Graduate Programs—NEW COURSE PROPOSAL

DEPARTMENT NAME: MATHEMATICAL SCIENCES

COLLEGE OF: CHARLES E. SCHMIDT COLLEGE OF SCIENCE

RECOMMENDED COURSE IDENTIFICATION:

PREFIX ______MTG______ COURSE NUMBER ___6418_______ LAB CODE (L or C) ______

(TO OBTAIN A COURSE NUMBER, CONTACT ERUDOLPH@FAU.EDU)

COMPLETE COURSE TITLE

DYNAMICAL SYSTEMS, CHAOS AND COMPUTING

EFFECTIVE DATE

(first term course will be offered)

CREDITS: 3

TEXTBOOK INFORMATION:

GRADING (SELECT ONLY ONE GRADING OPTION): REGULAR _____X_____ PASS/Fail _____ SATISFACTORY/UNSATISFACTORY ______

COURSE DESCRIPTION, NO MORE THAN 3 LINES:

In this course students will reconstruct some modern mathematical discoveries in dynamical systems using widely accessible programs like spreadsheets and dynamical geometry software. Explorations will illustrate the relation of chaos theory to iteration of second order polynomials and fractal geometry as well as general mathematical patterns.

PREREQUISITES W/MINIMUM GRADE:*

PERMISSION OF THE INSTRUCTOR

COREQUISITES: None

OTHER REGISTRATION CONTROLS (MAJOR, COLLEGE, LEVEL):

PREREQUISITES, COREQUISITES & REGISTRATION CONTROLS SHOWN ABOVE WILL BE ENFORCED FOR ALL COURSE SECTIONS.

* DEFAULT MINIMUM GRADE IS D-.

MINIMUM QUALIFICATIONS NEEDED TO TEACH THIS COURSE:

PH. D IN MATHEMATICS

Other departments, colleges that might be affected by the new course must be consulted. List entities that have been consulted and attach written comments from each.

Computer Science

Richard Voss, rvoss@fau.edu, (561) 297-3358 ___

Faculty Contact, Email, Complete Phone Number

SIGNATURES

SUPPORTING MATERIALS

Approved by: __________________________ Date: __________________________

Department Chair: __________________________

College Curriculum Chair: __________________________

College Dean: __________________________

UGPC Chair: __________________________

Dean of the Graduate College: __________________________

Syllabus—must include all details as shown in the UGPC Guidelines.

Written Consent—required from all departments affected.

Go to: http://graduate.fau.edu/gpc/ to download this form and guidelines to fill out the form.

Email this form and syllabus to diamond@fau.edu and eqirjo@fau.edu one week before the University Graduate Programs Committee meeting so that materials may be viewed on the UGPC website by committee members prior to the meeting.

FAUnewcrseGrad—Revised January 2010
Dr. Marty Solomon and Dr. Roy Levow

The mathematical sciences department is proposing a new course entitled "Dynamical Systems, Chaos, and Computing". This course is for our Master of Science in Teaching degree for high school teachers. A syllabus is attached. Since the title has the word "computing" in it, I wanted to make sure the computer science department would have no objection.

Please let me know whether or not your department would have any objections to this course.

Thanks,
Bill

Dr. Bill Kalies, Professor
Department of Mathematical Sciences
Florida Atlantic University
Boca Raton, FL 33431
Email: wkalies@fau.edu
Phone: (561) 297-1107
FAX: (561) 297-2436
http://math.fau.edu/kalies
Course Syllabus for Dynamical Systems, Chaos and Computing

1. Course title/number, number of credit hours
 Dynamical Systems, Chaos and Computing, MTG 6418, 3 credit hours

2. Course prerequisites
 a. Permission of the instructor

3. Course logistics
 a. Term – Fall 2010
 b. Notation if online course – N/A
 c. Class location and time (if classroom-based course) – To be determined

4. Instructor contact information
 a. Instructor’s name – Richard Voss
 b. Office address – Science & Engineering Bldg, SE43, Room 210
 c. Office hours – To be determined
 d. Contact telephone number – office (561) 297-3358, fax (561) 297-2436
 e. E-mail address – rvoss@fau.edu

5. TA contact information (if applicable)
 N/A

6. Course description
 In this course students will reconstruct some modern mathematical discoveries in dynamical systems using widely accessible programs like spreadsheets and dynamical geometry software. Explorations will illustrate the relation of chaos theory to iteration of second order polynomials and fractal geometry as well as general mathematical patterns.

7. Course objectives/student learning outcomes
 Computers have revolutionized the practice of modern mathematics and its applications. They allow for the analysis and visualization of large datasets as well as provide new numerical and visualization tools for mathematical exploration, experimentation and intuition building. In this course, students will learn how modern mathematics and computing are integrated through examples involving iteration of functions, nonlinear phenomena and emerging patterns from cellular automata. Such concepts effectively integrate traditional mathematics with modern development such as Chaos Theory, Fractal Geometry, scientific computation and visualization.

 - Gain familiarity and understanding of the use of computers and visualization as in integral part of modern dynamical systems mathematics.
 - Gain familiarity with the concepts and standard models of Chaos Theory based on computation.
 - Develop skills for the analysis and communication of mathematical ideas.

8. Course evaluation method
 There will be graded work in the classroom accounting for 30% of the student's cumulative performance, in class presentation, accounting for 30% of the student's cumulative performance, and a journal that accounts for 40% of the cumulative performance. The overall grade in the course is derived from the cumulative performance according to the following table.
9. **Course grading scale (optional)**

<table>
<thead>
<tr>
<th>Cumulative Performance</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>90% - 100%</td>
<td>A</td>
</tr>
<tr>
<td>80% - 89%</td>
<td>B</td>
</tr>
<tr>
<td>70% - 79%</td>
<td>C</td>
</tr>
<tr>
<td>60% - 69%</td>
<td>D</td>
</tr>
<tr>
<td>0% - 59%</td>
<td>F</td>
</tr>
</tbody>
</table>

10. **Policy on makeup tests, late work, and incompletes**

If a student cannot attend an exam or hand in a homework project on time due to circumstances beyond their control, then the instructor may assign appropriate make-up work. Students will not be penalized for absences due to participation in University-approved activities, including athletic or scholastics teams, musical and theatrical performances, and debate activities. These students will be allowed to make up missed work without any reduction in the student’s final course grade. Reasonable accommodation will also be made for students participating in a religious observance. Also, note that grades of Incomplete (“I”) are reserved for students who are passing a course but have not completed all the required work because of exceptional circumstances. A grade of “I” will only be given under certain conditions and in accordance with the academic policies and regulations put forward in FAU’s University Catalog. The student must show exceptional circumstances why requirements cannot be met. A request for an incomplete grade has to be made in writing with supporting documentation, where appropriate.

11. **Special course requirements (if applicable)**

N/A

12. **Classroom etiquette policy (if applicable)**

University policy on the use of electronic devices states: “In order to enhance and maintain a productive atmosphere for education, personal communication devices, such as cellular telephones and pagers, are to be disabled in class sessions.”

13. **Disability policy statement**

In compliance with the Americans with Disabilities Act (ADA), students who require special accommodation due to a disability to properly execute coursework must register with the Office for Students with Disabilities (OSD) -- in Boca Raton, SU 133 (561-297-3880); in Davie, MOD 1 (954-236-1222); in Jupiter, SR 117 (561-799-8585); or at the Treasure Coast, CO 128 (772-873-3305) – and follow all OSD procedures.

14. **Honor Code policy statement**

Students at Florida Atlantic University are expected to maintain the highest ethical standards. Academic dishonesty is considered a serious breach of these ethical standards, because it interferes with the university mission to provide a high quality education in which no student enjoys an unfair advantage over any other. Academic dishonesty is also destructive of the university community, which is grounded in a system of mutual trust and places high value on personal integrity and individual responsibility. Harsh penalties are associated with academic dishonesty. For more information, see University Regulation 4.001 at http://www.fau.edu/regulations/chapter4/4.001_Honor_Code.pdf.

15. **Required texts/readings**

16. Supplementary/recommended readings

17. Course topical outline
 - Introduction and history of mathematics and computation (2 weeks)
 - Iteration of functions (1 week)
 - Graphical iteration, discrete maps and histograms (2 weeks)
 - Attractors and repellars (1 week)
 - Deterministic Chaos; sensitivity, mixing and periodic points (2 weeks)
 - Period doubling and bifurcation diagrams (2 weeks)
 - Continuous dynamical systems; Lorentz attractor (1 week)
 - Iteration in the complex plane: Julia sets and the Mandelbrot set (2 weeks)
 - Relation to Fractal Geometry (1 week)
 - Cellular automata and their properties (2 weeks)