Department Name: Civil Engineering
College Of: Engineering and Computer Science

Recommended Course Identification:
- **Prefix:** TTE
- **Course Number:** XXXX
- **Lab Code (L or C):**

Complete Course Title:
Transportation Systems Analysis

Effective Date (first term course will be offered): Spring 2008

Credits: 3
Lab/Discussion: N/A
Lecture: 3
Field Work: N/A

Textbook Information:
- **Title:** Operations Research: Applications and Algorithms 2nd Ed.
- **Author:** Winston, W.L. 1990

ISBN: 0471364002

Grading:
- **Regular: X**
- **Pass/Fail:**
- **Satisfactory/Unsatisfactory:**

Course Description, no more than 3 lines: This class is designed to be a modeling class to permit students to create models in MATLAB or other engineering software to solve traffic movement, queuing and sequencing for optimizing transportation flow. Student will utilize skills in operations research, linear programming and multi-objective analysis.

Prerequisites:
- TTE 4005 or Instructor Permission Req'D
- O Check box to enforce*

Corequisites:
- None
- O Check box to enforce*

Other Registration Controls (Major, College, Level):
- O Check box to enforce*

Minimum Qualifications Needed to teach this course: PhD in Civil Engineering/concentration in Transportation

Other departments, colleges that might be affected by the new course must be consulted. List entities that have been consulted and attach written comments from each.

- None

Evangelos I. Kaisar, Ph.D. Asst Professor, Civil Engineering Dept., ekaisar@fau.edu. 561-297-4084

Faculty Contact, Email, Complete Phone Number

Supporting Materials

Approved by:
- Department Chair:
- College Curriculum Chair:
- College Dean:
- UGPC Chair:

Date:
- 11/2/2007
- 11/2/2007

Syllabus—must include course objectives.

Written Consent—required from all departments affected.

- Go to: http://graduate.fau.edu/ugpc/ to download this form

*"Enforce" prerequisites or other registration controls adds these restrictions to the course schedule; students whose academic careers do not show these prerequisites or other details will not be able to register. When box is not checked, restrictions show in catalog description only.

Email this form and syllabus to Graduate Studies one week before the University Graduate Programs Committee meeting so that materials may be viewed on the UGPC website by committee members prior to the meeting.
Description: This course is designed to be a modeling class to permit students to create models in CPLEX or other engineering software to solve transportation movement, queuing and sequencing for optimizing transportation flow. Students will utilize skills in operations research, linear programming and multi-objective analysis.

Course Number: TTE XXXX

Course Prerequisites: Transportation Engineering II (TTE 4005) or permission of instructor.

Course Co-requisites: None

Courses that require this course as a direct prerequisite: None

Specialization: Linear programming, and Integer programming, Transportation logistics.

Special Features: Exposure to theoretical and experimental research in transportation engineering.

Credits: 3

Course Objectives: The objective of this course is to provide the students with basic and applied knowledge of operation research, linear programming, and integer programming. Specifically, the students completing this course will be able to:

- Conceptualize, and solve transportation system problems
- Apply operation research techniques for modeling system performance and design of transportation services.
- Understand linear programming
- Understand and apply location theory in the transportation arena
- Investigate different techniques in transportation systems via class room discussion problem sets and semester long project

Methods of Instruction: Regular Class with some internet activities using Blackboard

Topics: The lecture is based on a sequence of chapters from the textbook and will be supplemented with additional material where necessary including further references and instructor's notes.

1) Linear programming
2) Transportation network problems
3) Integer programming
4) Network models and applications
5) Graph theory, shortest path, vehicle routing algorithms and heuristic
6) Queueing system, dynamic traffic assignment, Simulation
7) Transportation and supply chain management
Schedule for Films/Videos/In-Class Discussions: N/A

Grading Scheme:
- Homework: 20% (every two weeks)
- Project: 20%
- Mid-Term Exam: 40%
- Final Exam: 20%

Homework, Assignments and other out of Class Activities: One homework every two weeks

Grading Scale: A (95%-100%), A- (90%-94%), B+ (85%-89%), B (81%-85%), B- (76%-80%), C+ (71%-75%), C (67%-71%), C- (62%-66%), D+ (57%-61%), D (52%-56%), D- (45%-51%), F (below 45%)

Instructor: Dr. Evangelos I. Kaisar
Assistant Professor
Department of Civil Engineering
Building 36-214
Phone: 561-297 4084
ekaisar@fau.edu