An Introduction to NSF Funding: a view from the “inside”

Clayton B. Cook
BIO/IOS
National Science Foundation
(2008-2010)

ccook30@hboi.fau.edu

Gisèle Muller-Parker
EHR/DGE
National Science Foundation

gtmuller@nsf.gov
Who we are:

Clayton B. Cook
Program Director, IOS
(Integrative Organismal Systems; “organismal biology”)

ccook30@hboi.fau.edu

Symbiosis, Defense and Self-recognition (SDS)

Ecology of Infectious Diseases
Life in Transition

Deep Horizon RAPID responses
Ocean Acidification
Who we are:

Gisèle Muller-Parker
EHR (Education and Human Resources)
Program Director, DGE (Division of Graduate Education)

Graduate Research Fellowship Program (GRFP)

gtmuller@nsf.gov
Program directors: What to do they do?

- Manage funded projects and budgets
- Provide input into the development of new programs (rotators)
- Arrange for review of submitted proposals (external reviews, panels)
- Make funding recommendations on submitted proposals
What is appropriate for NSF consideration?

The National Science Foundation Act of 1950 (Public Law 81-507) set forth NSF's mission and purpose:

- **basic** scientific research and research fundamental to the engineering process,
What is appropriate for NSF consideration?

The National Science Foundation Act of 1950 (Public Law 81-507) set forth NSF's mission and purpose:

• **basic** scientific research and research fundamental to the engineering process,

• programs to strengthen scientific and engineering research potential,
What is appropriate for NSF consideration?

The National Science Foundation Act of 1950 (Public Law 81-507) set forth NSF's mission and purpose:

- **basic** scientific research and research fundamental to the engineering process,

- programs to strengthen scientific and engineering research potential,

- science and engineering education programs at all levels and in all the various fields of science and engineering
What is appropriate for NSF consideration?

- **basic** scientific research and research fundamental to the engineering process,

 In general, projects of an **applied** nature are not appropriate for NSF unless they address broader questions

 [EPA, NOAA, Sea Grant, state agencies, etc]
What is appropriate for NSF consideration?

- **basic** scientific research and research fundamental to the engineering process,

 In general, projects of an **medical** nature (human disease) are more appropriate for NIH;
What is appropriate for NSF consideration?

• **basic** scientific research and research fundamental to the engineering process,

In general, projects of an **medical** nature are more appropriate for NIH;

In general, projects dealing with **agricultural problems** are more appropriate for USDA;
NSF Organizational Structure

Discipline-based Directorates:
- Biological Sciences
- Computer & Information Sciences & Engineering
- Engineering
- Geosciences
- Mathematical & Physical Sciences
- Social, Behavioral & Economic Sciences

Education & Human Resources

Divisions within each Directorate

Sections/Clusters

Programs within Sections

Program Directors (permanent & IPAs)
NSF’s new director: Subra Suresh

Former NSF Directors:
Arden Bement
Rita Colwell
FY 2007 Organization Chart

Office of the Director and Staff Offices

NSF Director
Deputy Director

National Science Board Chair
Vice Chair

Office of Inspector General

Directorate for Social, Behavioral, and Economic Sciences

Office of Cyberinfrastructure

Office of International Science and Engineering

Office of Polar Programs

Office of Budget, Finance, and Award Management

Office of Information and Resource Management

Directorate for Biological Sciences

Directorate for Computer and Information Science and Engineering

Directorate for Education and Human Resources

Directorate for Engineering

Directorate for Geosciences

Directorate for Mathematical and Physical Sciences
Wingfield to Head NSF Biological Sciences

Special Notices

NSB Accepting Nominations for the 2012 Vannevar Bush and Public Service Awards

NSF Accepting Nominations for the 2012 Alan T. Waterman Award

Latest News
"GEO"
(Margaret Leinen, former AD for GEO)
Divisions:

OCE
(Division of Ocean Sciences)

Biological, Chemical and Physical Oceanography programs

AGS (Atmospheric and Geospace Sciences)

EAR (Earth Sciences)
“OPP”
Office of Polar Programs
Education and Human Resources:

Divisions:

DUE
(Division of Undergraduate Education)

DGE
(Division of Graduate Education)
Who can apply for an NSF grant?

Generally, the definition of a Principal Investigator ("PI") on a research proposal is set by the institution - e.g. regular faculty members, research associates, post-doctoral fellows.

However - there are grants for which graduate students can apply.
NSF Division of Graduate Education

- **GK-12**: Creating Novel Opportunities for Graduate and Pre-College Education
- **IGERT**: Promoting Innovation through Interdisciplinary Collaborations
- **GRF**: Enriching Experiences for Individuals

- Graduate Research Fellowship (GRF)
Who we are:

Gisèle Muller-Parker
EHR (Education and Human Resources)
Program Director, DGE (Division of Graduate Education)

Graduate Research Fellowship Program (GRFP)

gtmuller@nsf.gov

GRFP receives 15,000 proposals annually

~3,000 NSF Graduate Fellowships are awarded each year
The NSF Graduate Research Fellowship Program (GRFP) provides Fellowships to **individuals** selected early in their graduate careers based on their demonstrated potential for significant achievements in science and engineering.

Three years of support is provided by the program for graduate study that is in a field within NSF's mission and leads to a research-based master's or doctoral degree.
As of 9/2/2011:
New solicitation
November 16, 2011

Social Sciences; Psychology; Geosciences; STEM Education and Learning

November 18, 2011

Life Sciences; Interdisciplinary - See Section V.A.

IMPORTANT INFORMATION AND REVISION NOTES

1. Application deadlines have changed.
2. Refer to Section V.A., Interdisciplinary Applications, for the deadline for Interdisciplinary Fields of Study.
3. Fields of Study have been revised.
4. Eligibility criteria have changed.
5. Reference writer deadlines and format of letters have changed.
6. All transcripts must be submitted electronically via the NSF FastLane Graduate Research Fellowship Program Application Module.
7. Before submitting an application, applicants must certify that they meet the GRFP Eligibility criteria defined in this Solicitation. This is in addition to the certifications that the essays and proposed research contained in their applications are their own original work, and the certifications on use of controlled substances; delinquency on Federal debt; and debarment and suspension.
Graduate Education and Career Advancement

GK–12: Creating Novel Opportunities for Graduate and Pre-College Education

- Graduate Teaching Fellows in K–12 Education (GK–12) (STEM now ending)

IGERT: Promoting Innovation through Interdisciplinary Collaborations

GRF: Enriching Experiences for Individuals

NSF Division of Graduate Education
Graduate Education and Career Advancement

GK-12
Creating Novel Opportunities for Graduate and Pre-College Education

IGERT
Promoting Innovation through Interdisciplinary Collaborations

GRF
Enriching Experiences for Individuals

Integrative Graduate Education and Research Traineeship Program (IGERT)
The Division of Research Presents a Research Roundtable

Integrative Graduate Education and Research Traineeship Program (IGERT) in Systems Biology

Friday, September 30, 2011

3:00 - 4:30 pm

Location:

Dean’s Conference Room, Third Floor
New Engineering Building, Engineering East
Boca Raton Campus

Topic Leaders:

* Dr. Ramaswamy Narayanan, professor in biology and assistant vice president for research
* Dr. John Schatzle, director of scientific affairs, VGTI
Division of Graduate Education

Graduate Research Fellowship Program (GRFP): Gisele Muller-Parker

NSF Graduate Teaching Fellows in K-12 Education (GK-12): Sonia Ortega and Richard McCourt

Integrative Graduate Education and Research Traineeship (IGERT): Carol Stoel and Melur Ramasubramanian
Support for New Investigators

• All NSF programs support new investigators as part of the regular (“core”) programs.
Support for New Investigators

- All regular NSF programs support new investigators.
- Some Directorates have special programs for young investigators (e.g., BIO Research Initiation Grants; “RIG’s”; BRIGE in Engineering).

Note - these are Broadening Participation awards, aimed at under-represented minorities (African-Americans, Hispanics, Native Americans, Pacific islanders).
Support for New Investigators

• All regular NSF programs support new investigators.
• Special programs for young minority investigators
• Faculty Early-Career Development (CAREER) Program
 • Prestigious awards to help junior faculty develop activities that can effectively integrate research and education within the context of their organizations.
 • 4-5 year awards
Support for New Investigators

- All regular NSF programs support new investigators
- Special programs for young minority investigators
- Faculty Early-Career Development (CAREER) Program
 - Most prestigious awards to help junior faculty develop activities that can effectively integrate research and education within the context of their organizations.

Suggest applying for CAREER after several years of getting a program “on track” - requires a 4-5 year integrated plan of research and education
Support for New Investigators

• All regular NSF programs support new investigators
• Special programs for young minority investigators
• Faculty Early-Career Development (CAREER) Program
• Science, Engineering and Education for Sustainability Fellows (SEES; new program)

Interdisciplinary program limited to PI’s within 4 years of receiving Ph. D.
Objective: “to enable the discoveries needed to inform actions that lead to environmental, energy and societal sustainability.”

Four-year awards.
NSF Resources for Proposal Preparation

NSF Resources for Proposal Preparation

• NSF HomePage -- http://www.nsf.gov

• Search individual divisions, programs
 Descriptions of individual programs
 Download lists of funded projects with abstracts
 Contact information for Program Directors
NSF Resources for Proposal Preparation

- Latest information about recent announcements
NSF Resources for Proposal Preparation

• National Science Foundation Update:
 nsf-update@nsf.gov

NSF's free e-mail subscription service. When you subscribe to this service, you will receive an e-mail message each time new content is added to the NSF web site in the categories you select.

• New research programs
• Positions available at NSF
• The latest “Hot Science” (not just climate change...)
NSF Resources for Proposal Preparation

- Proposal and Award Policies and Procedures Guide (PAPP)
NSF Resources for Proposal Preparation

- Proposal and Award Policies and Procedures Guide (PAPP)

 The Bible for preparing NSF proposals:

 “All you wanted to know about preparing NSF proposals but were afraid to ask”
Program directors: available to you for advice and appointments (conference booths, phone calls, visits to NSF)

- They will tell you if your ideas are appropriate for their programs, and suggest other possibilities within NSF that may be more appropriate.
Program directors: your contacts for becoming a reviewer and panelist

Proposal Reviewing: Send the program director your c.v., and your research interests, and tell her/him that you are interested in reviewing proposals

[NSF needs reviewers!]
NSF Resources for Proposal Preparation

NSF - the “Gold Standard” of proposal reviewing
Program directors: your contacts for becoming a reviewer and panelist

Panel service: Best way to get insight into what makes a proposal “work”, and into the NSF review process

 Usually requires prior NSF reviewing service (you will be writing 6-50 reviews!)

Let the PD know you are interested
Preparing the Proposal:

So ... where do I start?

[idea for a proposal...]
Preparing the Proposal:

• Start Early (3-6 months before deadline!)

NSF proposals are major undertakings: literature review, preliminary data, coordination with collaborators, university grant administrators
Preparing the Proposal:

• Start Early (3-6 months before deadline)!
• Review NSF Award Abstracts (NSF website)

Gives you an idea what kind of science a particular program is funding helps you find the right program

Note: there is no information about declined proposals
Preparing the Proposal:

- Start Early (3-6 months before deadline)!
- Review NSF Award Abstracts (Fastlane)
- Talk to your NSF Program Director

- Contacting a Program Director:
 best to send an e-mail and schedule a phone call or meeting
Program directors: available to you for advice and appointments (conference booths, phone call, visits to NSF)

- Do your homework before you meet with program officers, prepare specific questions

- They will tell you if your ideas are appropriate for their programs, and suggest other possibilities within NSF that may be more appropriate
Preparing the Proposal:

- Start Early (3-6 months before deadline)!
- Review NSF Award Abstracts (Fastlane)
- Talk to your NSF Program Director
- Recruit and describe university infrastructure support for your proposed project
Preparing the Proposal:

- Start Early (3-6 months before deadline)!
- Review NSF Award Abstracts (Fastlane)
- Talk to your NSF Program Director
- Recruit and describe university infrastructure support for your proposed project
- **Address the merit review criteria (required!)**
General NSF Review Criteria

• What is the *intellectual merit* of the proposed activity?

• What are the *broader impacts* of the proposed activity?

• *Additional criteria* may be listed in the solicitation/announcement of opportunity
How important is the proposed activity to advancing knowledge and understanding within its own field or across different fields?
Intellectual Merit - 5 strands

- How important is the proposed activity to advancing knowledge and understanding within its own field or across different fields?

- How well qualified is the proposer to conduct the project?
Intellectual Merit - 5 strands

- How important is the proposed activity to advancing knowledge and understanding within its own field or across different fields?

- How well qualified is the proposer to conduct the project?

- To what extent does the proposed activity explore creative and original concepts?
Intellectual Merit – 5 strands

- How important is the proposed activity to advancing knowledge and understanding within its own field or across different fields?

- How well qualified is the proposer to conduct the project?

- To what extent does the proposed activity explore creative and original concepts?

- How well conceived and organized is the proposed activity?
Intellectual Merit - 5 strands

- How important is the proposed activity to advancing knowledge and understanding within its own field or across different fields?

- How well qualified is the proposer to conduct the project?

- To what extent does the proposed activity explore creative and original concepts?

- How well conceived and organized is the proposed activity?

- Is there sufficient access to necessary resources?
NSF Broader Impacts activities - 3 strands

- How well does the activity advance discovery and understanding while promoting teaching, training and learning?
NSF Broader Impacts activities - 3 strands

- How well does the activity advance discovery and understanding while promoting teaching, training and learning?

- How well does the proposed activity broaden the participation of underrepresented groups?
NSF Broader Impacts activities - 3 strands

- How well does the activity advance discovery and understanding while promoting teaching, training and learning?

- How well does the proposed activity broaden the participation of underrepresented groups?

- To what extent will it enhance the infrastructure for research and education, such as facilities, instrumentation, networks and partnerships, or enhance outreach to the public?
Broader Impacts

- Will the results be disseminated broadly to enhance scientific and technological understanding?
- What may be the benefits of the proposed activity to society?

Examples and further information provided at:
Preparing the Proposal:

• Start Early (3-6 months before deadline)!
• Review NSF Award Abstracts (Fastlane)
• Talk to your NSF Program Director
• Recruit and describe university infrastructure support for your proposed project
• Address the merit review criteria (required!)
• Talk to your colleagues; have experienced colleagues review a draft and comment
Preparing the Proposal:

- Start Early (3-6 months before deadline)!
- Review NSF Award Abstracts (Fastlane)
- Talk to your NSF Program Director
- Recruit and describe university infrastructure support for your proposed project
- Address the merit review criteria (required!)
- Talk to your colleagues; have experienced colleagues review a draft and comment
- **Compliance checks (PAPP) Very important!**
Preparing the Proposal:

• **Compliance checks (PAPP)** Very important!

• Your proposal will be returned without review ("RWR’d") if it does not conform to formatting, lacks Broader Impacts statements, lacks a post-doc mentoring program

• Etc, etc., etc.
Preparing the Proposal:

- **Compliance checks (PAPP)** Very important!

- Use it!
Review Process Overview

Two distinct audiences - technical and general

Program Director
Review Process Overview

Two distinct audiences - technical and general

Four possible layers of proposal review:

1. Mail reviews ("ad hoc's")
2. Panel review
3. Program Director review
4. Division review and higher levels of NSF

Program Director
<table>
<thead>
<tr>
<th>Program director</th>
<th>Reviewer</th>
<th>Panelist</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generalist in your field</td>
<td>Technical expert in the field</td>
<td>Reads many proposals (10-50!)</td>
</tr>
<tr>
<td>Busy</td>
<td>Very busy</td>
<td>Compares and ranks proposals</td>
</tr>
<tr>
<td>Looks at all proposals</td>
<td>Reads one proposal in detail</td>
<td>Just wants to be done</td>
</tr>
<tr>
<td>Runs merit review</td>
<td>Wants to be doing anything else</td>
<td></td>
</tr>
<tr>
<td>Helpful, can be cranky</td>
<td>Often helpful, can be grumpy</td>
<td></td>
</tr>
<tr>
<td>Wears reading glasses</td>
<td>Has eyestrain</td>
<td></td>
</tr>
<tr>
<td>Counsels PIs</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Review Process Overview

Four possible layers of review

Two distinct audiences - technical and general

You

Program Director

reviewer
reviewer
reviewer
reviewer
reviewer
reviewer

Panel

Program Director

$ or $
Four possible layers of review

Two distinct audiences - technical and general

Submission: routed to a Program

Checked for compliance (no RWR!)

PD: checks for appropriateness for program
possibly arranges co-review
possibly sends to more appropriate
program (may discuss with PI)
may RWR if inappropriate for NSF
Review Process Overview

Four possible layers of review

Two distinct audiences - technical and general

You

Program Director

reviewer
reviewer
reviewer
reviewer
reviewer
reviewer
reviewer

“ad hoc” (external or mail reviewers)

$ or $
Reviewer Selection

- Types of reviewers recruited:
 - Reviewers with specific content expertise
 - Reviewers with general science or education expertise

(2 audiences)
Reviewer Selection

• Types of reviewers recruited:
 - Reviewers with specific content expertise
 - Reviewers with general science or education expertise

• Sources of reviewers:
 - Program Officer’s knowledge of the research area
 - References listed in proposal
 - Recent professional society programs
 - Computer searches of S&E journal articles related to the proposal
Reviewer Selection

• Types of reviewers recruited:
 - Reviewers with specific content expertise
 - Reviewers with general science or education expertise

• Sources of reviewers:
 - Program Officer’s knowledge of the research area
 - References listed in proposal
 - Recent professional society programs
 - Computer searches of S&E journal articles related to the proposal

- Investigators are encouraged to:
 • Suggest persons they believe are especially well qualified to review the proposal.
 • Identify persons they would prefer not review the proposal.

- BUT: conflicts of interest must be avoided
Review Process Overview

Four possible layers of review

Two distinct audiences - technical and general

Review panel:
- Evaluates proposal
- Discusses mail reviews
- Compares proposal with others at panel
- Advises PD on overall rating and quality of proposal /science
Review Process Overview

Four possible layers of review

Two distinct audiences – technical and general

You

Program Director

reviewer

reviewer

reviewer

reviewer

reviewer

reviewer

Panel

Makes recommendation

Program Director

$ or $
NOTE: Program Directors can only make recommendations!

An award is never official until your institution receives an award letter from the Division of Grants and Agreements.

“It ain’t over ’til it’s over”
Review Process Overview

Two distinct audiences - technical and general

Four possible layers of proposal review:

1. Mail reviews ("ad hoc's")
2. Panel review
3. Program Director review
4. Division review and higher levels of NSF
Who Gets Funded

Almost always funded

Typically funded

“Gray” Zone

Almost never funded (but sometimes are!)

Number of proposals

Panel / review ratings
Program Portfolio Considerations

- Integration of Research and Education
- Integrating Diversity into NSF Programs, Projects, and Activities
- Increasing the Geographic Distribution of Awards
- Diversification of Institution Types (i.e., undergraduate only institutions)
- Stages in Career Development of Investigator (i.e., new investigators or those coming up for tenure)
What makes a proposal competitive?
What makes a proposal competitive?

- **Original ideas**

NSF wants to fund projects that will break new ground.

What makes your proposal unique? What will make it stand out from others?
What makes a proposal competitive?

- Original ideas
- **Succinct, focused project plan**
- Reviewers (and program directors!) have limited time (and you have a 15 page limit)
What makes a proposal competitive?

- Original ideas
- Succinct, focused project plan
- Cost effective

Be reasonable - prepare realistic budgets! (The budget will be scrutinized)
What makes a proposal competitive?

- Original ideas
- Succinct, focused project plan
- Cost effective
- Knowledge and experience in the discipline

Published work, preliminary data
What makes a proposal competitive?

- Original ideas
- Succinct, focused project plan
- Cost effective
- Knowledge and experience in the discipline
- Experience in essential methodology

Published work, preliminary data
What makes a proposal competitive?

- Original ideas
- Succinct, focused project plan
- Cost effective
- Knowledge and experience in the discipline
- Experience in essential methodology
- Realistic amount of work

Probably the most common problem with young PI's, first-time submissions
What makes a proposal competitive?

- Original ideas
- Succinct, focused project plan
- Cost effective
- Knowledge and experience in the discipline
- Experience in essential methodology
- Realistic amount of work
- Sufficient detail

How much is too much?
What makes a proposal competitive?

- Original ideas
- Succinct, focused project plan
- Cost effective
- Knowledge and experience in the discipline
- Experience in essential methodology
- Realistic amount of work
- Sufficient detail
- Strong rationale

Why NSF should spend taxpayers’ $$$ on your project?
What are the larger implications?
Tips for Writing Competitive Proposals

- Discuss size and scope of intellectual payoff

Keep readers aware of the “big picture”
Tips for Writing Competitive Proposals

- Discuss size and scope of intellectual payoff
- Use plain, simple English

Remember that you are writing for two audiences - both technically aware of your field, and generalists who may not be experts in your field.
Tips for Writing Competitive Proposals

- Discuss size and scope of intellectual payoff
- Use plain, simple English
- Do not include extra stuff

Keep the focus, and remember the 15 page limit
Tips for Writing Competitive Proposals

- Discuss size and scope of intellectual payoff
- Use plain, simple English
- Do not include extra stuff
- Put specifics in the Methods section

(but don’t overdo it)
Tips for Writing Competitive Proposals

- Discuss size and scope of intellectual payoff
- Use plain, simple English
- Do not include extra stuff
- Put specifics in the Methods section
- Use tables, figures, and flow charts to save words
Tips for Writing Competitive Proposals

- Discuss size and scope of intellectual payoff
- Use plain, simple English
- Do not include extra stuff
- Put specifics in the Methods section
- Use tables, figures, and flow charts to save words
- **Make it visually appealing (i.e. do not make reviewers curse you for making their job harder)**
Tips for Writing Competitive Proposals

- Discuss size and scope of intellectual payoff
- Use plain, simple English
- Do not include extra stuff
- Put specifics in the Methods section
- Use tables, figures, and flow charts to save words
- Make it visually appealing (i.e. do not make reviewers curse you for making their job harder)
- Include sufficient budget justification
Tips for Writing Competitive Proposals

- Discuss size and scope of intellectual payoff
- Use plain, simple English
- Do not include extra stuff
- Put specifics in the Methods section
- Use tables, figures, and flow charts to save words
- Make it visually appealing (i.e. do not make reviewers curse you for making their job harder)
- Include sufficient budget justification
- Think of your proposal as the 40th in a stack

How can you make it stand out?
“This proposal suggests a clear, elegant, well-documented approach to a problem that has plagued this field for decades.”
Common Reasons for High Ratings

“This proposal suggests a clear, elegant, well-documented approach to a problem that has plagued this field for decades.”

“The PI has a beautiful plan. Undergraduates or new graduate students can step right into this work, yet it solves a major problem and will be publishable in a first-rate journal.”
Common Reasons for High Ratings

- “This proposal suggests a clear, elegant, well-documented approach to a problem that has plagued this field for decades.”

- “The PI has a beautiful plan. Undergraduates or new graduate students can step right into this work, yet it solves a major problem and will be publishable in a first-rate journal.”

- “This is certainly adventurous, and I frankly would have doubted it could be done. Yet the PI has proven the method in preliminary work AND had it accepted by a peer-reviewed journal!”
Common Reasons for High Ratings

- “This proposal suggests a clear, elegant, well-documented approach to a problem that has plagued this field for decades.”

- “The PI has a beautiful plan. Undergraduates or new graduate students can step right into this work, yet it solves a major problem and will be publishable in a first-rate journal.”

- “This is certainly adventurous, and I frankly would have doubted it could be done. Yet the PI has proven the method in preliminary work AND had it accepted by a peer-reviewed journal!”

- “This reads like a dream. I have rarely seen a proposal, even from long-established investigators, that shows such careful thought and meticulous presentation.”
Common Reasons for Low Ratings

- No well defined hypotheses or tests of same. Lack of focus. “Why all the rambling, this seems like a fishing expedition.”
Common Reasons for Low Ratings

- No well defined hypotheses or tests of same. Lack of focus. “Why all the rambling, this seems like a fishing expedition.”

- Extraneous aspects or PIs. “What does that component/co-PI have to do with the central focus of the proposal?”
Common Reasons for Low Ratings

- No well defined hypotheses or tests of same. Lack of focus. “Why all the rambling, this seems like a fishing expedition.”

- Extraneous aspects or PIs. “What does that component/co-PI have to do with the central focus of the proposal?”

- Important information on experimental and sampling procedures is omitted. “I really can’t tell what is going to be done and how.”
Common Reasons for Low Ratings

- No well defined hypotheses or tests of same. Lack of focus. “Why all the rambling, this seems like a fishing expedition.”

- Extraneous aspects or PIs. “What does that component/co-PI have to do with the central focus of the proposal?”

- Important information on experimental and sampling procedures is omitted. “I really can’t tell what is going to be done and how.”

- The work can certainly be carried out, but it doesn’t address any topic of broad current interest. “I would probably not read a paper describing the results.”
Common Reasons for Low Ratings

- No well defined hypotheses or tests of same. Lack of focus. “Why all the rambling, this seems like a fishing expedition.”

- Extraneous aspects or PIs. “What does that component/co-PI have to do with the central focus of the proposal?”

- Important information on experimental and sampling procedures is omitted. “I really can’t tell what is going to be done and how.”

- The work can certainly be carried out, but it doesn’t address any topic of broad current interest. “I would probably not read a paper describing the results.”

- Scope of the work is out of proportion to the budget and amount of time needed to do the work.
How to Interpret a Review

OK ... you’ve written what you think is a great proposal, and it isn’t funded. What next?
How to Interpret a Review

1. Remember that most reviewers want to be constructive, but they have been instructed to be discriminating.

2. Rating: not all reviewers have the same criteria for rating a proposal “Excellent” -- consider the overall sense of the review.

3. Suppose a reviewer finds a flaw in your idea, logic, or approach.

 Before you decide you’ve been unfairly dealt with, read the other reviews (if a reason is noted by more than one reviewer, you’ve got a problem).

 Even if no other review mentions this, the reviewer may have caught something missed by everyone else.
How to Interpret a Review

Strategy:

Read review

Blow off steam *(in private, not to the program director)*

Think about what the reviewer is REALLY saying

Read again, annotate trouble spots in proposal

Now read the proposal pretending this is someone else’s proposal

Look for unclear sections!
Working with your Program Director

- Funding decisions are based on many factors, but not on personal relationships with program directors.
Working with your Program Director

• Funding decisions are based on many factors, but not on personal relationships with program directors

• Program Officers should be treated as you would a respected colleague

Program Directors, whether rotating or permanent, are (or were) scientists / academics
Working with your Program Director

• Funding decisions are based on many factors, but not on personal relationships with program directors.

• Program Officers should be treated as you would a respected colleague.

• They are very busy: contact them only when necessary (check the agency website first) and in a way that allows for an efficient reply (email is preferred).
Working with your Program Director

- Funding decisions are based on many factors, but not on personal relationships with program directors.

- Program Officers should be treated as you would a respected colleague.

- They are very busy: contact them only when necessary (check the agency web site first) and in a way that allows for an efficient reply (email is preferred).

- Do not contact them when you are upset (following a declination).
Working with your Program Director

- Funding decisions are based on many factors, but not on personal relationships with program directors.

- Program Officers should be treated as you would a respected colleague.

- They are very busy: contact them only when necessary (check the agency web site first) and in a way that allows for an efficient reply (email is preferred).

- Do go over reviews and panel summaries with your PD; address any concerns reviewers might have.
Types of NSF proposals

• Unsolicited proposals
 -- These are proposals that are submitted to individual programs, not in response to specific announcements
 -- By far the most common proposal submitted to NSF
Types of NSF proposals

- **Program Solicitations/Announcements**

 -- These are specific announcements ("RFP’s") made by NSF to address particular issues / needs

 ("Dear Colleague Letters")
Types of NSF proposals

- Both solicited and unsolicited proposals may be collaborative proposals.

 -- These are proposals that are multi-institutional, with each institution getting a separate award (separate budgets)

 (alternative: subcontracts / subawards with a single institutional award)

 -- One PI is designated as lead
Types of NSF proposals

• **Program Solicitations/Announcements**

How do I find out about these?
Types of NSF proposals

- Program Solicitations/Announcements

How do I find out about these?

1. Through the NSF website (linked to relevant programs)

2. By NSF update

3. Through the Research Division
Types of NSF proposals

- **Cross-Directorate Programs** (REU, CCLI, CAREER)

-- These are usually reviewed and funded within a particular division, but with Foundation-wide criteria:
Types of NSF proposals

- **Cross-Directorate Programs** (REU, CCLI, CAREER)

REU: Research Experiences for Undergraduates (institutional awards, multi-PI; e.g. the HBOI Bridge program)
Types of NSF proposals

- Cross-Directorate Programs (REU, CCLI, CAREER)

 REU: Research Experiences for Undergraduates

 CCLI: Course Curriculum and Laboratory Improvement (undergraduate education)
Types of NSF proposals

• Cross-Directorate Programs (REU, CCLI, CAREER)

REU: Research Experiences for Undergraduates

CCLI: Course Curriculum and Laboratory Improvement

CAREER: 4-5 year awards for pre-tenure faculty; integrated research / teaching / outreach plans
Types of NSF proposals

• Supplements (including REU, RET; RET = Research Experiences for Teachers)

-- These are small one-year proposals, that are supplemental to existing awards - i.e., only currently funded PI’s can apply

-- These are generally reviewed internally (no external reviews, and do not go to panel)
Types of NSF proposals

• Symposium and meeting support

-- These are requests to support special symposia and meetings (invited speakers, student and post-doc support)

-- At least in BIO, these are reviewed internally and not by a panel.
Types of NSF proposals

- Grants for Rapid Response Research (RAPID) & EArly-concept Grants for Exploratory Research (EAGER)
Types of NSF proposals

• Grants for Rapid Response Research (RAPID) & EArly-concept Grants for Exploratory Research (EAGER)

• RAPIDS: submitted in response to a pressing, immediate need (e.g. Deep Horizon spill)

• Reviewed internally (no panel); external reviews may be requested

• Contact an NSF Program Director before proceeding