Graduate Programs—NEW COURSE PROPOSAL

DEPARTMENT: MATHEMATICAL SCIENCES
COLLEGE: SCIENCE

RECOMMENDED COURSE IDENTIFICATION
(TO OBTAIN A COURSE NUMBER, CONTACT maldonado@fau.edu)

PREFIX: STA
COURSE NUMBER: 6236
LAB CODE: (L or C)

COMPLETE COURSE TITLE: Regression Analysis

CREDITS: 3

TEXTBOOK INFORMATION

GRADING (SELECT ONLY ONE GRADING OPTION):
- Regular
- Satisfactory/Unsatisfactory

COURSE DESCRIPTION, NO MORE THAN THREE LINES:
This course is designed to provide some basic theory, methods and applications of regression analysis. Topics covered include simple regression (least squares method), multiple regression, transformations, inference and correlation analysis, categorical variables, residual diagnostics, model building, and multi-collinearity.

PREREQUISITES

STA 4443 or STA 4032 or EQUIVALENT

COREQUISITES

NONE

REGISTRATION CONTROLS (MAJOR, COLLEGE, LEVEL)

SENIOR OR GRADUATE

PREREQUISITES, COREQUISITES AND REGISTRATION CONTROLS WILL BE ENFORCED FOR ALL COURSE SECTIONS.

MINIMUM QUALIFICATIONS NEEDED TO TEACH THIS COURSE: PhD

MEMBER OF THE GRADUATE FACULTY OF FAU AND HAS A TERMINAL DEGREE IN THE SUBJECT AREA (OR A CLOSELY RELATED FIELD).

Faculty contact, email and complete phone number:
Hongwei Long
hlong@fau.edu

Please consult and list departments that might be affected by the new course and attach comments.

Approved by:
Department Chair:
College Curriculum Chair:
College Dean:
UGPC Chair:
Graduate College Dean:
UFS President:
Provost:

Date: 10-7-15

1. Syllabus must be attached; see guidelines for requirements:

2. Review Provost Memorandum:
Definition of a Credit Hour
www.fau.edu/provost/files/Definition_Credit_Hour_Memo_2012.pdf

3. Consent from affected departments
(attach if necessary)
Syllabus

Course Name
Regression Analysis

Course Number
STA 6236

Section Number
N/A

Prerequisites
- STA 4443 Probability and Statistics 2 (Minimum Grade C) or
- STA 4032 Probability and Statistics for Engineers (Minimum Grade C)

Credit Hours
3

Instructor
Hongwei Long, Office SE 268
Phone: (561) 297-0810
Email: hlong@fau.edu

Course Description
This course is designed to provide some basic theory, methods and applications of regression analysis. Topics covered include simple regression (least squares method), multiple regression, transformations, inference and correlation analysis, categorical variables, residual diagnostics, model building, and multi-collinearity.

Course Objectives
The students are expected to gain a firm foundation in the theory and applications of regression analysis to competently practice this valuable craft.

Course Evaluation Method
There will be graded homework assignments accounting for 30% of your cumulative performance, a midterm exam accounting for 30% of your cumulative performance, and a final exam (or project) that accounts for 40% of your cumulative performance.

Policy on Make-up Tests, Late Work and Incompletes
Homework assignments must be handed in on the due date. Late assignments will not be accepted. There will be no make-up midterm. If a student has an acceptable excuse for missing the midterm, the weight of the midterm will be shifted to the final. Make-up final exam will be given only under exceptional circumstance, and written, verifiable excuses must be provided.

A grade of I (incomplete) will only be given under certain conditions and in accordance with the academic policies and regulations put forward in FAU's University Catalog. The student has to show exceptional circumstances why requirements cannot be met. A request for an incomplete grade has to be made in writing with supporting documentation, where appropriate.

FAUnewestGrad—Revised July 2015
Students with Disabilities

In compliance with the Americans with Disabilities Act (ADA), students who require special accommodations due to a disability to properly execute coursework must register with the Office for Students with Disabilities (OSD) located in Boca Raton-SU 133 (561-297-3880), in Davie-MOD I (954-236-1222), in Jupiter-SR 117 (561-799-8585), or at the Treasure Coast- CO 128 (772-873-3305), and follow all OSD procedures.

Code of Academic Integrity

Students at Florida Atlantic University are expected to maintain the highest ethical standards. Academic dishonesty, including cheating and plagiarism, is considered a serious breach of these ethical standards, because it interferes with the University mission to provide a high quality education in which no student enjoys an unfair advantage over any other. Academic dishonesty is also destructive of the University community, which is grounded in a system of mutual trust and places high values on personal integrity and individual responsibility. Harsh penalties are associated with academic dishonesty. For more information, see http://www.fau.edu/regulations/chapter4/4.001_Honor_Code.pdf.

Required Text

Supplementary/Recommended Readings

Course Topical Outline

<table>
<thead>
<tr>
<th>Week</th>
<th>Topics</th>
<th>Homework Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Linear regression with one predictor variable</td>
<td>1.2, 1.8, 1.12, 1.22, 1.30</td>
</tr>
<tr>
<td>2</td>
<td>Inference in linear regression</td>
<td>2.9, 2.10, 2.12</td>
</tr>
<tr>
<td>3</td>
<td>Correlation analysis</td>
<td>2.27, 2.28, 2.29</td>
</tr>
<tr>
<td>4</td>
<td>Diagnostics</td>
<td>3.2, 3.9, 3.18</td>
</tr>
<tr>
<td>5</td>
<td>Remedial measures</td>
<td>3.19, 3.20, 3.23</td>
</tr>
<tr>
<td>6</td>
<td>Simultaneous inference</td>
<td>4.5, 4.9, 4.14</td>
</tr>
<tr>
<td>7</td>
<td>Matrix approach to simple regression</td>
<td>5.1, 5.3, 5.5, 5.8, 5.24</td>
</tr>
<tr>
<td>8</td>
<td>Multiple linear regression I</td>
<td>6.1, 6.15, 6.17, 6.22</td>
</tr>
<tr>
<td>9</td>
<td>Multiple linear regression II</td>
<td>7.5, 7.22, 7.26</td>
</tr>
<tr>
<td>10</td>
<td>Regression models for qualitative predictors</td>
<td>8.4, 8.16, 8.18, 8.20</td>
</tr>
</tbody>
</table>

FAUniverseGrad—Revised July 2015
11 Model selection and validation 9.4, 9.5, 9.7, 9.25
12 Diagnostics: identifying outliers 10.5, 10.8, 10.12
13 Multicollinearity 10.15, 10.18
14 Weighted least squares 11.6, 11.10
15 Nonparametric regression 11.12