortex, and the percentage
shatter are all high (Table 3). Figure 4 presents the
fractal plot of the size-frequency relation for a random
sample of debitage from Block D, Unit 9, Level 5. The
low value of D, 1·4, indicates an early stage of reduc-
tion that is in agreement with the other characteristics
of the specimens. For comparison, note that Exper-
iment A1, ‘‘cobble testing’’ (Table 2), has a fractal
dimension of 1·35. Similarly, Experiment R4, cobble
testing of Knife River Flint, has a fractal dimension of
D=1·36. Experiment BE1, ‘‘hard hammer reduction of
large cores to produce large flake blanks’’, has a fractal
dimension of 1·40. All those reduction trajectories
appear to be reasonable descriptions of the behaviour
found at Block D of Site 8HI473.

The debitage samples analysed from Block G exhib-
ited characteristics similar to those from Block D
(Figure 5). Again, the mean weight, percent with
cortex, and percentage of shatter all point to an early
stage of reduction (Table 3). The value of the fractal
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dimension, D=1·85, also corresponds to an early stage
of reduction.

A sample of debitage from Block E, Feature 11–1, a
workshop and primary reduction locus, has distinctly
different characteristics: flake weight, percent with
cortex, and percentage of shatter are all dramatically
lower. D is correspondingly higher, 2·5, which indicates
a measurably later stage of reduction (Figure 6).

The final sample, from Block H, represents the latest
component at the site, from the infilled channel of the
ancestral Hillsborough River. Although the percent of
debitage with cortex and proportion of shatter are
moderate, the low average specimen weight (0·74 g)
unambiguously indicates a later stage of reduction
than the other samples (Table 3). The associated fractal
dimension is 2·9, which suggests a secondary or inter-
mediate stage of reduction (Figure 7). We know rela-
tively little about this occupation of the site, but it
resembles a base camp or hunting/foraging station
much more than it does a specialized lithic procure-
ment site (Brown et al., 1996: 252–256).

In this section, I have shown (1) that data sets from
archaeological assemblages of debitage are fractal dis-
tributions; (2) that the fractal analysis of archaeologi-
cal debitage produces results that correspond to the
expectations derived from the analysis of the exper-
imental data sets. Specifically, the values of D for
archaeological collections approximate those from ex-
periments that replicate behaviours that are inferred in
the archaeological cases; and (3) equally important,
that the values of D from the archaeological data sets
confirm the interpretations of stage of reduction de-
rived from conventional measures, like mean weight of
specimens.
Table 3. Summary characteristics of debitage from selected proveniences at the Wetherington Island Site

Provenience
Mean weight of

debitage (g)
Percentage
with cortex

Percentage of
shatter D

Stage of
reduction

Block D, Unit 9, Level 5 7·65 59·76 12·8 1·4 Very early
Block G, Unit 15, Levels 3–6 10·67 46·32 8·4 1·85 Very early
Block E, Unit 17, Level 3, Feature 11–1 1·22 15·89 1·3 2·5 Early to middle
Block H, Unit 20, Level 5 0·74 32·86 8·6 2·9 Middle
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Figure 5. Fractal plot of debitage size—frequency relation from
combined random samples, Block G, Site 8HI473 (Brown et al.,
1996).
Mayapán (16Qd(7):2)
Mayapán, Yucatán, México, is a Late Postclassic
period site located approximately 40 km south–
southeast of Mérida, the state capital. The site was
culturally Lowland Maya, but exhibits the strong
central Mexican influences characteristic of that period
in the Peninsula of Yucatán. The site, which is im-
mediately pre-Conquest in date (c.  1200 to 1450), is
well-known historically as the political capital of
northern Yucatán. It is a large site, occupying more
than 4 km2, and is surrounded by a massive defensive
wall over 9 km long. Within the wall, the ruins of over
4000 buildings are found (Brown, 1999; Smith, 1962).
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Figure 8. Fractal plot of the size-frequency relation of debitage from
chert workshop in Houselot S-139, Mayapan (N=12,821).
Both chert and obsidian lithic industries are known
from the site, but here I am only concerned with the
former.

The broad outlines of the chert assemblage of
Mayapán have been described by Proskouriakoff
(1962). Formal bifaces are known from the site, but are
rare outside of ceremonial contexts. In my excavations
in residential contexts, I found that expedient chert
tools are common, while formal or curated tools are
the exception. The total absence of any kind of func-
tional axe or celt in the assemblage is noteworthy. The
appearance of small, side-notched chert arrow points
seems to be related to the Mexican influence in the
region.
For some chert artifact samples, I measured the
maximum dimension of each specimens by using a
series of square templates that increased in size in
5 mm increments, as measured along the side, not the
diagonal, of the square. I size-graded the materials by
determining which square the artifact could fit in
without touching the sides of the square (Patterson,
1990). I applied this technique to the thousands of
specimens recovered from systematic surface collec-
tions from a chert workshop in Houselot S-139 (see
below). For other specimens, mainly those specimens
recovered from excavations, I measured their maxi-
mum dimensions to c. 0·1 mm using calipers. For the
purposes of the analyses presented here, those ratio
scale measurements have been sorted into a series of
bins. The bins have been kept fairly narrow (i.e., 2 mm)
so as not to degrade the data more than necessary.
Since the analysis of the chert assemblage is incom-
plete, these results should be considered preliminary.

In the northeastern portion of Houselot S-139, I
identified a chert workshop. It appeared to be a
workshop in part because of the high surface density of
chert (in excess of 1000 m�2) (Brown, 1999: 460–461).
Compared to material from other proveniences, the
debitage from the workshop was distinctive. For
example, the workshop contained an unusually large
number of biface thinning flakes. In addition, the
debitage from the workshop had more non-cortex and
fewer cortical specimens than expected when compared
with material from other households (�2=26·63, df=2,
P=1·65�10�6) (Brown, 1999: 460–462). The fractal
relation between size and frequency for the debitage is
shown in Figure 8: D=4·5 (r2=0·97, P=1·0�10�5).
This value of D is higher than any recorded from
experimental replications. It reflects a high proportion
of very small flakes and a corresponding dearth of
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large ones. This could occur as a result of either the
reduction of small pieces of raw material, that is,
starting from small nodules, or very late stage reduc-
tion, or a combination of both. One might argue that
this is a lag deposit from cleaning and removal of
secondary refuse, a process which is known to create
lag deposits of tiny particles (e.g., Behm, 1983; Clark,
1991a, b; Healan, 1995). This argument has to be
rejected, however, because of the frequency of large
fragments in the workshop; that is, while the average
size of debitage in the workshop is small, the number
and size of the large fragments present make it unlikely
to be a lag deposit. Rather, the large numbers of biface
thinning flakes and the high value of D both point to
primary refuse from late stage biface reduction and
finishing. The volume of production that can be in-
ferred for this workshop is clearly in excess of that
which could be consumed within the household and
therefore must be interpreted as mass production or
production for exchange.

Another group of samples from similar contexts
within the same houselot (i.e., Pit 17 and random
surface collections) provide generally similar results
(Figure 9). For this data set, D=3·7, r2=0.98, and
P=1·5�10�15. Although the technological emphasis
at Mayapán is clearly on expedient industries, the
formal bifaces, recovered mainly from ceremonial con-
texts at the site centre, are finely manufactured. Ac-
cordingly, it is possible that this workshop served to
finish bifaces of one or more of the types found in the
ceremonial centre.

Houselot S-130 lies near Houselot S-139. Exca-
vations in Houselot S-130 produced unusually large
quantities of chert compared to most houselot exca-
vations. The fractal dimension is shown in Figure 10:
D=3·7, r2=0.96, and P=7·72�10�18. The fractal
dimension D for Houselot S-130 is remarkably similar
to those of Houselot S-139, and most of the obser-
vations made above apply to both. The overall volume
(and density) of chert debitage in Houselot S-130 is,
however, much lower than in S-139; therefore, it seems
unlikely that houselot S-130 can boast of specialized
production.

Most of the other houselots investigated at Mayapán
did not exhibit a fractal distribution of debitage. The
raw data from those houselots (i.e., the frequencies in
the size intervals, not the cumulative frequencies) pre-
sented an approximately normal (Gaussian) frequency
distribution. This is inexplicable in terms of current
theories of fragmentation, but is easy to understand
archaeologically: redeposition must have caused the
loss of many small flakes. It is well-documented that
cleaning and re-disposal of knapping debris tends to
leave small flakes behind in primary contexts as a lag
deposit (e.g., Behm, 1983; Clark, 1991a, b; Healan,
1995). Thus, small flakes remain near their original
locations as primary refuse while a disproportionate
number of larger flakes are removed and transported
to become secondary refuse.

The data from Mayapán confirm, again, that the
fractal analysis of archaeological collections yields
meaningful inferences about stage of reduction and
provides a useful method of describing the size distri-
bution of assemblages of debitage.
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Figure 9. Fractal plot of size—frequency relation for debitage from
pit 17 and random surface collections (for r>10 mm), Houselot
S-139, Mayapan.
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Figure 10. Fractal plot of size—frequency relation for debitage from
Houselot S-130, Mayapan.
Conclusion
I have argued that since most rock fractures fractally,
then so too should the rocks used by people to make
stone tools. I have shown that experimental repli-
cations of stone tools create fractal size-frequency
distributions of debitage. Moreover, the parameter of
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the fractal distributions (the fractal dimension) relates
closely and systematically to stage of reduction. This
discovery implies that the method is robust and useful.
The archaeological cases examined here confirm that
the method has inferential power and practical appli-
cability. Finally, it should be apparent that the method
of evaluating the fractal parameters is very simple and
accessible to all archaeologists. The method presented
here is the best way to evaluate the relative proportions
of flakes of different sizes: D is the best and easiest
measure of this variable. It is mathematically correct
and supported by physical theory.

Not all debitage distributions are fractal, but many
are. The fractal distribution is clearly the natural
size-frequency distribution for the fragmentation of
most archaeological lithic materials. The relationship
of the fractal dimension to stage of reduction is funda-
mental and systematic and should be exploited by
archaeologists. The fractality of this phenomenon
appears to be largely a function of geophysics, but it
is clearly influenced by human behaviour, as the
variation of D shows.

A general and significant reason for adopting fractal
analysis is the implications it carries for non-linear
science in archaeology. Fractal patterns are the result
of strongly non-linear dynamics, particularly of sys-
tems that are chaotic or self-organized critical (SOC).

Whereas a fractal is always a set, chaos is a charac-
teristic of deterministic dynamical systems. Chaotic
systems are common in nature, perhaps more common
than stable, non-chaotic ones. A deterministic dynami-
cal system is said to be chaotic if ‘‘solutions that have
initial conditions that are infinitesimally close diverge
exponentially’’ (Turcotte, 1997: 219). This same funda-
mental characteristic of chaos is also called ‘‘sensitive
dependence on initial conditions.’’ To understand this
concept, one can envision arbitrarily close orbits shoot-
ing off at wildly different trajectories. This is not
stochastic behaviour. Chaotic behaviour occurs in sys-
tems that are completely determined. The fact that
deterministic solutions can diverge exponentially
means that even simple systems can behave in an
unpredictable fashion. What happens, in fact, is that
the behaviour of the system becomes mathematically
unpredictable because any error or perturbation, no
matter how small, propagates until it overwhelms the
underlying pattern. The practical significance of cha-
otic behaviour is that prediction becomes impossible in
the presence of chaos. This goes right to the heart of
any philosophy of science that takes as its goal the
discovery of predictive laws.

The relationship between fractals and chaos is of
fundamental importance to archaeology. Fractals are
the geometry of chaos (Peitgen, Harmut & Dietmar,
1992: 59). Strange attractors, which are the solution
sets of chaotic systems, are fractals (Lorenz 1993:
176–178; Ruelle, 1991: 64). Fractals are the static trace
of the orbits of chaotic dynamical systems. Therefore,
in many contexts, fractals imply chaos. It is of course a
dictum of modern archaeology that the archaeological
record is the static picture of past cultural dynamics
(e.g., Binford, 1981). If, then, some aspect of the static
archaeological record is fractal, we may be able to infer
that the original dynamical system that created the
record was chaotic. Large and precise data sets are
typically required to identify chaos in simple physical
systems. Since such data sets are essentially unknown
in archaeology, in which highly complex and poorly
understood systems are the rule, fractals offer one
means by which chaos can be recognized.

‘‘Self-organized criticality’’ is another concept that
links dynamical systems and fractals (Bak, 1996; Bak
et al., 1988). Certain non-linear dynamical systems
exhibit self-organized criticality. ‘‘Criticality’’ refers to
a marginally stable state toward which these systems
spontaneously evolve. The classic model of this phe-
nomenon is a sand pile to which sand is added one
grain at a time. Eventually, the slope of the pile will
reach a critical state—the angle of repose—after which
the addition of more sand causes avalanches. Study of
the avalanches indicates that they possess no natural
scale and, thus, they exhibit fractal statistics in both
space and time. The avalanches allow the system to
evolve back to a critical state, where the further
addition of sand will cause more avalanches. Thus,
after perturbation, the system evolves back to marginal
stability. The fractal characteristics of the avalanches
of the theoretical sandpiles appear to explain several
natural phenomena, including the fractal size-
frequency distribution of geologic strata and the gen-
eral fractality of erosional landscapes and hydrological
systems (Bak, 1996: 80–84). Some physical systems,
like meandering rivers, appear to unite all three con-
cepts of fractals, chaos, and SOC: simulations of rivers
indicate that the system evolves to a critical state that
oscillates between stability and chaos (Stølum, 1996).
For the reader thinking of archaeological and human
systems, SOC will inspire not only explanations for site
stratigraphy and taphonomy, or settlement patterns,
but also systemic models of historic patterns, such as
the rise and collapse of early states.

It may not be clear whether the fragmentation
processes of archaeological lithic materials are either
chaotic or SOC. Nevertheless, it is important that we
use the mathematics and concepts of fractals in archae-
ology to explore non-linear processes in prehistory.
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