ADAPTIVE TRAFFIC CONTROL

OGHENEKARO D UROJAIYE
ABOUT KARO
ADAPTIVE TRAFFIC CONTROL

- SIMULATING TRAFFIC SCENARIOS
 - 3D & 2D VIRTUAL ENVIRONMENTS

- ESTABLISHING VIRTUAL VEHICLE & ROAD SIDE INFRASTRUCTURE COMMUNICATION
 - INTERACTION BETWEEN OBU & RSU

- SIGNIFICANCE OF CONNECTING VEHICLES
 - GREEN LIGHT OPTIMIZED SPEED ADVISORY (GLOSA)
 - COLLISION AVOIDANCE
THE SET UP

- VISSIM: 2D MATHEMATICAL MODEL OF THE URBAN NETWORK
- UNITY: 3D VERSION OF THE VISSIM SIMULATION
- THE DRIVING SIMULATOR: 3 SCREEN MONITOR AND FIRST-PERSON STYLED DISPLAY
INSIDE VISSIM

- CONTAINS MODEL OF SIMULATED URBAN NETWORK
- INCLUDES CONTROLLED VEHICLE TRAFFIC LIGHTS, CARS, INTERSECTIONS etc.
INSIDE UNITY

- MIMICS THE VISSIM SIMULATION IN A 3D FORM
- DRIVER SEES IN FIRST-PERSON
THE DRIVING SIMULATOR

- 2-PLATFORM INTERFACE
 - VISSIM & UNITY SIMULATOR INTEGRATION
- DRIVER IS PART OF VIRTUAL ENVIRONMENT
 - INTERACTS WITH VIRTUAL VEHICLES
 - VEHICLES REACT TO DRIVER
 - AVOID COLLISION AND CONFLICT
CHALLENGES

- Integrating Unity and VISSIM
 - Combining Unity C# scripts and VISSIM C# code
- Establishing seamless communication
 - Unable to spawn the other virtual vehicles in 3D environment
- Program crashing
SOLUTIONS

- DISSECT VISSIM SIMULATION CODE
- UPDATE SOFTWARE VERSIONS
- BREAK DOWN UNITY SCRIPTS AND OBJECTS
RESULTS

- FULLY FUNCTIONAL SIMULATOR
 - SPEED TRACKING
 - EASY VEHICULAR CONTROL
 - VISSIM LOADING WITH UNITY
 - VISSIM RELAYING VEHICLE POSITION TO UNITY GAME
FUTURE WORK

- SPAWNING VISSIM VEHICLES IN UNITY
- VIRTUAL REALITY