Department Name: BMED
College of: COLLEGE OF BIOMEDICAL SCIENCE – MEDICAL EDUCATION PROGRAM

Recommended Course Identification:
- **Prefix:** BMS
- **Course Number:** 6002
- **Lab Code:** (L or C)

(To obtain a course number, contact erudolph@fau.edu)

Complete Course Title:
Fundamentals of Biomedical Science 1

Effective Date:
FALL, 2011

Credits:
6 HRS.

Grading (Select only one grading option):
- **Regular**
- **Pass/Fail**

Satisfactory/Unsatisfactory:
-

Textbook Information:
- Clinical anatomy: Moore, LWW
- Histology: Ross Pawlina, LWW
- Medical Embryology: Sadler, LWW
- Atlas of Anatomy: Netter, Saunders

Course Description, no more than 3 lines:
The purpose of the Fundamentals of Biomedical Science series is to teach the basic concepts and vocabulary in the disciplines of cell

Prerequisites/Minimum Grade:
- **Fundamentals of Biomedical Science 1**

Prerequisites, Coerequisites & Registration Controls shown above will be enforced for all course sections.
- **Default minimum grade is D-**

Minimum Qualifications Needed to Teach this Course:
PhD

Other departments, colleges that might be affected by the new course must be consulted. List entities that have been consulted and attach written comments from each.

Willis Paull Ph.D.
E-Mail: wpaull@fau.edu
Phone: (561) 297-1024

Faculty Contact, Email, Complete Phone Number

Signatures

Approved by:
Department Chair: ____________________________
College Curriculum Chair: ____________________________
College Dean: ____________________________
UGPC Chair: ____________________________
Dean of the Graduate College: ____________________________

Date: ____________________________

Supporting Materials
- **Syllabus**—must include all details as shown in the UGPC Guidelines.
- **Written Consent**—required from all departments affected.
 Go to: http://graduate.fau.edu/gpc/ to download this form and guidelines to fill out the form.

Email this form and syllabus to diamond@fau.edu and eqirjo@fau.edu one week before the University Graduate Programs Committee meeting so that materials may be viewed on the UGPC website by committee members prior to the meeting.
FAU Medical Education Program. 2011-2012

Syllabus:
1. **Course title**: Fundamentals of Biomedical Science 1
 Course number: BMS 6002
 Number of credit hours: 7

 - Lecture Hours: up to 8 hrs/week in BC-126, unless otherwise specified.
 - Small-group Hours: up to 6 hrs/week for PBL, location as assigned
 - Other activity Hours: up to 4 hrs/week in laboratory-based sessions

2. **Course prerequisites**: Accepted for matriculation in the FAU Medical Sciences program.

3. **Course logistics**:
 a. term: fall 2011
 b. not an online course
 c. Biomedical Science Building room BC-126, anatomy lab, small group PBL rooms.

4. **Instructor information**:

 - Course Director: Willis K. Paull, Ph.D.
 Vice Dean, Professor & Schmidt Senior Fellow for Medical Education
 BC-339
 wpaull@fau.edu

 - Course support: Ms Tamara Alexander Ms Mavis Brown
 Program Assistant Curriculum Coordinator
 BC-137 BC-138
 561-297-1373 561-297-0899
 talexa14@fau.edu mwbrown@fau.edu

 Please note: Any official student communication from the director or program assistant will be sent via e-mail to students at their FAU e-mail addresses. *If students would like to meet with the course director, they must call or e-mail the course director to schedule an appointment.*

5. **TA contact information**:

 N/A

6. **Course description**:

 Rationale:

 The Continuity Medicine Curriculum uses a chronic illness model and an integrated patient care approach to prepare students for medical practice.

 The purpose of the Fundamentals of Biomedical Science is to teach the basic concepts and vocabulary in the disciplines of cell biology and physiology, genetics and biochemistry, immunology, microbiology, histology and pathology. The course is the first of a series of three that aims to go beyond the traditional discipline boundaries to use an integrated approach to present the basic science underpinning of clinical medicine. To achieve this goal, a combination of lectures and problem-based learning (PBL) is used. The PBL sessions in the small-group setting use a set of disease models to focus students on the basic science; lectures in the classroom setting are thematically related to the disease model and used to complement the PBL with additional key concepts.
The Fundamentals of Biomedical Science also provides a solid foundation in gross anatomy and imaging necessary for subsequent learning about the anatomy related to clinical problems. All major areas of the human body will be covered in the three courses of the series and in the CMC Neuroscience and Behavior course (BMS 6020). The areas are presented to complement the teaching in Physicianship Skills courses (BMS 6015/BMS6016).

The goals of the medical program are to teach the attitudes and skills required for achieving competency as effective practitioners. The goal of the Fundamentals of Biomedical Science courses is to provide opportunities to acquire a fund of knowledge by encouraging students to be proactive and responsible for their learning in the classroom, small-group and laboratory settings.

7. Course objectives/student learning outcomes:

Competency Based Objectives:

At the end of the Fundamentals of Biomedical Science courses, medical students will be able to:

<table>
<thead>
<tr>
<th>Professionalism</th>
</tr>
</thead>
<tbody>
<tr>
<td>β Demonstrate a commitment to carrying out professional responsibilities, adherence to ethical principles, and sensitivity to their peers, patients and faculty</td>
</tr>
<tr>
<td>β Appreciate the importance of a compassionate, non-judgmental attitude with classmates, faculty and staff</td>
</tr>
<tr>
<td>β Understand and respect the need to collaborate with each other to promote learning</td>
</tr>
<tr>
<td>β Apply reflective practice as a strategy to achieve personal and professional growth</td>
</tr>
<tr>
<td>β Apply methods to reduce stress and improve wellness in oneself and others</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Interpersonal Skills and Communication</th>
</tr>
</thead>
<tbody>
<tr>
<td>β Students must be able to demonstrate interpersonal and communication skills that result in effective information exchange and teaming with their peers and faculty</td>
</tr>
<tr>
<td>β Demonstrate the ability to work in professional teams to solve problems.</td>
</tr>
<tr>
<td>β Demonstrate the ability to do self and peer evaluations of performance and knowledge levels</td>
</tr>
<tr>
<td>β Demonstrate skills to learn in a student-centered and adult learning environment</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Patient Care</th>
</tr>
</thead>
<tbody>
<tr>
<td>β Correlate the biomedical science aspect of model diseases to the clinical knowledge acquired in the Integrated Patient Care and Physicianship Skills</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Medical Knowledge</th>
</tr>
</thead>
<tbody>
<tr>
<td>β Understand the basic vocabulary of the biomedical sciences as they relate to structures, processes and diseases</td>
</tr>
<tr>
<td>β Understand the concept of genome organization and expression and its effect on the practice of medicine</td>
</tr>
<tr>
<td>β Describe the roles of various bio-molecules in the major metabolic pathways of cells</td>
</tr>
<tr>
<td>β Correlate basic normal human anatomy with images used by health care professionals</td>
</tr>
<tr>
<td>β Identify the knowledge base and gaps related to the application of course content to clinical disorders</td>
</tr>
<tr>
<td>β Utilize a variety of resources (faculty, textbooks, computers, internet, etc.) to find information about anatomical, histological and developmental issues related to normal structure and clinical problems</td>
</tr>
<tr>
<td>β Understand the interactions between organisms in infectious diseases and the mechanisms of defense against human pathogens</td>
</tr>
<tr>
<td>β Understand the basic pathologic processes as they apply to disease mechanisms</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Practice-Based Learning and Improvement</th>
</tr>
</thead>
</table>
β Reflect on the importance of dedication to life-long learning and strive for excellence in order to consistently provide optimal performance in class, small group and ultimately in patient care
β Take charge of their own learning and effectively elicit feedback from faculty and peers in order to optimize learning

Systems-Based Practice

β N/A

8. **Course evaluation method:**

Examination Policy:

Exam Composition: All examination questions will be multiple-choice. Clinical vignettes will be used for many questions, and images will be incorporated as appropriate. Approximately 1-2 questions per lecture hour, 1-2 questions per PBL case hour and 1-2 questions per laboratory hour will be used.

Exams will be delivered electronically via student laptops. Laboratory Practical Exams will be pen and paper exams.

Exam Administration: All examinations will be administered in the Biomedical Sciences building on the dates and times documented in the examination schedule. A student must sit for all examinations as scheduled. A student must obtain permission for an excused absence from the course director and notify the Assistant Dean for Student Affairs prior to the time for sitting for a scheduled examination. In the event of a personal emergency, the course director and the Assistant Dean for Student Affairs must be notified of the absence as soon as possible. Missed examinations will be rescheduled at the discretion of the course director, at a time that does not interfere with other course work. Unexcused absences will result in a grade of zero (0) for the missed examination.

All absences from examinations should be documented by a PIR from the course director and will be communicated to the Office of Student Affairs. A record of excused and unexcused absences from examinations will be maintained by the Office of Student Affairs. A pattern of recurrent absences from examinations, whether excused or unexcused, will be reviewed by the class promotions committees and may result in a recommendation up to and including dismissal from the FAU medical Education Program. (See Student Rights and Responsibilities Handbook)

During the exams, students are required to follow the examination protocol presented by the proctors. No specific questions regarding an exam item will be answered during any exam.

Examination Scoring: Scoring will be based solely on the answers recorded by the student on their laptop computer. Miskeying of answers will not be considered in grading a student’s examination. Accuracy is the sole responsibility of the student.

Grades will be available via Blackboard in a timely fashion.

Viewing the Examination: All exams will be secure. Students can access a copy of the exam for review in the Office of Medical Education, Room BC-136

Grading Policy:

<table>
<thead>
<tr>
<th>Activity</th>
<th>Date</th>
<th>Approximate Percentage of Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exam #1</td>
<td>Monday September 21</td>
<td>30</td>
</tr>
<tr>
<td>Exam #2</td>
<td>Monday October 19</td>
<td>30</td>
</tr>
</tbody>
</table>
Anatomy component Practical Exam and Quizzes | Tuesday October 20 | 20
---|---|---
PBL Small Group Performance | | 20
Total | | 100

Students are required to pass the individual activities (Exam #1, Exam #2, Practical Exam, Small group performance) in order to pass the course overall.

The Student Rights and Responsibilities Handbook contains a description of the grading system.

1. **Exam #1**
 - Consists of questions covering objectives from lectures in biomedical sciences and gross anatomy, and PBL cases.
 - Includes material up to and including Friday September 18.

2. **Exam #2**
 - Consists of questions covering objectives from lectures in biomedical sciences and gross anatomy, and PBL cases.
 - Includes material from September 22 though and including Friday October 16. The exam is not cumulative but builds on prior knowledge.

3. **Anatomy Practical Exam and Quizzes**
 - Aggregate grade consists of questions from the practical exam (50 questions) and from 5 of the 6 course quizzes (50 questions, lowest quiz grade not counted).

4. **PBL Small Group Performance**
 - Active participation and attendance are expected in all small groups (See Attendance Policy).
 - Consists of the Core Facilitator Evaluation of the student performance during the course.
 - Copies of the form used to evaluate students may be found under the “Handouts and links” of the student e-Dossier on Blackboard.

When a student obtains a “D” or “F” on any examination, a letter is sent to the student asking them to contact the Course director for assistance. The letter is copied to the student’s file.

9. **Course grading scale:**

 A = 93-100; A- = 90-92; B+ = 88-89; B = 83-87; B - = 80-82;
 C+ = 78-79; C= 73-77; C- = 70-72; D+ = 68-69; D = 63-67; D- = 60-62; F = 59 and below.

10. **Policy on makeup tests, etc.**

 Current policy for the FBS courses:

Failure in the *individual discipline* components

a) The Office of Medical Education is monitoring student performance in the *individual discipline* components in the courses FBS 1, 2, 3. Students are required to obtain a passing grade in these disciplines, although these grades do not form part of the student official transcript. The five discipline groupings are:

1. Anatomy/embryology
2. Histology/pathology
3. Microbiology/immunology
4. Molecular and cellular biology
5. Pharmacology/physiology

b) A student may pass a written examination, but not pass an individual discipline component. When this is determined after an individual examination, a letter is sent to the student from the Course Director. The letter is copied to the student’s file. The individual discipline component grade is calculated as the number of correct answers over the total number of questions in that discipline over the span of FBS1, 2, 3. A grade of 70% is used as the benchmark for passing a discipline component. The benchmark may be adjusted based on class performance and other possible extenuating circumstances, as determined by the Course Directors for FBS 1, 2, 3.

c) It is mathematically possible for a student to receive a passing grade for all of the FBS courses, and pass all the written examinations, yet not pass a discipline component. If this occurs, the student will be required to meet with appropriate content faculty and course director(s). The plan of remediation will be determined by the Course Director and the Promotions Committee. Successful completion of the remediation must be provided in order for the student to go on to the next academic year. The student will be discussed at the Promotions Committee meeting.

11. Special Course requirements:

Attendance Policy:

The FAU faculty and administration agree that student attendance and participation in all scheduled learning sessions are important to students’ academic and professional progress, and ultimate success as physicians.

Attendance at the Monday/Wednesday/Friday small-group sessions and wrap-up is mandatory.

For an absence to be excused, a request must be made to the Course Director. Only a Course Director can excuse an absence. No missed work associated with a specific session can be made up without loss of credit for satisfactory completion unless an excused absence has been granted.

An excused absence from a small-group PBL session will be made up by the assignment of an additional learning issue to the student. An unexcused absence will result in the assignment of an additional learning objective for each absence, and a two point deduction from the PBL small group performance component of the final grade.

Attendance at the Tuesday morning anatomy sessions is expected for all scheduled activities. Students are expected to be on time: in that each session will start with a short written quiz, being on time is defined as being ready to start at the assigned time so as to not be pressured to finish the web-based quiz within its assigned time.

Repeated unexcused absences from required curricular activities may result in disciplinary action, up to and including dismissal from the FAU Medical Education Program.

12. Classroom etiquette policy:

Students should be considerate of each other by switching his/her cell phone to vibrate during all teaching activities.

If a telephone call is of an emergency nature and must be answered during class, the student should excuse him/herself from the lecture hall before conversing.

Laptop computer use should be limited to viewing and recording lecture notes rather than checking e-mail, playing or viewing other distracting websites. Students may be asked by faculty to turn off laptops during any session where group participation is required (such as PBL and wrap-up sessions).

13. Disability policy statement:
In compliance with the Americans with Disabilities Act (ADA), students who require special accommodation due to a disability to properly execute coursework must register with the Office for Students with Disabilities (OSD)—in Boca Raton, SU 133 (561-297-3880)—and follow all OSD procedures.

14. Honor code policy:

Students at Florida Atlantic University are expected to maintain the highest ethical standards. Academic dishonesty is considered a serious breach of these ethical standards because it interferes with the University mission to provide a high quality education in which no student enjoys an unfair advantage over any other. Academic dishonesty is also destructive of the University community, which is grounded in a system of mutual trust and places high value on personal integrity and individual responsibility.

The FAU Honor Code requires a faculty member, student, or staff member to notify an instructor when there is reason to believe an academic irregularity is occurring in a course. The instructor must pursue any reasonable allegation, taking action where appropriate. The following constitute academic irregularities:

1. The use of notes, books or assistance from or to other students while taking an examination or working on other assignments, unless specifically authorized by the instructor, are defined as acts of cheating.
2. The presentation of words or ideas from any other source as one's own is an act defined as plagiarism.
3. Other activities that interfere with the educational mission of the University.

For full details of the FAU Honor Code, see University Regulation 4.001 at www.fau.edu/regulations/chapter4/4.001_Honor_Code.pdf.

The Code of Honorable and Professional Conduct should serve as a guide to medical students in matters related to academic integrity and professional conduct. The Code of Honorable and Professional Conduct provides a mechanism for peer evaluation of student conduct which the FAU faculty and administration believe is an essential component of medical education and development of medical students.

15. Required texts/readings:

The following are textbooks that students are expected to purchase for use in the Fundamentals of Biomedical Science sequence. All the textbooks listed below will be available at the FAU Bookstore at the beginning of the academic year.

For FBS 1, the emphasis will be on the following:

<table>
<thead>
<tr>
<th>Title</th>
<th>Author(s)</th>
<th>Publisher</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genetics in Medicine 7th Edition</td>
<td>Thompson and Thompson</td>
<td>Saunders</td>
</tr>
<tr>
<td>Langman's Medical Embryology 11th Edition</td>
<td>Sadler</td>
<td>Lippincott, Williams and Wilkins</td>
</tr>
</tbody>
</table>

In FBS 2 and FBS 3, the additional texts are:

<table>
<thead>
<tr>
<th>Title</th>
<th>Author(s)</th>
<th>Publisher</th>
</tr>
</thead>
</table>
Instruments and Lab Coats:

For the gross anatomy laboratory activity, students are required to dress appropriately in scrubs and lab coat with three-quarter length sleeve (preferred). Safety glasses are needed for splash protection while dissecting. These supplies can be found at the FAU bookstore

16. Supplementary resources:

Web Resources:

(These resources and others may be accessed via the “Handouts and links” of the student e-Dossier on Blackboard)

Integrated Medical Curriculum http://imc.meded.com/
The site provides materials related to the gross anatomy component of the FBS sequence. A username and password will be given to each student.

Medline Dictionary, an online dictionary provided by the US National Library of Medicine and the National Institutes of Health. A potentially useful resource during the PBL small group sessions.

The Visible Embryo http://www.visembryo.com
A visual guide through fetal development from fertilization through pregnancy to birth.

Web-based postings:

Students are encouraged to carry their laptop with them as much as possible in order to access resources, patient log and other resources.

Please refrain from checking personal e-mails during teaching periods. Please put your cell phone or pager on "vibrate" to minimize disruption.

Please be punctual as a courtesy to your colleagues and faculty.

<table>
<thead>
<tr>
<th>Session handouts</th>
<th>Yes</th>
<th>Session Objectives</th>
<th>Yes</th>
<th>Quizzes</th>
<th>Delivered via laptop</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Activities</td>
<td>Yes</td>
<td>Grades</td>
<td>Yes</td>
<td>Exams</td>
<td>Delivered via laptop (except practicals)</td>
</tr>
</tbody>
</table>

17. Course topical outline, including dates:
Content outline:

Please refer to Blackboard for up-to-date information and session-related objectives and handouts.

<table>
<thead>
<tr>
<th>Week of</th>
<th>Academic Week</th>
<th>Session Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>8/31/11</td>
<td>4</td>
<td>Introduction to FBS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Introduction to Histology</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Introduction to Anatomy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Anatomy of ANS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gross Anatomy Laboratory</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Somatic and Autonomic Nervous Systems</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Early Development Part I</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Introduction and Flow of Information</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nucleic Acid Structure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Early Development Part II</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Body Cavities</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PBL 1</td>
</tr>
<tr>
<td>9/7/11</td>
<td>5</td>
<td>Back and Spinal Cord</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Anatomy Case Correlations</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gross Anatomy Laboratory</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Skeletal Muscular System Development</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eukaryotic Sequence Organization and Genomic Structure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DNA Replication</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ANS Problems</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PBL 1 cont.</td>
</tr>
<tr>
<td>9/14/11</td>
<td>6</td>
<td>DNA Mutation, Damage, Repair and Genetic Recombination</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RNA Synthesis, Processing and Turnover</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shoulder and Axilla</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Anatomy Case Correlations</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gross Anatomy Laboratory</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Protein Synthesis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Control of Gene Expression</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Introduction to Protein Structure and Function</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Enzymology</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PBL 2</td>
</tr>
<tr>
<td>9/21/11</td>
<td>7</td>
<td>Exam # 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Arm and Forearm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Anatomy Case Correlations</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gross Anatomy Laboratory</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Introduction to Cell Membrane, Organelles and the Cytoskeleton</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Signal Transduction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Recombinant DNA Technology I</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Overview of Cell Cycle</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Overview of Metabolic Pathways I</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PBL 3</td>
</tr>
<tr>
<td>9/28/11</td>
<td>8</td>
<td>Introduction to Pharmacodynamics and Pharmacokinetics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hands and Joints of Upper Limbs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Anatomy Case Correlations</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gross Anatomy Laboratory</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pharmacokinetics I</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Overview of Metabolic Pathways II</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Overview of Nitrogen Metabolism</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pharmacokinetics II</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PBL 3 cont.</td>
</tr>
<tr>
<td>10/5/11</td>
<td>9</td>
<td>Overview of Metabolic Pathways III</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chest Wall and Lungs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Anatomy Case Correlations</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gross Anatomy Laboratory</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Overview of Lipid Metabolism I</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cardiovascular Embryology I</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cardiovascular Embryology II</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pharmacokinetics and Pharmacodynamics Problems</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PBL 4</td>
</tr>
<tr>
<td>10/12/11</td>
<td>10</td>
<td>Integration of Metabolism</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Heart, Great Vessels and Mediastinum</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Anatomy Case Correlations</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gross Anatomy Laboratory</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Liver, Gallbladder and Pancreas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PBL 4 cont.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Exam # 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FBS 1 Practical examination</td>
</tr>
</tbody>
</table>
In anticipation of the beginning of this course in Academic Calendar weeks 4 and 5, students are encouraged to prepare by reading chapters 2-3-4-5-6-8 of Langman's Medical Embryology textbook

Study Habits:

A major contribution to your learning is active engagement, which includes participation in the learning of other students and interaction with the instructors. Students are expected to be proactive and to access the Blackboard system to review items associated to individual sessions.

Learning in the field of medicine is a life-long endeavor that is not only necessary, but can and should be fun. One of the most important factors for learning is curiosity and sometimes, the best way to keep this curiosity stimulated is through our interaction with colleagues and peers. When learning in small groups, we have a chance to try to explain topics to each other, brainstorm solutions together, give each other constructive feedback, and support and validate each other. We encourage balancing studying alone with learning in small groups. It is important to develop a study routine to avoid “putting things off” and “cramming” and to minimize the stress we may add to our lives in that way.

Independent Study Time:

Independent Study Time allocated within the day time schedule is provided for students, on average about 9 hours per week.

Students are expected to use this time to further their learning. The time should be used for independent study or with peers. It is an opportunity to seek out faculty to interact with them outside the formal teaching setting. Since the PBL small-group format requires that students research learning objectives, the time may be used to prepare for the subsequent sessions. Finally, the time may be used to work on assignments, problem-solving cases, off-campus visits or other tasks that are required by the courses.

Occasionally, some Independent Study Time sessions may be used for curriculum-related activities (e.g. standardized examinations): notice will be given as early as possible for these occasions.

Pledge of Respect for the gross anatomy component:

In recognition of the gift of human remains to the Anatomical Board of the State of Florida for use in our medical teaching, students are asked to sign the Pledge of Respect found in Appendix 1 of this syllabus.

Please complete, detach and bring to 1st lab session on September 1, 2011. You will receive a bone box to help in your studies and they are available for checkout from Ms. Sandy Albrecht, RM. 335.

Dress code for gross anatomy sessions:

Students should protect their clothing by wearing a lab coat and/or scrubs. No open-toed footwear will be allowed.

Comments about the gross anatomy component:

The Tuesday morning activity in gross anatomy is divided into three parts.

First, the lectures in gross anatomy are meant to introduce concepts and relate the content to clinical problems. These sessions also have interactive discussions about content from related topics.

During the second hour, a number of clinical correlative problems, or minicases, will be reviewed with the students. These minicases are made available on Blackboard the preceding week and are meant to enhance the student’s ability to relate gross anatomy concepts to both imaging modalities (CT, MR, etc.) and patient clinical scenarios. It is the responsibility of each student to use their texts, web-based resources, etc. to answer the questions addressed in these problems. A list of anatomy small groups (4 students per group) and a schedule of rotating tasks which include dissection, image and osteology, will be posted. Each week two students will dissect, and the remaining students will either review the image or osteology checklists. At some
time before the quiz on Tuesday mornings, the group should convene and the dissectors for that week should
demonstrate their preparation of the cadaveric learning material to the other members of their group. During
this meeting, those members responsible for the images checklist (and in some instances those responsible for
the osteology checklist) should also review that anatomical information with the group. Each member should
work to insure that the others in their small group have learned the material found on the checklists.

Following the case review session, two students from each group will go to the gross lab. The laboratory
component of this course is a self-directed dissection experience. A dissection guide, checklist, streaming
video and atlas resources will be provided to the dissectors. The dissection laboratory will be open to students
24/7; anatomy faculty will be present in the lab from 1 to 3pm on Thursday afternoons.

Faculty will be available to assist you as needed during times other than Tuesday mornings.

**Before the first session on September 1st, all students are required to have completed the online
courses** in Blood-borne pathogens and formaldehyde use. Each one takes about 15-20 minutes to complete.
These courses are available at this web site, also available via the link in the “Handouts and links” section of
your Blackboard e-Dossier.

Course and Faculty Evaluation:

FAU highly values the process of formal program evaluation and feedback. FAU students are required to
complete all course evaluations and program evaluation surveys which are the Students Perception of
Teaching (SPOT).

Grades and transcripts may be held for failure to submit required surveys. Evaluations should be constructive,
to help improve individual faculty’s teaching, and the content and format of the courses.

Moreover, the timely completion of evaluations at the level of undergraduate medical education assists
students in developing the administrative and organizational skills required throughout their academic and
professional career. We appreciate your completing evaluations to help continue with improvement of the
learning experiences and environment for all students.

Faculty (in alphabetical order):

Lecturers: mkantero@fau.edu

Ana Maria Azzarolo, Ph.D.
Associate Professor
Biomedical Science Room 337
561-297-0207
aazzarol@fau.edu

Keith Brew, Ph.D.
Professor
Biomedical Science Room 341
561-297-0407
kbrew@fau.edu

Deborah Cunningham, Ph.D
Assistant Professor
Biomedical Science Room 209
561-297-2302
dcunn11@fau.edu

Marc Kantorow, PhD
Professor
Biomedical Science Room 207
561-297-2910

Zhongwei Li, Ph.D.
Associate Professor
Biomedical Science Room 308
561-297-3178
zli@fau.edu

Deborah W. Louda, Ph.D.
Associate Professor
Chemistry Room 121
561-297-3622
dlouda@fau.edu

Michael Lu, Ph.D.
Associate Professor
Biomedical Science Room 329
561-297-0892
mlu3@fau.edu

Willis K. Paull, Ph.D.
Professor
Biomedical Science Room 339
561-297-1024
Core Facilitators:

Ana Maria Azzarolo, Ph.D.
Associate Professor
Biomedical Science Room 337
561-297-0207
aazzarol@fau.edu

Marc Kantorow, Ph.D.
Professor
Biomedical Science Room 207
561-297-2910
mkantoro@fau.edu

Zhongwei Li, Ph.D.
Associate Professor
Biomedical Science Room 308
561-297-3178
zli@fau.edu

Gary Rose, M.D.
Associate Professor
Biomedical Science Room 119
561-297-0675
grose@fau.edu

Rainald Schmidt-Kastner, M.D.
Clinical Assistant Professor
Biomedical Science Room 306A
561-297-1360
schmidtke@fau.edu

Jianning Wei, Ph.D
Assistant Professor
Biomedical Science Room 210
561-297-0002
jwei@fau.edu
Policies and Procedures Applicable to Florida Atlantic University Students and Residents/Fellows

Once a donated human anatomical specimen is made accessible to a faculty member of the Florida Atlantic University, the responsibility for the security and proper storage of the human anatomical specimen is that of the faculty member and the faculty member’s program. Consonant with this responsibility, every student and resident having access to human anatomical specimens under the supervision of the faculty member will be required to sign the following pledge prior to having access to a donated human anatomical specimen provided by the Anatomical Board:

Pledge of Respect for the Sanctity of Donated Human Anatomical Specimens

I, the undersigned FAU student, resident, or fellow, recognize that the bequest of human remains to the Anatomical Board of the State of Florida represents a direct and important contribution to medical teaching and research. Such donations allow health professional faculty and students the opportunity to closely examine, evaluate, and understand the detailed structure of the human body. Further, the caring and thoughtfulness of such bequests provides physicians and research scientists with the opportunity to gain knowledge that may prolong, improve, or save someone’s life. Without such bequests, medical science and health care would suffer devastating setbacks.

In recognition of the generosity of such bequests, I understand that the policy of the Anatomical Board of the State of Florida is to treat donated human anatomical specimens with the utmost respect and gratitude at all times, and I pledge to comply with this policy. I further pledge that the donated human anatomical specimens to which I have access will remain on the property of the Anatomical Board at all times, in specific storage space or teaching/research rooms approved for such use by the Anatomical Board, unless a signed authorization for transfer elsewhere has been executed by the Executive Director of the Anatomical Board of the State of Florida or his/her authorized designee. I further pledge to comply with all applicable requirements for timely return of human anatomical specimens to the Anatomical Board of the State of Florida.

Signature.. Date

Typed or printed name

Title or Academic Class: CMC Fundamentals of Biomedical Science/Gross Anatomy component
CMC Neuroscience and Behavior/Gross Anatomy component

Department/College: FAU College of Biomedical Science