TAT	NEW/CHANGE PROGRAM REQUEST Undergraduate Programs		UUPC Approval \qquad $12 / 4 / 23$ UFS Approval \qquad Banner \qquad
FLORIDA ATLANTIC UNIVERSITY	Department Mathematical Science College Science		Catalog ___
Program Name Bachelor of Science degree in Mathematics		\square New Program* $\boxed{\text { Change Program* }}$	Effective Date (TERM \& YEAR) Spring 2024
Please explain the requested change(s) and offer rationale below or on an attachment. The Department of Mathematical Sciences at Florida Atlantic University (FAU) proposes to revise the BS program in Mathematics. The primary goal is to increase enrollment in mathematics degree programs at FAU. This program revise will update our curriculum offerings to improve student preparedness for the demands of the current labor market, and better align the programs with the expertise of the core faculty groups within the department. We propose to have four concentrations in the BS program: (1) Pure Mathematics (2) Mathematical Cryptology (3) Mathematical Biology (4) Statistics and Data Science (for more details, please see the attached note.)			
*All new programs Faculty Contact/ Yuan Wang/ywang	nd changes to existing programs must be Email/Phone @fau.edu/(561) 297-2672		wing the new or proposed changes s that may be affected by the entation
Approved by Department Chair College Curriculu College Dean UUPC Chair Undergraduate UFS President Provost \qquad	Chair Korey Sorge dies Dean		Date $\begin{gathered} 11 / 21 / 2023 \\ \hline 11 / 21 / 23 \\ \hline 11 / 28 / 23 \\ \hline 12 / 4 / 23 \\ \hline 12 / 4 / 23 \\ \hline \end{gathered}$

Email this form and attachments to mjenning@fau.edu seven business days before the UUPC meeting.

Catalog Change (texts in blue are newly added)

Mathematics
 Bachelor of Science (B.S.)

The B.S. program in Mathematics consists of four concentrations:
(1) Pure Mathematics
(2) Mathematical Cryptology
(3) Mathematical Biology
(4) Statistics \& Data Science

To complete the B.S. program, students will complete the specific courses for one of the concentrations. All students will take two courses in calculus; at least one statistics course; Discrete Mathematics, and at least one programming course.
(1) Pure Mathematics Concentration

Galculus 1 Calculus with Analytic Geometry 1	MAC 2311	4
Galculus 2 Calculus with Analytic Geometry 2	MAC 2312	4
Galculus 3 Calculus with Analytic Geometry 3	MAC 2313	4
General Chemistry 1 and Lab or	CHM 2045\&L	or
General Physics 1 and Lab	PHY 2048\&L	$4-5$
Discrete Mathematics	MAD 2104	3
Introduction to Computational Math	MAD 2502	3
Differential Equations 1	MAP 2302	3
Matrix Theory	MAS 2103	3
Introduction to Advanced Mathematics	MHF 3202	3
Mathematical Problem Solving	MAT 4937	3
Linear Algebra 2	MAS 4107	3
Modern Analysis	MAA 4200	3
Vector Calculus	MAS 3156	3
Modern Algebra	MAS 4301	3
Introductory Complex Analysis	MAA 4402	3
Probability and Statistics 1	STA 4442	3
Introductory Analysis 1	MAA 4226	3

Introductory Abstract Algebra 1
Upper-division math electives
Mathematics Concentration Total (excludin
(2) Mathematical Cryptology Concentration
MAS 4304

Calculus and Analytic Geometry 1
Calculus and Analytic Geometry 2
Calculus and Analytic Geometry 3
General Chemistry 1 and Lab
General Physics 1 and Lab
Discrete Mathematics
Matrix Theory
Programming 1
Introductory Number Theory
Introduction to Advanced Mathematics
Probability and Statistics 1
Cryptography and Information Security
Modern Algebra
Programming 2
Data Structures and Algorithm Analysis

MAC 2311	4
MAC 2312	4
MAC 2313	4
CHM 2045\&L	or
PHY 2048\&L	$4-5$

MAD 21043
MAS 21033
COP 22203
MAS 3203
MHF 32023
STA 44423
CIS 43623
MAS 43013
COP 30143
COP 35303
Approved upper-division math electives, choose 2. For example, but not limited to the following (courses marked with * apply to the undergraduate Cybersecurity Certificate program)

6
Computational Statistics STA 3100
Vector Calculus MAS 3156
Engineering Mathematics 1 MAP 3305
Numerical Methods MAD 3400
Linear Algebra 2 MAS 4107
Introduction to Methods in Complex Systems MAP 4112
Mathematics of Cybersecurity* MAP 4190
Mathematics for Cryptography* MAS 4206
Graph Theory MAD 4301
Topology for Data Science MTG 4325
Numerical Analysis 1 MAD 4401
Introduction to Coding Theory* MAD 4605
Post-quantum Cryptography (New course, in the approval cycle)
Cryptography of Blockchain (New course, in the approval cycle)

MAD 4475

MAD 4476

Approved upper-division EECS Electives in the Cybersecurity Certification program, choose 3. For example, but NOT limited to		
Introduction to Database Structure	COP 3540	
Python Programming	COP 4045	
Design and Analysis of Algorithms	COT 4400	
Theory of Computation	COT 4402	
Introduction to Cryptographic Engineering	CDA 4321	
Applied Cryptography and Security	CIS 4634	
Network and Data Security	CNT 4411	
Applied Machine Learning and Data Mining	CAP 4612	
Introduction to Deep Learning	CAP 4613	
Introduction to Artificial Intelligence	CAP 4630	
Computer Operating Systems	COP 4610	
Introduction to Data Mining and Machine	CAP 4770	
Learning	CAP 4770	
Concentration Total (excluding science)		57
(3) Mathematical Biology Concentration		
Mathematics for Biological Sciences 1 (New Course)	MAP 2483	or
Methods of Calculus	MAC 2233	or
Life Science Calculus 1	MAC 2241	or
Calculus with Analytic Geometry 1	MAC 2311	3-4
Mathematics for Biological Sciences 2 (New Course)	MAP 2484	4
Introductory Statistics	STA 2023	3
Introduction to Computational Mathematics	MAD 2502	3
Discrete Mathematics	MAD 2104	3
Biological Principles	BSC 1010	3
Biodiversity	BSC 1011	3
General Chemistry 1	CHM 2045	3
General Chemistry 2	CHM 2046	3
Applied Mathematical Modeling	MAP 4103	3
Introduction to Biostatistics	STA 3173	3
Genetics	PCB 3063	or
Principles of Ecology	PCB 4043	4
Artificial Intelligence Applications in Biology	IDS 4139	3
Applied Machine Learning and Data Mining	CAP 4612	3
Upper-division math electives (choose 2)		6

Upper-division science electives (choose 2)
with Prefix BOT, BSC, MCB, ОСB, РСB, ZOO,

Research Intensive Elective (Choose 1)
RI: Statistical Learning
RI: Introduction to Data Science
RI: Industrial Problems in Applied Math
RI: Neurobiology of Learning and Memory
RI: Neurophysiology

STA 4241
CAP 3786
MAP 4913
PSB 4810
PCB 4832C

Concentration Total (including science) 59-60
Note: For this concentration, MAP 2484 can be replaced by MAC 2312, MAP 2302, and MAS 2103.

(4) Statistics \& Data Science Concentration

Calculus and Analytic Geometry 1	MAC 2311	4
Calculus and Analytic Geometry 2	MAC 2312	4
Calculus and Analytic Geometry 3	MAC 2313	4
General Chemistry 1 and Lab or	CHM 2045\&L	or
General Physics 1 and Lab	PHY 2048\&L	$4-5$
Discrete Mathematics	MAD 2104	3
Matrix Theory	MAS 2103	3
Introduction to Computational Mathematics	MAD 2502	3
Programming 1	COP 2220	3
Introduction to Advanced Mathematics	MHF 3202	3
Modern Algebra	MAS 4301	3
Introduction to Complex Analysis	MAA 4402	3
Probability and Statistics 1	STA 4442	3
Applied Statistics 1 and Applied Statistics Lab	STA 4234 and	3
STA 4202L	3	
Programming 2	COP 3014	3
Data Structures and Algorithm Analysis	COP 3530	3
Approved Math Electives, choose 2, at least		6
one upper-division		6
Concentration Electives, choose 2:		

RI: Introduction to Data Science CAP 3786
RI: Statistical Learning
Topology for Data Science
STA 4241
MTG 4325
Applied Mathematical Modeling MAP 4103
Industrial Problems in Applied Math MAP 4913
Introduction to Deep Learning
CAP 4613
Introduction to Data Mining and Machine
Learning

Introduction to Data Science and Analytics
Time series
Computational Statistics
Introduction to Methods in Complex Systems
Theory of Computation
Concentration Total (excluding science)

CAP 4773
STA 4853
STA 3100
MAP 4112
COT 4420

Required Minimum GPA 2.5

Notes:

1. Upper-division mathematics electives: These electives must be chosen from courses offered by the Department of Mathematical Sciences and numbered 3000 or higher. The following courses may not be used as upper-division mathematics electives: STA 3163, STA 3173, STA 3949, MAT 3949, MAP 4945, or STA 4821.
2. In calculation of the departmental GPA, where relevant, the highest grade in the course will be used.
3. Because of overlap in course content, Mathematics majors may receive credit for at most one course in each of the following pairs: (MAP 2302, MAP 3305), (MAP 4303, MAP 4306), (STA 4443, STA 4032).
4. The upper-division mathematics courses required for these programs that are completed at FAU must be completed with at least a 2.2 GPA (B.A. program) or 2.5 GPA (B.S. program).
5. Any mathematics course taken at another institution must be completed with a grade of at least "C-" "C" to be considered part of either baccalaureate program.
6. Mathematical Sciences majors are required to consult with their advisors at least once a year.
