Department: Geosciences
College: Science

Recommended Course Identification:

- **Prefix**: GLY
- **Course Number**: 6456
- **Lab Code**: (L or C)

(To obtain a course number, contact UPOCANS@FAU.EDU)

Complete Course Title:

Environmental Geophysics

Credits: 3

Textbook Information:

Grading (select only one grading option):

- Regular
- Satisfactory/Unsatisfactory

Course Description, no more than 3 lines:

The course gives an introduction to near-surface geophysical methods for mapping the ground at shallow depths. Emphasis is given to electromagnetic and electrical methods such as ground penetrating radar (GPR) and resistivity imaging with an emphasis on environmental applications.

Prerequisites:

- Graduate standing in Geology or related discipline; or permission by instructor.

Corequisites:

-

Registration Controls (Major, College, Level):

-

Minimum qualifications needed to teach this course:

Department contact, email and complete phone number:

Xavier Comas, xcomas@fau.edu, 954-236-1569

Departments and/or colleges that might be affected by the new course must be consulted and listed here. Please attach comments from each.

Approved by:
Date: 9/19/12

Attachment Checklist:

- Written consent from all departments affected by new course

FAUnworseUG—Revised May 2012
GLY6456 Environmental Geophysics
Fall, 2012 Syllabus

Environmental Geophysics
Department of Geosciences
Charles E. Schmidt College of Science
Florida Atlantic University

Instructor:
Dr. Xavier Comas
Email: xcomas@fau.edu

Prerequisites:
Graduate standing in Geology or related discipline; or permission by instructor

Number of credits:
3

Office Hours:
Tuesday (1:00-6:00 pm)*, or by appointment. Davie West, room 330.
* As scheduling conflicts may arise occasionally, students may wish to call to
schedule an appointment prior to the meeting.

Schedule:
Tuesday (6:30-9:20 pm). Davie West, room to determine.

Class textbook: (recommended)

Course description:
The course gives an introduction to near-surface geophysical methods for
mapping the ground at shallow depths. Emphasis is given to electromagnetic and
electrical methods such as ground penetrating radar (GPR) and resistivity imaging
with an emphasis on environmental applications. A field-based case study using an
integrated array of real geophysical data sets collected in a local site will be
conducted to give students a practical approach to applied geophysical methods

Course Objectives:
1) To provide an overview of the theoretical basis and principles of near-surface
geophysical methods; 2) to examine the most common applications and how these
methodologies can help understanding certain environmental issues; 3) to present an
overview of geophysical data collection and processing of real data sets (with
emphasis on ground penetrating radar and resistivity imaging); 4) to become familiar
with case studies and exercises related to geophysical data processing

Method of instruction:
Combination of theory and practical exercises in the classroom and fieldtrip/s to
one or more local fieldsites. Practical exercises will be initiated in the classroom
towards the end of selected lecture sessions (see intended course calendar for details). Students will be responsible for completing the exercises and submitting as homework assignments.

Contents:
The general course structure will be as follows:
1) Introduction: general overview of geophysical methods with emphasis on near-surface techniques
2) Electrical methods: theoretical and practical basis of electrical methods (e.g. resistivity, self-potential, and induced polarization)
3) Electromagnetic methods: theoretical and practical basis of electromagnetic methods (e.g. ground penetrating radar and terrain conductivity)
4) Seismology: theoretical basis of seismic methods with emphasis on environmental applications (e.g. refraction and reflection methods)
5) Potential field methods: theoretical basis of potential methods with emphasis on environmental applications (e.g. gravimetric and geomagnetic methods)

Assessment procedure:
Midterm: 25%
Assignments: 35%
Field project (write up and presentation): 35%
Quizzes: 5%

Grading scheme:
A 93-100%
A- 90-92.9%
B+ 87-89.9%
B 83-86.9%
B- 80-82.9%
C+ 77-79.9%
C 70-76.9%
D 63-69.9%
F 63% or lower

Make-up policy:
You must have an exceptional circumstance in order to qualify for a make-up exam. Make-up exams will only apply to the midterm if requested prior to the exam with a justification. No make-ups will be granted for quizzes.

Extra credit policy:
No extra credit will be granted under any circumstances

Attendance:
Attendance to all lectures is required and will affect your grade.

Courtesies:
Please turn off cell phones, laptops, mp3 players and PSPs before coming to class. Lateness is disruptive to other class participants, so please be on time. Lateness may also affect your grade if you miss quizzes.

Assignments and quizzes

Weekly homework assignments: these will be set during a class and due the following class. You will be expected to contribute to presenting your assignment to other class members

Quick quizzes: these will sporadically occur in the class

Other suggested activities:

Fieldtrips: One or more short fieldtrip/s at a local site will serve as the basis for developing a class project that will include: 1) data collection; 2) data processing; 3) data preparation and discussion; 4) data presentation (both oral and written). The project intends to give students a practical overview of the entire routine involved in a geophysical field based study from data acquisition to final data presentation while encouraging critical thinking.

Lecture notes:

A pdf version of the lecture notes will be posted on Blackboard the day prior to each lecture. You may choose to print them out and bring them to class, or wait until the end of the class. Announcements and grades will also be posted on Blackboard.

Policies:

Americans with Disabilities Act (A.D.A.): In compliance with the Americans with Disabilities Act (ADA), students who require reasonable accommodations due to a disability to properly execute coursework must register with the Office for Students with Disabilities (OSD) -- in Boca Raton, SU 133 (561-297-3880); in Davie, LA 240 (954-236-1222); in Jupiter, SR 110 (561-799-8010); or at the Treasure Coast, CO 117 (772-873-3441) – and follow all OSD procedures.

Code of Academic Integrity: Students at Florida Atlantic University are expected to maintain the highest ethical standards. Academic dishonesty is considered a serious breach of these ethical standards, because it interferes with the university mission to provide a high quality education in which no student enjoys an unfair advantage over any other. Academic dishonesty is also destructive of the university community, which is grounded in a system of mutual trust and places high value on personal integrity and individual responsibility. Harsh penalties are associated with academic dishonesty. For more information, see University Regulation 4.001. Cheating in any form will not be tolerated. The first occurrence of any of this will result in a grade of "F".

Bibliography:

Calendar (intended):

<table>
<thead>
<tr>
<th>Week</th>
<th>Topic</th>
<th>Textbook readings</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction: general overview of geophysical methods with emphasis on near-surface techniques</td>
<td>Ch. 1</td>
<td>Reading assignment</td>
</tr>
<tr>
<td>2</td>
<td>Electrical methods I: theoretical and practical basis of electrical methods (e.g. resistivity, self-potential, and induced polarization)</td>
<td>Ch. 7</td>
<td>Electrical methods bibliography</td>
</tr>
<tr>
<td>3</td>
<td>Electrical methods II: resistivity method</td>
<td>Ch. 7</td>
<td>Lab 1</td>
</tr>
<tr>
<td>4</td>
<td>Electrical methods III: self-potential, and induced polarization methods</td>
<td>Ch. 8, 9</td>
<td>Lab 2</td>
</tr>
<tr>
<td>5</td>
<td>FIELDTRIP I</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Electromagnetic (EM) methods I: theoretical and practical basis of electromagnetic methods</td>
<td>Ch. 10-12</td>
<td>Fieldtrip I data processing</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>----------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>7</td>
<td>Electromagnetic methods II: ground penetrating radar</td>
<td>Ch. 13</td>
<td>EM methods bibliography</td>
</tr>
<tr>
<td>8</td>
<td>MIDTERM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Electromagnetic methods III ground penetrating radar 2</td>
<td>Ch. 14</td>
<td>Lab 4</td>
</tr>
<tr>
<td>10</td>
<td>Electromagnetic methods IV: terrain conductivity</td>
<td>Ch. 11</td>
<td>Lab 5</td>
</tr>
<tr>
<td>11</td>
<td>FIELDTRIP II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Seismology I: theoretical basis of seismic methods with emphasis on environmental applications</td>
<td>Ch. 4</td>
<td>Fieldtrip II data processing</td>
</tr>
<tr>
<td>13</td>
<td>Seismology II: refraction and reflection methods</td>
<td>Ch. 5, 6</td>
<td>Seismology bibliography</td>
</tr>
<tr>
<td>12</td>
<td>Potential field methods I: theoretical basis of potential methods with emphasis on environmental applications</td>
<td>Ch. 2, 3</td>
<td>Lab 6</td>
</tr>
<tr>
<td>13</td>
<td>Potential field methods II: gravimetric and geomagnetic methods</td>
<td>Ch. 2, 3</td>
<td>Final Project preparation</td>
</tr>
<tr>
<td>14</td>
<td>Final Project: Field project presentations</td>
<td></td>
<td>Final Project preparation (cont)</td>
</tr>
<tr>
<td>15</td>
<td>Final Project II: Field project presentations II</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Looks great, no conflict
Warner

Sent from my iPhone

On Sep 14, 2012, at 1:44 PM, Xavier Comas <xcomas@fau.edu> wrote:

Hi Warner,
I hope all is well, this is Xavier Comas from Geosciences. I'm trying to get a course approved (see syllabus attached), and Russ in Geosciences told me to ask you really quick and make sure that the contents sound ok to you.

thanks a lot,

Xavier

Xavier Comas
Assistant Professor
Department of Geosciences
Florida Atlantic University
Web: geology.fau.edu
Phone: (954) 236-1569

<Env Geophysics syllabus.pdf>