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Abstract 

Artificial Intelligence (AI) is one of the most transformative technologies of the 21st century.  

The extent and scope of future AI capabilities remain a key uncertainty, with widespread 

disagreement on timelines and potential impacts. As nations and technology companies race 

toward greater complexity and autonomy in AI systems, there are concerns over the extent of 

integration and oversight of opaque AI decision processes.  This is especially true in the subfield 

of machine learning (ML), where systems learn to optimize objectives without human assistance. 

Objectives can be imperfectly specified or executed in an unexpected or potentially harmful way. 

This becomes more concerning as systems increase in power and autonomy, where an abrupt 

capability jump could result in unexpected shifts in power dynamics or even catastrophic 

failures. This study presents a hierarchical complex systems framework to model AI risk and 

provide a template for alternative futures analysis. Survey data were collected from domain 

experts in the public and private sectors to classify AI impact and likelihood. The results show 
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increased uncertainty over the powerful AI agent scenario, confidence in multiagent 

environments, and increased concern over AI alignment failures and influence-seeking behavior. 

 

Keywords:  

Artificial Intelligence, Risk Analysis, Alternative Futures, Control Problem, AI Alignment, AI 

Governance 

 

1. Background 

Revolutionary discoveries in science and technology often happen in leaps. While science 

generally accumulates incrementally, some breakthroughs occur suddenly, delivering 

unprecedented opportunities and challenges. Following a lecture by renowned physicist Ernest 

Rutherford in 1933—where he dismissed the idea of nuclear fission as nothing but 

―moonshine‖—younger scientist Leo Szilard, irritated by the remark, uncovered the key insight 

for the nuclear chain reaction within 24 hours (Jogalekar, 2013). Szilard’s discovery upended the 

establishment and reshaped the future of science and geopolitics. Analogous discontinuities in 

science, or technological transitions, can emerge unpredictably, driving cascades of follow-on 

innovations, feedback loops, and higher-order changes (Valverde, 2016). Recent progress in 

artificial intelligence (AI) has sparked similar discussions of technological transitions, with some 

experts claiming it could be the ―next electricity‖ (Lynch, 2017).  Indeed, AI has enmeshed every 

aspect of society, increasing productivity, safety, scientific discovery, and economic well-being. 

However, as AI increases in complexity and capability, there are concerns about the scope of 

integration and autonomy. While largely beneficial in narrow domains—such as playing chess 

and recommending movies or products—AI used in autonomous weapons, for example, or 

safety-critical systems could pose significant risks (Maas, 2019).  
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AI systems have shown rapid improvements in capability and generality in recent years, most 

notably in the subfield of machine learning (ML). ML systems learn and adapt independently by 

drawing inferences from patterns in data without specified instructions. Independence, 

adaptation, and generalization—the ability to accurately transfer learned skills in one domain to 

new challenges—continue to demonstrate impressive results in AI systems (Hernández-Orallo, 

Sheng Loe, Cheke, Martínez-Plumed, & ÓhÉigeartaigh, 2021).  While there are obvious 

differences and limitations, this general learning is what brings machine intelligence closer to 

human capabilities. Many milestones in capability and generality (once considered unattainable) 

are being met with increasing frequency. This acceleration is due in part to the sharp increase in 

data and computational resources but also to feedback loops of complementary technologies. 

Pending a significant disruption, the pace of AI technology is poised to continue to accelerate. A 

transformational breakthrough, with rapid capability gains and increased cognitive 

independence, could be a high-impact event with unpredictable consequences.  What was once 

generally reserved for Hollywood science fiction has increasingly received serious debate. 

(Perry, 2020)  

With the ability to learn and adapt without step-by-step instructions, advanced AI systems 

could promise novel solutions to once-intractable problems. However, this novelty can also lead 

to unexpected results or failures, what researcher Anca Dragan has termed ―unexpected side 

effects‖ (Dragan, 2020, p. 134). While generally considered minor problems in contemporary AI 

applications (e.g., video games), the stakes could be significantly higher as systems increase in 

capability and generality. Indeed, researchers have voiced concerns about our capacity to control 

AI systems, with warnings of unanticipated failure modes that could lead to unintended military 
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escalations and jeopardize command and control (C2) systems (Bailey, 2021) (Bailey & Kilian, 

2022).  

Analyzing this problem requires understanding the spectrum of risks associated with AI.  The 

principal medium to long-term risks from advanced AI systems fall into four categories: risks of 

misuse, accidents, agential, and structural. The misuse class includes elements such as the 

potential for cyber threat actors to execute exploits with greater speed and impact or generate 

disinformation (such as ―deep fake‖ media) at accelerated rates and effectiveness (Buchanan, 

Bansemer, Cary, Lucas, & Musser, 2020). Accidents include unintended failure modes that, in 

principle, could be considered the fault of the system or the developer (Zwetsloot & Dafoe, 

2019). Agents, or instantiations of AI that can interact with their environments and achieve goals 

autonomously, comprise most modern AI systems (e.g., AlphaGo). While there are multiple 

types of intelligent agents, goal-based, utility-maximizing, and learning agents are the primary 

concern and the focus of this research (Figure 1). AI agents learn much like humans in that they 

develop independent strategies to achieve objectives. Finally, structural risks are interwoven 

through social and technological systems—more complex and less easy to identify—requiring 

that we broaden the definition of risk. Structural risks are concerned with how AI technologies 

―shape and are shaped by the environments in which they are developed and deployed‖ 

(Zwetsloot & Dafoe, 2019).  This risk classification schema is outlined in Figure 2. Jo
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Figure 1. The five classes of intelligent agents.  AI agents range in cognitive complexity from simple-

reflex agents (e.g., automatic reaction given an environmental state change) to highly complex utility-

based and learning agents. Goal-directed, utility-based, and learning agent types have the potential to 

exhibit agential characteristics with the risk of goal misalignment. (Russell, 2019) 

 
Figure 2: The spectrum of risk from advanced AI systems. The four classes are not necessarily confined 

to the degree of impact on the spectrum as there will be overlap across the spectrum (e.g., misuses and 

accidents can be catastrophic, and agential failures can be less dangerous). The spectrum is meant to 

provide a classification of the overall risk potential.1 

                                                            
1 It is important to differentiate between outer alignment issues and inner alignment.  Outer alignment 

refers to scenarios where an AI system interprets the human objective incorrectly or pursues it in a harmful way. 

However, the internal model could have separate misalignments. With inner alignment, the outer optimization 

process successfully internalizes the objective, but the inner model is itself an optimizer and goes about configuring 

the task in an unexpected, misaligned way. Evan Hubinger provides an example of human evolution. Human 

evolution (the outer model, in this case) has the goal of maximizing genetic fitness, while humans (the inner model) 
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One structural risk that is evaluated less frequently is the potential for automated systems to 

upend the stability of strategic weapons systems through the erosion of confidence. For example, 

alterations to behavioral regimes, such as nuclear rapprochement, can compromise trust and 

increase uncertainty (Shahar & Amadae, 2019, pp. 115-118). Beyond first-order risks (e.g., 

unintended weapons failures), researchers have noted that ―higher-order‖ indirect risks from AI 

integration into peripheral systems (e.g., command and control, supply chain, etc.) can degrade 

multilateral trust in deterrence by increasing uncertainty in the trusted computing base of 

strategic systems (Shahar & Amadae, 2019, pp. 105-106). With respect to more direct agential 

risks, the potential for power-seeking and goal misalignment in connected agent systems could 

generate profound systemic risks and potentiate an unstable international system (Omohundro, 

2008) (Carlsmith, 2022).  

Since contemporary ML systems develop independent means to achieve objectives, problems 

with misinterpretation, unpredictability, or emergent subgoals are tangible concerns. For 

example, game playing reinforcement learning (RL) agents are known to misinterpret objectives, 

game the system, or develop useful but unexpected subgoals to complete a task; agents tested in 

game environments have learned to prioritize the reward function (e.g., points) above the actual 

purpose of the game, resulting in ―surprising, counterintuitive‖ failure modes (Dario, 2016). At 

the same time, AI’s decision space seems to exist far outside the expected window of probability. 

An infamous example is AlphaGo’s move 37, where DeepMind’s system demonstrated its 

preternatural capabilities against world Go champion Le Sedol (Metz, 2016). While system 

failures and misuse capture most of the attention, there are subtle technical limitations and 

                                                                                                                                                                                                
have a goal of maximizing pleasure or minimizing pain, not the explicit goal of genetic fitness. Thus, human 

objectives would be misaligned with the outer objective function of evolution. A learned model that is also an 

optimizer is known as a ―mesa optimizer‖ and the objective, the ―mesa objective.‖  
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barriers to interpretation inherent in ML systems that will be far more difficult to resolve through 

governance and regulation.  

This study investigates the risks and uncertainties that could arise from advanced AI 

development (including artificial general intelligence or AGI) and models how variations in 

social and technological change can impact outcomes. This research maps the four risk classes 

that most concerns AI researchers to plausible future scenarios, highlighting the variable impacts 

on international security. This work contributes primarily to the literature on future AI scenario 

development through a comprehensive AI risk framework. This paper also presents a novel 

exploratory modeling technique to characterize future scenarios and the associated risks with 

advanced systems. Through a hierarchical complex systems framework, the study structures the 

dimensions and key uncertainties of AI risk, such as technological transitions, competitive race 

dynamics, and control measures, to highlight the complex interdependencies and how they could 

yield highly variable futures. 

2. Developing A Risk Framework 

To develop a comprehensive risk framework, this research proceeds through a process of 

problem decomposition to isolate the most critical aspects of the AI ecosystem. Decomposition 

breaks down the components of a problem into smaller sub-problems, enabling the structuring of 

key uncertainties for scenario development. Generating scenarios typically involves identifying a 

set of influential drivers, which in combination create a range of plausible states (Virdee & 

Hughes, 2022). This framework expands on the process by developing a multitiered set of 

structural forces, influential drivers or dimensions, and plausible future states. Thus, the sub-

components from problem decomposition are organized into three high-level classes (Figure 3), 

followed by 14 nested dimensions and 47 individual conditions (see Appendix for definitions).   
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Figure 3. Advanced AI classification framework. The outer field includes macro-scale issues, such as 

actors, regions, and geopolitical race dynamics. The transition and diffusion subsystems include aspects 

of the technology itself that could directly impact system typology. Control is concerned with technical 

safety, institutional safety, and governance strategies. 

 

The framework is structured as a hierarchical system of nested subsystems, dimensions, and 

potential conditions to analyze these processes as an ensemble of interdependent issues. The final 

system-level structure places the 14 individual dimensions as subordinate to the three higher-

order classifications: technological transitions, socio-technical ecology, and control measures. 

There are six nested dimensions within the technological transitions class (Figure 4 and Figure 

5), three within the socio-technical ecology (Figure 6), and five that are components of 

institutional and technical control (Figure 7). A level down the hierarchy, 47 conditions are 

compiled that represent plausible future states within each dimension. 
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Figure 4. AI Classification: Capability, Transition, and Diffusion. The three primary drivers of AI 

technological change: 1) system capability and generality, 2) diffusion and 3) rate of change/takeoff speed 

or technological transition. Each of the three can drive the velocity, character, and distribution of AI state 

changes, including variations in social response and control. 

 

 
Figure 5. AI Classification: Paradigm, Accelerants, and Timeline. The second group of dimensions in the 

transition cluster. Like the first three, paradigms can directly influence accelerant, transition, and timeline. 

Accelerants could be a disruptive innovation that influences the velocity of the system transition.  
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Figure 6. AI Classification: Race Dynamics, Dominant Risk, and Technical Risk. The second cluster of 

nested AI dimensions is socio-technical ecology. Race dynamics impact the degree of competition, 

cooperation, balance-of-power, and dominant risks.  
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Figure 7. AI Classification: International Governance, Institutional and Technical Control. The third 

group of AI dimensions is control:1) Technical AI safety, 2) Actors, 3) Region, 4) International 

governance, and 5) Corporate Governance and safety standards. This set of dimensions represents the 

primary areas where change can be directly influenced through policy.  

 

3. Data Collection & Methodology 

This study implements an exploratory scenario modeling technique to understand the 

potential paths and risks of advanced AI development.  The GMA method was designed to 

structure the total set of relationships that influence or interact with ―multidimensional, non-

quantifiable‖ problems (Ritchey, 2014) (Johansen, 2018). This study applies a variation of the 

alternative futures modeling framework devised by Blauvelt, et al. (Blauvelt, Jungdahl, & 

Closson, 2022) as a baseline for the clustering used for scenario development while 

concentrating on the complex interdependencies and the relationships between variables. The 
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risk framework is used to populate the GMA matrix, with the dimensions and conditions arrayed 

across the model. 

As outlined by Johansen, the GMA process can be described as a dialectical progression 

through repeated sequences of analysis and synthesis, with the matrix representing the entire 

morphological problem space (Johansen, 2018). GMA is a qualitative yet computational method 

where the value estimates for each condition provided by experts are computationally 

aggregated. Unlike the 2-dimensional risk matrix, with four possible solutions, GMA transposes 

the parameters into a multidimensional array with many plausible outcomes. Thus, the process 

reconceptualizes the matrix from the four-quadrant standard into a series of two-dimensional 

tables representing many dimensions. To structure the multidimensional matrix, the 14 

dimensions and 47 conditions are arrayed across each axis of a Cartesian plane, with the 

dimensions and conditions duplicated along each for cross-reference and evaluation. The 

scenario combinations are reduced through cross-consistency assessment (CCA) to a smaller set 

of internally consistent configurations (Ritchey, 2014). The CCA step winnows down the 

prospective futures to a smaller set of configurations (removing logically inconsistent value 

pairs). This step provides a structured accounting of the morphological space, resulting in a 

relational database or a higher-order graph of connected typologies (Ritchey, 2014).  

Once the conditions are structured across the matrix, each condition is cross-referenced and 

evaluated against every other (e.g., the condition fast takeoff with the condition current 

paradigm), averaging the values for impact and likelihood for each set of two conditions (Figure 

8). Thus, each cell in the matrix is a computation between two conditions and four sets of values 

provided by survey participants. The configurations make up independent scenario 

combinations—or scenario pairs, two elements of a possible scenario (e.g., AI Paradigm + 
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Moderate takeoff)—which are then clustered and categorized to drive the alternative futures 

analysis. Figure 8 depicts the transformation from the standard two-dimensional alternative 

futures matrix to an N-dimensional surface of interrelated tables (e.g., representing a standard 2-

dimensional risk matrix for each parameter).
2
  

 
Figure 8. Standard four-quadrant impact-likelihood matrix vs the GMA multidimensional representation. 

(Ritchey, 2014) The standard two-dimensional matrix is typically used as the base for alternative futures 

analysis to arrive at four total scenarios (left) compared to the morphological problem space (right) that 

allows a multidimensional structuring of relevant parameters. The dimension combination process 

(bottom) pairs conditions from each dimension to form one scenario configuration (D.1.2, D.2.3, D.3.1). 

The number of simple configurations increases exponentially with an increase in the number 

of dimensions. For example, two dimensions with four conditions have one dyadic relationship 

                                                            
2 Taken from the standard 2-dimension matrix to 3, each box in the cube now represents the combination of 

three unique dimensions with impact and likelihood scores. Thus, one assessment cell, shown in Figure 8 as the dark 

ball, represents multiple sets of condition values for calculation with one potential scenario. The 3-dimensional 

matrix presented in Figure 8 is a simplified example to demonstrate the GMA process (the AI model is composed 

of14 dimensions and 47 conditions and is difficult to illustrate). 
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(pairwise relationships between two dimensions), 16 paired value cells (assessment cells), and 16 

pairwise relationships (4 conditions x 4 conditions); with an increase to four dimensions, there 

are now six dyadic relationships, 96 paired value cells, and 256 simple configurations (scenario 

pairs). As dimensions expand for highly complex problems, the possible scenario combinations 

increase sharply. With the 14 AI dimensions and 47 conditions, the number of potential future 

combinations is quite extensive, mapping as large a possible a space for AI scenario 

development. This is where GMA stands out as a method—the ability to systematically structure 

and evaluate as many features of a problem as needed for unique scenario configurations. For the 

AI model, the 47 conditions yield 15,116,544 unique combinations.
3
 

With the interdependent relationships across dimensions, the GMA matrix can be modeled as 

a relational knowledge graph of system typologies using principles from network science 

(Ritchey, 2014). Indeed, the pairwise relationships between each condition can be represented as 

edges of a graph, with each dimension and condition acting as a node in the overall network. 

With distinct levels of higher-order classifications, subsystems, and conditions, graph network 

analysis can be a valuable tool to model complexity and is well suited to explore the intricacies 

and relationships of the AI model. Calculating a value pair in the CCA process is fundamentally 

the same as linking two nodes in the graph to evaluate the dyadic relationship.  Thus, this 

research expands on the CCA method to evaluate the correlation coefficient and interdependency 

between each dimension and condition. 
 

For data collection, this study developed a comprehensive survey disseminated to domain 

experts to evaluate each dimension and condition (see Appendix for survey questions and 

                                                            
3 The GMA dimension computations proceed as follows: two dimensions with four conditions: 4x4 (16 

scenario pairs); four dimensions with four conditions: 4x4x4x4 (256 scenario pairs); the AI model with 14 

dimensions and 47 conditions: 4x3x4x3x3x3x4x3x3x3x4x3x3x3 ( 5,  6,544  scenario pairs).  
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definitions). The purpose of the survey was to establish a baseline of impact and likelihood 

assessment values for computation in the model. The questions were not, strictly speaking, 

questions, but instead requests to judge or rank the impact and likelihood of each condition. 

While the GMA process generally uses qualitative decision support methods in a small group, 

this study incorporates a computer-aided variation to systematically structure the range of 

perspectives for scenario modeling. The surveyed experts assessed the impact and likelihood for 

each of the 47 conditions, providing two sets of values for each condition (Figure 9).
   

 

Figure 9. The likelihood rating scale is derived from the MITRE Corporations Risk Management Toolkit. 

(Engert & Landsdowne, 1999) The impact scale was developed independently to assess the security and 

stability ramifications of advanced AI. 

After outlining the key dimensions and conditions that constitute the research problem and 

eliciting perspectives from experts, the GMA methodology proceeds through a five-step 

workflow (Figure 10): 1) collect and evaluate expert assessments, calculate descriptive statistics, 

and assemble the GMA matrix with the 14 dimensions and 47 conditions, arrayed across each 

axis of the matrix, 2) conduct a cross-consistency assessment (CCA) to remove logically 

inconsistent value pairs (e.g., duplicative self-referenced parameters) and average the combined 

impact and likelihood values for each condition, 3) evaluate the dimensions and conditions as a 

relational network (using Python’s NetworkX library) (Hagberg, Schult, & Swart, 2008) to 

identify unexamined relationships, correlations, and sub-networks of tightly-connected 
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parameters (e.g., community detection and maximum clique algorithms), 4) to cluster like values 

for scenario development, use the K-Means clustering algorithm to group values into scenario 

clusters for alternative futures (using Python’s ScI-Kit Learn library) (Pedregosa, et al., 2011). 

The clusters are user-defined, allowing many tightly-clustered arrays of values (e.g., 4 – 10) or 

only a few large groupings (e.g., 2 – 4) for in-depth world-building. Finally, 5) based on the 

interrelated dimensions and conditions, provide the exploratory scenario descriptions for 

synthesizing influential forces, interdependent factors, and differential risks.  

 
Figure 10. The graphic above displays the five-step workflow of this research methodology: 1) collect, 

organize, and evaluate data to structure the GMA matrix, 2) conduct a cross-consistency assessment 

(CCA), cross-evaluation, combination of scenario pairs, and computation, 3) evaluate the dimensions and 

conditions as a relational network, 4) cluster like values for scenario development, and 5) combine the 

completed scenario-pair clusters for exploratory scenario development. 

4. AI Research Survey & Results 

4.1 Survey Participation 
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The broad uncertainty (and disagreement) over developmental paths of advanced AI makes 

this topic especially difficult. In typical GMA studies, one group of researchers is gathered to 

provide their expert perspectives on an issue, which is suitable for established problems in policy 

or science where expertise is relatively abundant. However, with broad controversy, limited 

knowledge, and interdisciplinary issues to evaluate, the case is more complicated. Thus, for this 

work, a wide net was cast. First, a list was compiled of universities and research groups with 

dedicated programs on AI risk, major AI technology companies with AI safety teams, and 

existential risk organizations that focus on the issue. Responses were sought in public and private 

sectors. Several of the respondent organizations are within leading AI companies, including 

Deep Mind and Open AI. Second, a list of AI researchers actively working in machine learning 

was compiled, to narrow down respondents to those qualified to speak on the technical aspects of 

the problem. To broaden this base to include analysts that specialize in risk, the study identified 

analysts and organizations that focus on risks from emerging technologies and AI (including 

researchers in defense and intelligence). This step was important specifically for the impact 

questions, which require some working knowledge of geopolitical and governance issues.  

To broaden the participation, popular AI alignment forums and existential risk conferences 

were targeted for elicitation. While the organizations and academic conferences in this category 

vary considerably on their level of expertise, the study included several questions at the end to 

self-report on level of expertise. The respondents were categorized as having either basic 

knowledge (knowledgeable of the issues and the fundamentals), intermediate knowledge 

(knowledgeable on AI risk or governance) or expert knowledge (knowledgeable and actively 

working in AI alignment or risk). With the diversity of expertise across the breadth of issues, the 

self-report questions allowed us to differentiate responses from enthusiasts to experts and those 
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working in AI safety and governance. See Figure 11 for breakdown of the level of expertise per 

question category.  

 
Figure 11: Survey Participation by reported level of expertise in AI safety and governance.  This was 

devised to separate those with knowledge of AI alignment vs. knowledge of governance and to categorize 

level of expertise from basic (fundamental knowledge of the issue), intermediate (highly knowledgeable), 

and expert (knowledgeable and actively working in the field). This step was necessary given that not all 

alignment experts are knowledgeable on governance and vice versa.  

 

From the range of AI practitioners, academics, data scientists, and existential risk scholars 

elicited for participation, the final tally resulted in 42 surveys for impact and 79 surveys for 

likelihood. The questions for impact were less intuitive for many experts to assess confidently, 

requiring substantive speculation and value judgments. This may explain the divergence in the 

completion rate for impact versus likelihood (user feedback highlighted this point). The quality 

of question type for impact requires intellectual flexibility, speculation, and comfort with 

exploratory ―what if‖ reasoning with many assumptions (Marchau, Walker, Bloemen, & Popper, 

2019). This style of exploratory analysis is more intuitive for practitioners in long-range risk 

analysis, policy (e.g., the RAND Corporation), and government but less so in scientific fields of 

study.   
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4.2 Limitations  

 

There is a solid body of research that highlights the limitation in expert judgment, cognitive 

biases, and broad domain disagreements, which can be attributed to different world models and 

the appropriateness experts to judge potentially inappropriate issues (Cremer, 2021) (Armstrong, 

Sotala, & Ó hÉigeartaigh, 2014) (Granger, 2014). In addition, human judgment can be plagued 

by cognitive biases, such as confirmation bias (we seek to confirm beliefs, rather than refute 

them), ambiguity (our preference for options that are known), and the availability heuristic 

(judging recent events as more likely) (Kahneman, 2011) (Kay & King, 2020). Indeed, it is 

important for experts—and those using expert elicitation in research—to recognize the 

professional limitations in the face of radical uncertainty. An historical analysis of prior AI 

predictions shows a poor track record in technological forecasting while highlighting the need 

for intellectual humility (Armstrong, Sotala, & Ó hÉigeartaigh, 2014). 

Notwithstanding the difficulties with prediction, novel exploratory models and decision 

support have proved especially useful for decision making given the complexity of the issue. 

Seth Baum and Anthony Barrett’s fault tree analysis, Ross Gruetzemacher and Jess Whittlestone 

scenario mapping, and Shahar Avin’s AI futures investigations are especially noteworthy 

examples (Baum & Barrett, 2017) (Avin, 2019) (Gruetzemacher & Paradice, 2019). In the spirit 

of Baum, Barrett, and Avin’s research, this project does not aim to predict any specific 

technological path, but rather to outline the breadth of plausible futures using exploratory 

scenario modeling; domain knowledge acts as the foundation, or baseline, to orient our 

understanding of events and technological trajectories, given the observed conditions.  

There are inherent limitations in the framing of this research and the breadth of the 

dimensions evaluated; for example, several of the dimensions are conditional (e.g., paradigm and 
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AI typology) and are not all mutually exclusive, raising concerns with some participants. Thus, 

respondents were instructed to evaluate each condition independently as the interdependencies 

and conditional values were to be evaluated separately. At the same time, rather than a standard 

survey, this was designed as an exercise in ranking each condition on its impact and likelihood 

along a spectrum, where the best, middle, or worst option should be selected. Explained this way, 

rather than prediction, the participants were better able to understand and complete the process. 

The results suggest that the diversity of perspectives from public and private organizations, 

independent AI researchers, and emerging technology think tanks filled some of the gaps and 

limitations, resulting in a diverse set of perspectives for alternative AI futures.   

4.3 High-Level Results 

 

The study elicited judgments on the overall impact and likelihood of the 47 individual 

conditions from the risk framework. The respondents ranked the top high impact states to be a 

fast takeoff scenario (88) with AI arms race (86), influence-seeking (84) behavior, and a timeline 

under 20 years (78). Alternatively, participants ranked the lowest impact conditions as a slow 

takeoff scenario with strong corporate standards (12), international cooperation (13), and ideal 

governance (12). At the s time, the highest likelihood rankings include the US-EU developing 

advanced AI (78), with goal alignment a serious concern (74), and failure modes as the dominant 

risk (74), with advanced systems developed using a hybrid AI paradigm (72). The least likely 

conditions include a slow, gradual transition (33), with low capability and generality (27) 

developed by an individual (31) in a location other than the US-EU or Asia-Pacific region (0.27). 

The conditions listed in question order, with the average rankings are displayed in Figure 12.  
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Figure 12. The impact and likelihood rankings for the conditions of the AI model. Conditions are 

grouped hierarchically under dimensions and subsystems classifications.  

 

While all organizations and individuals selected for participation in this study were qualified, 

understanding their areas of expertise and their degree of experience across the different fields 

provides some insight into how conditions were ranked. One difference that stands out is the 

distribution of rankings. Respondents new to the field, with a basic understanding of AI safety, 

ranked the conditions somewhat haphazardly, with strong variance across questions (Figure 13). 

This same pattern held for impact. On the other hand, intermediate and expert participants tended 

to trend closer to the mean, with much less variability, and with relatively consistent trend lines 

(e.g., expert and intermediate participants score AGI as high impact, with only variations in 

degree). Much of these patterns are likely due to level of experience working the issue; for those 

new to the subject matter, extreme values can seem more intuitive and appealing, while 

experience privileges more moderate, nuanced judgement.  

Dimension Condition Impact Likelihood Dimension Condition Impact Likelihood Dimension Condition Impact Likelihood

Low 0.41 0.27 Cooperation 0.13 0.37 Weak 0.73 0.44

Moderate 0.47 0.62 Isolation 0.6 0.49 Moderate 0.34 0.49

AI Ecology 0.32 0.66 Monopolization 0.71 0.63 Strong 0.15 0.43

AGI 0.74 0.51 Arms race 0.86 0.67 Decrease 0.79 0.39

Decentralized 0.4 0.49 Misuse 0.71 0.62 Increase 0.29 0.54

Multipolar 0.56 0.66 Failure 0.68 0.74 Ideal 0.12 0.49

Centralized 0.75 0.38 Structural 0.58 0.61 Scalable 0.34 0.42

Slow 0.2 0.33 Outer 0.7 0.74 New 0.55 0.69

Moderate 0.6 0.55 Influence 0.84 0.65 Custom 0.76 0.53

Competitive 0.5 0.55 Inner 0.56 0.57

Fast 0.88 0.45 Coalition 0.15 0.38

Current 0.76 0.5 Nation 0.39 0.6

New 0.34 0.6 Institution 0.77 0.7

Hybrid 0.42 0.72 Individual 0.56 0.31

Overhang 0.71 0.56 US-EU 0.2 0.78

Insight 0.3 0.71 Asia-Pacific 0.66 0.54

Embodiment 0.47 0.54 Other 0.53 0.27

Under 20 0.78 0.42

20-40 0.59 0.66

Over 40 0.34 0.43

Accelerant Region

Timeline

International 

Governance  

Corporate 

Governance 
Diffusion

Dominant 

risk

AI Safety

Transition

Technical 
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Figure 13. Box plot representing the variability among basic, intermediate, and expert levels of expertise 

for both AI safety and governance. Basic level expertise shows wide ranging scoring patterns and mild 

disagreement with intermediate and expert practitioners.  

 

The dimensions that underpin AI technological change directly—the technological 

transitions cluster—are especially relevant to understand the overall trajectory of advanced AI. 

Indeed, the timeline, transition, and diffusion dimensions are all tightly interrelated and depend 

very much on the outcome of the others. Timeline requested that participants provide their best 

judgments on the approximate period where high-level general AI agents will be developed that 

can complete a substantive share of cognitive tasks. Transitions—fast, moderate, controlled, 

uncontrolled, or slow—reflect the velocity of intelligence progression (e.g., continuous, 

discontinuous, or moderate transition), the generality of systems, and the degree of power 

displacement. At the same time, diffusion has implications for the breadth of power distribution, 

system integration, and overall impact. Combined, the three dimensions outline the boundary of 

critical transitions (Figure 14). Transitions, timelines, and diffusion also directly influence and 
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are influenced by economic and geopolitical race dynamics: a vicious circle of economic and 

geopolitical feedback mechanisms.  

Figure 14. The impact and likelihood averages for technological transitions, diffusion, and timeline. 

Figure 14.1 (left) shows the impact and likelihood averages for the timeline dimension, 14.2 (center) the 

averages for the diffusion dimension, and 14.3 (right) the averages for the transition dimension. The 

individual conditions are color-coded, and the size of icon varies by reported likelihood. For legibility, the 

rankings are displayed as bins of 10 responses.  

 

The participants ranked the most likely timeline of arrival from 1) 20-40 years at 66 percent, 

2) Over 40 years at 43 percent, and 3) under 20 years at 42 percent. The spread between 20-40 

and over 40 was somewhat surprising since the standard assessment over the past few decades 

approximated the upper limit of 40-plus years for most surveys (Date Weakly General AI is 

Publicly Known, 2022) (AI Impacts Staff, n.d.) (Barnett, 2020). For transitions, which speaks to 

capability jumps and rate of progress, participants assigned a moderate uncontrolled takeoff as a 

tie with moderate competitive at 55 percent. A moderate uncontrolled takeoff is broadly defined 

as an unexpected rapid increase in capabilities, likely too fast for society and institutions to 

adjust. In contrast, a moderate competitive takeoff is presented as a case where advanced general 

AI is actively pursued by governments and technology companies where rapid change is 

anticipated. 

A core aspect of the moderate competitive takeoff condition is the control of resources and 

militarization of technology. The uncontrolled moderate takeoff can be framed as an unexpected 

rising tide of intelligence generalization with rapid diffusion. In addition, by a relatively wide 
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margin, participants gave multipolar diffusion a likelihood score of 66 percent, trailed by 

decentralized at 49 percent and centralized at 38 percent (Figure 15). Altogether, the timeline 

results from this research align modestly well with prior work but show an increase in 

expectations for powerful AI systems (AI Impacts Staff, n.d.). Checking the results against 

similar research on trends and attitudes, there is indeed a change in expectations and optimism 

for general AI that is likely due to the increasing evidence that universal scaling laws apply to 

computational capacity and can lead to unexpected capability gains (e.g., Metaculus general AI 

forecasts) (Grace, Salvatier, Dafoe, Zhang, & Evans, 2018).  

 

 
Figure 15. Participant Assessments for Transition, Timeline, and Diffusion. The highest participant 

ranking for timeline is 20-40 years at almost 70 percent probability. 

 

In 2022, the AI community has witnessed a handful of milestones in generalization that 

surpassed expectations, such as Google’s Pathways model (PaLM), which can explain its 

reasoning across multiple tasks (chain of thought prompting), or OpenAI’s DALL-E 2, which 

paints original art prompted by a textual or verbal description (TRTWorld Staff, 2022). In May 

2022, DeepMind released its GATO transformer model in a paper titled ―a generalist agent,‖ 

which can generalize across 604 individual domains and make independent decisions based on 

context, whether to ―play Atari, caption images, chat, stack blocks with a real robot arm and 

Dimension Condition Impact Average Likelihood Average

Timeline 20-40 years 0.59 0.66

Over 40 years 0.34 0.43

Under 20 years 0.78 0.42

Diffusion Multipolar 0.56 0.66

Decentralized 0.4 0.49

Centralized 0.75 0.38

Transition Moderate takeoff 0.6 0.55

Competitive takeoff 0.5 0.55

Fast takeoff 0.88 0.45

Slow takeoff 0.2 0.33

Technological Transition, Diffusion, and Timeline Assessments
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much more‖ without changing the model parameters (Reed, et al., 2022) (Grossman, 2022). 

While some experts have pushed back on the hype surrounding the release of PaLM, DALL-E, 

and GATO, many researchers have adjusted their timeline assessments for the emergence of 

general AI by decades; AI researcher Conor Leahy claimed his expectations for AGI are now at 

―20% to 30% in the next five years. 50% by 2030, 99% by 2 00,  % had already happened‖ 

(Leahy, 2022). 

The other key condition that scored lower than anticipated was fast takeoff, at 45 percent. 

The fast takeoff scenario underpins the standard AGI risk scenario as outlined by Yudkowsky 

and Bostrom (Yudkowsky, 2013) (Bostrom, 2014).  A comparable condition to fast takeoff is 

centralized diffusion, where an advanced AI is discovered by a small group or solitary system, 

and is maintained in a protected program. Participants scored centralized diffusion at 38 percent. 

Unsurprisingly, the slow takeoff condition was scored far lower than the others at 33 percent, 

echoing the increased expectations for more powerful systems. In addition, a decentralized 

diffusion, where advanced AI is discovered and widely accessible, was scored at 49 percent, at 

the approximate midpoint between multipolar on the high end (66 percent) and centralized on the 

low (38 percent). Combined, the low likelihood assessments for a fast takeoff and centralized 

diffusion point to a dynamic where researchers are inchingly finding flaws in the standard AI 

risk arguments. Indeed, there has been a growing debate over the empirical foundations of the 

standard AI transition model. For example, researchers Ben Garfinkel, Paul Christiano, and 

David Hanson have taken alternative stances on the slope of AI takeoff and technological 

diffusion, broadening the range of perspectives on future AI paths (Lempel, Wiblin, & Harris, 

2020) (Chrstiano, 2019). Ultimately, the expansion of the AI scenario space has influenced new 

research directions across the AI safety and governance community. 
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4.3 Parameter Correlations 

 

Correlations between two or more parameters in the AI futures model provide some insight 

into the multidimensional relationships. Correlations of technological trends have been used for 

years to understand relationships in technological innovation. Indeed, trends in precursor 

technology can be correlated to follow-on innovations at the cross-over point (e.g., transition), 

lending insight into the velocity of change and environmental factors (Martin, 1970). This study 

calculates the correlation coefficients for the higher-order dimensions as a starting point in the 

cross-reference analysis to evaluate interdependence. Since the raw assessment values are based 

on the conditions exclusively, the condition scores subordinate to each dimension are averaged to 

evaluate impact and likelihood at the dimension level (e.g., the average of decentralized, 

moderate, and centralized for the diffusion average). Most of the dimensions show high 

correlation values, with the majority displaying positive correlations. However, negative 

correlations are also observed, especially between impact and likelihood values of similar related 

classes (Figure 16). Dimensions reasonably expected to trend in concert, such as transition, 

accelerant, and timeline, show high correlation values overall but less so with some, such as AI 

paradigm. Dimensions that intuitively could have strong bidirectional influence or impact 

showed strong negative correlation values, such as risk and governance. Jo
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Figure 16: Correlation heatmap of impact and likelihood values for the dimensions. The darker 

green represents positive correlations and the light negative. The diagonal values are self-

referenced and should be ignored. 

 

The dominant and technical risk dimensions both show the highest positive correlation values 

(0.994). The top five positive correlations following risk include race dynamics and developer 

(0.993), timeline and developer (0.993), and race dynamics and safety technique (0.991). 

Additional high positive correlations that are relatively intuitive include distribution and race 

dynamics (0.97), transition and technical risk (0.96), capability and risk (0.96), and safety 

techniques and distribution (0.98). Two notable pairs include capability and technical risk (0.94) 

and capability and safety techniques (0.84) since the overall power of the system impacts the risk 

of misalignment and the safety strategies required. Additionally, the strongest negative 
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correlations include accelerant and international governance (-0.9), capability and governance (-

0.7), and risk and governance (-0.76).  

At the level of conditions, the correlations between states show a higher degree of 

interdependence than between the dimensions independently. While the dimensions display the 

higher-order relationships, the interdependencies between conditions suggest that a change in 

one condition (e.g., compute overhang) could influence the fate of the other (e.g., AGI 

capability). The three key dimensions that could affect transition velocity, diffusion, and 

character, highlighted above as critical factors in AI timelines, show strong positive and negative 

correlations, largely with intuitively opposing trends (e.g., fast takeoff shows a strong negative 

correlation with the over 40-year timeline). The correlations between the three dimensions and 

conditions from the technological transition cluster are shown in Figure 17. There are some 

examples of weaker or less intuitive correlations (e.g., multipolar, 20-40 years), but overall, the 

relationships hold. 
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Figure 17. Correlation values between the condition states for transition, diffusion, and timeline. 

The strong interactions within the subsystem, either positive or negative, demonstrate how nested 

interactions could influence the direction of adjacent conditions. 

The correlation matrices demonstrate the relationships between AI dimensions and 

conditions and highlight how differential development paths could lead to variable system 

typologies and technical and social risks. Understanding the relationships between dimensions 

and conditions could potentially act as a foundation for developing indicators for anticipatory 

analysis and system-level monitoring. At the same time, technological systems are too complex 

for reliable prediction (with insufficient knowledge, data, or initial conditions), understanding the 

dynamics of influential variables could be an important step. Indeed, the interplay between 

technologies, paradigms, and social dynamics could accelerate the trajectory of AI systems. 

Enabling technologies like quantum computing could trigger an acceleration in race dynamics, 
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while a broadly distributed breakthrough has the potential to shift power dynamics away from 

countries and companies to populations (Huang, et al., 2021) (Kalluri, 2020). 

 

Figure 18. Connected Subgraph of AI Dimensions. The graph highlights all connected dimensions with 

over 60 percent correlation values. The dimensions with the highest concentration of connections are the 

strong positive correlations between accelerant, risk, transition, capability, developer, and diffusion. 

 

To separate the most tightly linked interdependencies with the highest correlation values, a 

network graph is constructed and subset to the maximum connected components (Figure 18). As 

with the correlation matrices, the strongest linked dimensions remain between transitions, 

diffusion, paradigm, risks, and race dynamics. There is a consistent grouping of eight to ten 

influential conditions that show disproportionate influence on the others and the ultimate 

trajectory of the system. For a more detailed analysis, the raw impact and likelihood scores are 

graphed for all condition values. Displaying the graph for all connections above 0.6 correlation 

highlights two tightly woven clusters connected by four conditions: failure modes, goal 

alignment, mesa optimization, and the 20-40 years condition (Figure 19). These connections are 
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intuitive given the centrality of technical and social risk to AI safety and the strength of the belief 

that general AI will emerge within 20-40 years. 

Analogous to the high correlations and high impact and likelihood values, the two most 

common highly connected scores were in the risk class or technical risk categories. Thus, it lines 

up that failure modes in general, plus goal and inner alignment (or mesa optimization), would 

show strong betweenness centrality among the three clusters. The 20-40 years judgment for 

general AI displayed similar high centrality, as did risk. Betweenness centrality is a metric of the 

importance of an entity to the flow of information between one segment of the network to 

another (e.g., the shortest path) (Golbeck, 2015).  

 

Figure 19. AI Communities Subgraph. There are several communities below correlation values of 0.7 

that are linked by failure modes, goal alignment, mesa optimization, and 20-40 years. This is intuitive 

given the centrality of technical and social risk to AI safety and the strength of the belief that general AI 

will emerge within 20-40 years. 
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Exploring the network dynamics further to understand and measure these clusters, a 

community detection algorithm was performed to identify distinct groupings that share complex 

similarities. Using the greedy modularity algorithm, the two distinct communities were identified 

in the data (Hagberg, Schult, & Swart, 2008). Greedy modularity maximization starts with a 

group of entities in a given community and joins the next group that most increases modularity 

until no other pairs are present. It’s a technique used to structure groups of values with given 

characteristics. Of the two communities identified, one contains a set of values that trend toward 

slower takeoff scenarios or distributed outcomes, while the other leaned toward centralized 

diffusion and fast takeoff (Al-Mukhtar & Al-Shamery, 2018). To go a level deeper, the ―find 

cliques‖ algorithm is used to identify subsets of the two communities that make up even smaller 

subgraphs and groupings, known as the ―clique problem‖ in networks science; a ―maximal 

clique‖ is a subgraph where at least one of the vertices is in the larger set (Chang, Klok, & Lee, 

2001) (Bron & Kerbosch, 1973). Thus, within each community network, there are smaller sub-

networks that are more closely tied.  

 

Clique 1
No. Clique 

Membership
Clique 2

No. Clique 

Membership

Weak governance 4 Hybrid paradigm 5

Influence seeking 4 Safety ideal 4

Institution 4 Country 4

Under 20 years 4 Moderate governance 4

Arms race 4 New paradigm 4

Safety decrease 4 Moderate safety 4

Fast takeoff 4 Insight 4

Overhang 4 Coalition 5

Asia-Pacific 2 Cooperation 4

ASI 3 2 USA-Western Europe 4

Custom techniques 2 Distributed ASI 4

Other 2 Strong governance 4

Current paradigm 2 Over 40 years 3

AGI 2 Current techniques 3

ASI 2 2 Multipolar 3

Individual 2 Decentralized 3

Moderate takeoff 2 Moderate capability 5

Centralized diffusion 3 General techniques 3

Modularity Community Detection - Maximum Clique
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Figure 20. Modularity community detection. Two distinct communities were identified, with 14 unique 

cliques and 18 total in the conditions network. Clique membership represents the total additional cliques 

that condition is also a member. A clique represents a unique subnetwork nested within a network. 

 

There are  4 distinct ―cliques‖ observable in the data and  8 maximum cliques (Figure 20). 

These numbers seem unsurprising given that 14 dimensions could naturally align with 14 

cliques; however, since each condition is not mutually exclusive, interact, and overlaps in a 

variety of ways, one would expect there to be variations across groups with different boundaries. 

Indeed, analysis of the cliques and community data demonstrates that condition overlap across 

different categories (e.g., conditions grouped in different dimensions), naturally forming distinct 

sub-groupings of states distinct from the original 14 dimensions. 

The cross-consistency assessment and interdependence evaluation highlights that many 

dimensions and conditions are strongly correlated and linked to the others by varying degrees. 

Indeed, a collection of conditions can have strong positive or negative correlations, depending on 

the combination. Thus, it is reasonable to assess that rapid advancement in one dependent 

condition—such as the development of a new AI paradigm—can influence technical safety 

practices, race dynamics, and overall risk. At the same time, as evidenced by the high impact and 

likelihood values, tightly webbed across community sub-networks, transition velocity and 

diffusion are key state changes to evaluate system development and future capabilities.  

Having developed the key dimensions and analyzed the consistency and interdependence, the 

averaged scenario pair assessment values are used to develop like-groupings of similar scored 

and correlated values. This study averages the assessment scores from one condition with every 

other to arrive at novel scenario combinations with differential interdependence, likelihood, and 

impact. For example, the AGI capability (0.74 impact and 0.51 likelihood) and competitive 

takeoff condition (0.5 impact and 0.55 likelihood) result in a combined scenario-pair impact 
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value of 0.6 and a likelihood value of 0.53 for one unique configuration. Next, a clustering 

algorithm is used to combine the groupings into distinct scenario combinations. These values are 

then grouped into possible futures. Figure 21 shows the scenario pair combination process, with 

the condition’s combined values at the intersection of each cell.  

 
Figure 21. The scenario pair combinatorial process. Each cell in the example matrix is a calculation 

between four values: 1) an impact and likelihood value for condition one (e.g., decentralized), and 2) an 

impact and likelihood value for condition 2 (e.g., AGI). The combined value for the conditions 

decentralized and AGI is 0.5 (top right in the first column). The values are then averaged and clustered for 

scenario development.  

The GMA clustering process can result in millions of possible scenario combinations, or 

scenario pairs. After controlling for redundancy and inconsistent relationships, the final scenario 

pairs used in the model total 1,120. These pairs are then clustered using the Python Sci-kit learn 

library of clustering algorithms (Pedregosa, et al., 2011). The best choice for clustering like 

values without categories or data labels is unsupervised machine learning, as the model works to 

Jo
ur

na
l P

re
-p

ro
of



35 
 

 

identify, from the bottom up, patterns in the data to group values that statistically appear most 

similar. There are multiple clustering algorithms available on Sci-kit learn. However, for this 

data type, the best choice is the k-means algorithm (Pedregosa, et al., 2011). The k-means 

algorithm is a good choice in that it easily uncovers subtle patterns in noisy data with 

manageable training sets (Dobilis, 2021).   

5. Inferred Possible Futures 

From the scenario development, value-pair combination, and clustering process, this study 

arrives at four scenario options that span the universe of plausible futures. The clustering process 

separated condition values from the lowest score to the highest into four combination groupings 

(Figure 22). At this stage, the clusters are evaluated to align the highest score for each condition 

to one of the four groupings. The futures described below synthesize a range of AI scenario 

variations. Risks to international security are examined across the spectrum from misuse to 

decision erosion and loss of control to distributed power-seeking and superintelligence. The four 

completed scenario combinations include: 1) a slow decentralized takeoff scenario, 2) an 

accelerated, uncontrolled, moderate transition with multipolar diffusion, and 3) a widely 

distributed unexpected takeoff (e.g., adaptive AI ecosystem), and 4) a fast centralized takeoff 

scenario (e.g., AGI agent). While some futures are easy to extrapolate, others are less intuitive; 

however, all scenarios can be envisioned along a spectrum from possible to plausible to 

probable. 
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Figure 22. Final scenario score card that aligns the given condition to each future. The scenarios have 

their unique risks but overall move from lowest impact – Balancing Act – to highest impact and surprise 

with Emergence. 

5.1 Scenario A: Balancing Act - Low Impact/Moderate Likelihood 

 

The future Balancing Act considers a low capability scenario with decentralized diffusion 

centered regionally in the US or EU (Figure 20). Following the COVID-19 pandemic, there is a 

retreat from globalization and a return to protectionism and isolation. As nations turn inward, 

major AI technology companies lose their global dominance in innovation. Increased 

international tensions and the decline in cooperation trigger sporadic outbreaks of conflict, with 

increasingly complex cyber-attacks being the primary risk. Nations must manage a delicate 

balance between cyber offense and defense as AI is increasing leveraged towards misuse. An 

individual or group of innovators discover a path to a new AI paradigm with the potential for 

high-level capabilities but with a long development time horizon. This scenario is preferable 

relative to the other potential futures, with a low likelihood of imminent high-level AI 

development. This alternative future expects the arrival of advanced AI in over 40 years, after 
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approximately 2062. As nations turn inward and race dynamics stabilize, online knowledge 

communities explore new AI paradigms arriving at potential solutions through quantum machine 

learning. The scenario scores are medium to low on likelihood, considering the race dynamics of 

isolation, incremental timeline, and low capabilities. With low to moderate impact scores, this 

scenario fits into a preferred category with respect to overall disruptive capacity. 

5.2 Scenario B: Accelerating Change 

 

Accelerating Change presents one of the more plausible and middle-of-the-road alternative 

futures, given our current understanding (Figure 24). Several of the conditions in the scenario 

broadly align with current AI research and are relatively easy to extrapolate. Centered in the 

West, Accelerating Change envisions a moderate competitive transition, with multipolar 

diffusion, as technology giants consolidate control over various industries. Increasingly powerful 

AI monopolies lead to substantive shifts in power dynamics, from the nation state to the 

corporation as the new dominant power structure. This future expects the arrival of advanced AI 

in 20 and 40 years, between approximately 2042 and 2062. Participants ranked the likelihood 

values for a moderate capability, competitive takeoff, and multipolar diffusion at or above 50 

percent. Western origin, moderate power, monopoly control, and structural risks all ranked above 

60 percent. This future explores the structural risks to society from technologies that accelerate 

faster than institutions or individuals can collectively manage. Several conditions in the scenario 

(negatively correlated with the dominant categories) are less intuitive and are infrequently 

included in similar scenarios, allowing unique combinations. For example, embodiment is the 

key driver of the AI transition, and safety standards and governance are in positive territory 

despite the geopolitical environment. 
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Figure 24. Scenario-B Overview. Accelerated Change depicts a future where multipolar blocks of nations 

compete for AI dominance, while technology accelerates faster than institutions can manage. AI systems 

can generalize moderately but bring transformative capabilities. 

 

5.3 Scenario C: Shadow Intelligent Networks 

 

The Intelligent Networks’ future is one of the more subtle scenarios and was ranked between 

somewhat and very likely by participants but highly variable across conditions (Figure 25). This 

scenario class (like Accelerating Change) lines up well with our current future trajectory in 2022. 

This scenario describes a low-capability, widely distributed network of intelligent agents, and is 

closely modeled on Eric Drexler’s ―Comprehensive AI Services‖ (CAIS) framework and the AI 

ecology class of scenarios (Drexler, 2019). The focus is concentrated on potential risks from self-
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organizing adaptive agent communities and issues of control, considering planned smart grid and 

next-generation networks technologies (GCN Staff, 2021) (Radanliev, De Roure, Van Kleek, 

Santos, & Ani , 2021). The AI ecology condition was evaluated at a higher-than-expected 

likelihood of 66 percent, the highest score for that dimension. The future imagines an AI ecology 

emergence and distributed diffusion using a hybrid AI paradigm. The possible triggers include an 

insight into intelligence, with the primary risk being goal alignment and the potential risks from 

runaway distributed systems. Like the previous future, monopolization and multipolar diffusion 

are key aspects of the emergence, with the West being the region of origin.  Goal alignment, 

hybrid paradigm, insight, and general AI safety techniques all scored above 70 percent for 

likelihood. Experts judged the arrival of advanced AI in this scenario in 20 to 40 years, between 

approximately 2042 and 2062.  
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Figure 25. Scenario-C overview. Shadow Intelligent Networks describes a future where researchers 

discover that generalization is possible through machine-to-machine communication across intelligent 

networks. This future is considered low impact and moderate likelihood by researchers. 

 

5.4 Scenario D: Emergence 

 

The alternative futures Emergence is assessed less likely than the other three scenarios but 

with greater consequences (Figure 26). There are variations between conditions, with respect to 

plausibility and impact, but cumulatively the future is scored as somewhat unlikely, but with 

very high impact. Emergence envisions a fast takeoff scenario in a non-Western state, in an 

economic and geopolitical AI arms race environment. Advanced AI capabilities are resource 

prohibitive, centralized, and compartmentalized within major companies or government special 
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programs. AI technologies and intellectual property have been labeled a national strategic asset, 

stoking the arms race dynamic, and as research develops some major companies either work with 

the government and military or are nationalized. High-level systems are expected within a 20-

year window before 2042. The primary safety concerns are system failures, inner misalignment, 

and power-seeking. Fast takeoff, centralized diffusion, and an abrupt 20-year timeframe led by 

regional powers in East or South Asia scored at or below 50 percent probability. However, each 

scored above 60 for impact, with fast takeoff and centralized diffusion categorized very high. 

The technical risk for this future power-seeking is one of the highest scored values for impact 

and likelihood. 
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Figure 26. Scenario-D overview. The alternative future Emergence describes a future where the current 

AI paradigm continues making consistent capability jumps and at a certain critical point a compute 

overhang initiates a radical gain in cognitive capacity. 

 

6. Discussion: The Risk Landscape  

The range of potential AI risks is broad, from social instability and value erosion to 

unexpected accidents, cascading failures, and collapse. There is no shortage of dangers. Many of 

the more extreme risks are downplayed as unconvincing, highly improbable, or impossible by 

some researchers, but as systems continue to scale to new milestones, more concerted attention is 

warranted. While some of the AI scenarios are highly speculative, they are grounded in current 

research and within the range of possible futures. Indeed, if there is a nonzero chance of an 

extreme AI scenario—unintentionally escalating conflict, shifting the balance of power, or 

compromising control—leaders must challenge assumptions, incorporate uncertainty, and test 

the boundaries of what is possible.  

AI system unpredictability, manifesting agential characteristics with goal-directed behavior, 

is not strictly conceptual but has been observed experimentally. Examples include AI game-

playing agents that learned to alter their environments and resources (e.g., weapons for game-

playing AI), find loopholes in the system or reward function, and develop dangerous or 

unexpected subgoals as optimal strategies to complete a task. Indeed, AI systems learning the 

wrong goal or developing instrumental subgoals are key concerns of AI safety research. It is not 

that an agent will consciously strive to harm, but rather it will complete a task in a way that 

indirectly causes harm. This could be as simple as subverting the rules of a game, or as severe as 

destabilizing a power grid or nuclear weapons system. Being able to determine if an objective is 

learned or specified incorrectly is difficult, often requiring that the problem manifest first before 
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it can be addressed. These problems will be highly dangerous as AI is further integrated into 

safety-critical systems, military infrastructure, or strategic weapons.  

This could be especially problematic with inner alignment (or mesa optimization), where the 

AI is optimized for a specific objective, but the model learns a proxy or approximate objective, 

hidden in the neural network. Examined closely, inner alignment appears hopeless. While outer 

alignment concerns the misalignment of a defined objective (the base objective), inner alignment 

is where the learned model is itself optimizing for a separate objective (the mesa objective), 

undetectable to the programmer until the behavior manifests. A system could be determined 

trustworthy by developers yet fail unexpectedly due to a minor change in deployment. For 

example, if an autonomous weapons system is preforming well in training and testing but fails in 

deployment it is too late. We must understand if a system will interpret instructions correctly—or 

pursue a proxy or invalid objective instead—and how to know the difference before a 

catastrophe occurs.  

Influence or power seeking appears especially concerning, ranked 0.84 for impact and 0.65 

for likelihood by domain experts in the survey. Research published by OpenAI in 2019, 

demonstrated this behavior in a simulated environment: two teams of agents, instructed to play 

hide-and-seek, proceeded to develop independent strategies, coevolve tactics, and horde objects 

from the competing team, in what OpenAI described as ―emergent tool use‖ (Baker, et al., 2020). 

The agent’s tactics increased in sophistication through each iteration, constructing shelters and 

using ramps for offense and defense. This research is a good example of systems learning—

independently, without explicit instructions—to collect resources, develop instrumental 

subgoals, and strategize to win. This should give pause to leaders seeking to integrate AI systems 

into critical networks. In 2008, computer science professor Steve Omohundro illustrated the 
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innate drives that systems will pursue ―unless explicitly counteracted,‖ providing the theoretical 

framework for understanding risks from artificial agents (Omohundro, 2008) (Bostrom, 2014). 

Since that time, research has shown that these are indeed tangible concerns.  

Collecting resources to strategize in a game is not a significant risk, but this depends on the 

complexity of the objectives. For example, consider an AI system in charge of managing power 

to and from two towns. Without specific programming to the contrary, the agent could hack into 

external computational resources for efficiency or redirect power from a third town to optimize 

the objective (Carlsmith, 2022). Having materialized similar behavior at a rudimentary level, it is 

uncertain whether more capable agentic systems would not manifest similar traits in more 

complex circumstances. With the increased use of multiagent environments—and proposals for 

multiagent self-organizing networks—an evaluation of the game-theoretic risks of this paradigm 

are worth consideration (Radanliev, De Roure, Nicolescu, Huth, & Santos, 2022) (Berggren, et 

al., 2021) (Nguyen & Reddi, 2021). 

The unpredictability of AI with unique world models will inevitably introduce surprises: 

novel solutions that benefit humanity but also unexpected ones with disruptive consequences. 

Besides AI system misspecification or misalignment, there are modern precedents of system 

failures that outline the degree of unpredictability. For example, consider the flash crash on wall 

street in 2010 that drove the market down 600 points in 5 minutes, or the UK in 2016, where the 

pound sterling dropped 8 percent of its value in minutes (Townsend, 2016). This example, and 

many others, point to the problems with algorithmic control. Over time, we normalize successful 

algorithms and do not question their accuracy or decision processes if demonstrated as reliable. 

However, this becomes dangerous as AI is weaved deeper into industry and government. The 

days of the busy trading floor at the New York Stock Exchange are over. High-frequency trading 
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is the norm, where trades take a fraction of a second and are initiated from subtle patterns in the 

data, too small for a human to perceive (Scharre, 2019, p. 189). Thus, based on the objective 

defined by the trader, the algorithm optimizes the best strategy, which as described can take 

shape in any number of ways with a proxy or approximate solution, or could be misunderstood 

entirely. Once AI systems are fully integrated into the decision environment, deconfliction 

becomes extremely challenging.  

The structural risks examined in the scenario ―Accelerated Change‖ are visible today. At first 

glance, structural risks seem less of a direct threat to international security, but they are 

prominent forces that will increase instability (much like climate change, disease, and migration) 

and have secondary and tertiary effects down the line. For example, consider social media. The 

impact of algorithmic interactions on relationships and decision-making is a key force that will 

influence purchase choices, social interactions, and politics. Indeed, there is evidence (at least in 

part) that people’s interests, decisions, and beliefs are increasingly driven by algorithm 

recommendations (what is termed ―nudging‖). Incremental but consistent nudging can result in 

big changes over time. Thus, the erosion of human decisiveness and alteration of preferences is a 

risk that could span generations.  

7. Conclusion       

Progress in AI is advancing faster than society, institutions, and many researchers can keep 

up. The pace of AI milestones, discovery of new scaling laws, and potential avenues for 

advanced generalization are accelerating at an exciting but somewhat unnerving rate. Warnings 

of an imminent AI winter and the decline of Moore’s law continue, and these proclamations 

could be accurate; however, the virtuous circle of feedback loops, complementary technologies, 

financial investments, talent, and self-improving AI systems continues. Thus, evaluating the 
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range of plausible futures sooner rather than later is critical so that leaders can plan accordingly. 

At the same time, maintaining visibility of the movement of AI conditions, their interactions and 

directionality, could help analysts keep track the overarching trends of the technology. While 

forecasting specific trajectories is untenable, understanding the broad outlines and potential sharp 

left turns could help ensure societal and institutional resilience. 

The expert elicitation found some unexpected insights and others that reinforced the overall 

body of literature. For example, the probability of influence-seeking was ranked far higher than 

expected, especially given the potential impact. Power-seeking consistently scored above 65 

percent likelihood, while ranking close to 80 for overall impact on safety and security. The high 

likelihood speaks to the increasing evidence of this emergent behavior in AI systems, as noted 

above with OpenAI’s tool use discovery. Similarly, goal alignment and overall failure modes 

were ranked at 74 percent likely and 70 for impact. While not a complete surprise, given the 

growth of the field and experimental data, the high numbers do highlight the seriousness of the 

risks. Indeed, while it is unpopular to blame the system, it is a basic truth that AI systems are 

operating through parallel cognitive architectures, producing solutions far removed from human 

understanding. The latent space of AI decision processes produces highly capable results but are 

ultimately opaque. The more AI systems are charged with making impactful decisions, whether 

negotiating insurance prices or a criminal conviction, the more we must admit we’re not fully in 

control. These technical problems are unlikely to be resolved by governance measures or 

regulations, and likely requiring technical solutions. The other high likelihood and impact 

condition was the potential for an AI arms race.  

In addition, there is a strong belief that the big technology corporations will remain the 

preeminent institutions to discover advanced AI and that the trend toward monopolization and 
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industry control will continue. A noticeable trend that varies from previous surveys in the AI risk 

community is the decline in the belief that advanced AI will be discovered and controlled by a 

solitary institution or research group, or that a fast takeoff will be the most probable means of 

transition. This change can similarly be observed in the literature over the past three years 

(Sotala, 2018). The participant responses suggest advanced AI is trending toward a moderate 

capability in the near term, involving a variety of actors, with a rapid build, or ―surge‖ transition 

as described by Max Moore, rather than an abrupt discontinuity measured by hours (More, 

2009). AI safety was a very niche area of research for many years, and remains so 

comparatively, but has experienced explosive growth in recent years as AI has been increasingly 

interlaced through society, institutions, and government. At the same time, ethical concerns, 

ubiquitous surveillance, and substantive risks from failure modes have presented in kind, driving 

many researchers to pursue means to curtail potential dangers.
4
 As capabilities continue to 

progress, there is much uncertainty as to the pace of change and at what cost.  

As we move toward this uncertain future, the risk of failures, goal misspecification, 

misalignment, or malicious use by a state or non-state group is unnervingly high but variable 

across differential technological paths. The combination of each variation paints a complex 

picture. The benefits of advanced AI will be a game changer for prosperity if managed safely or 

pose grave unpredictable dangers if not. These risks are recognized and are increasingly being 

evaluated by researchers. A large body of work in the national security enterprise is 

appropriately focusing on lethal autonomous weapons (LAWS), but the focus has been almost 

exclusively on issues of trust, misuse, or accidents, (Flournoy, Haines, & Chefitz, 2020) with 

                                                            
4 Researchers at some of the top global AI companies have taken the lead to align AI with human values, 

including OpenAI (https://openai.com/alignment/), Deep Mind (https://www.deepmind.com/publications/artificial-

intelligence-values-and-alignment), and a number of top universities in the forefront of AI research including 

Berkely’s Center for Human Compatible Artificial Intelligence (CHAI, https://humancompatible.ai/) and Stanford 

University’s Human-Centered Artificial Intelligence (HAI, https://hai.stanford.edu/).  
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notable exceptions by AI risk researchers and institutes (Baum & Barrett, 2017) (Geist & Lohn, 

2018) (Ding & Dafoe, 2021) (Shahar & Amadae, 2019). The focus must expand beyond ethics, 

misuse, and accidents and consider risks from the systems themselves and the agential dangers 

inherent in goal-directed systems. Like many complex systems, AI tends to spread beyond its 

original intent, and humanity must be vigilant in understanding and mitigating the risks that this 

presents. 
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Appendix 
 

Survey Questions  

1) Please provide your best assessment of the likelihood of the following condition 

occurring. 

2) If the following condition were to occur, what overall impact would you expect it to have 

on society and security?  

Dimension And Condition Definitions 

Capability and generality 

1) Low: AI Systems remain approximately as capable and general as current systems and 

progress only marginally in power and general-purpose capabilities.  Decreased 

investment and an AI winter are possible 

2) Moderate: AI systems become increasingly powerful and generalizable across multiple 

cognitive tasks in a range of fields. Society and institutions struggle to keep pace with the 

rate of change and complex optimization processes.  
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3) AI Ecology: Systems develop rapidly across a digital ecosystem of interacting AI 

systems and agents. Systems adapt and evolve to human and superhuman capable across 

multiple domains (a variation of the Comprehensive AI services model - CAIS) 

4) AGI: AI systems progress to an approximate human-level AGI. The system is as capable 

and general as humans in all domains. With computational and memory advantages, the 

AGI is capable of recursive self-improvement to ASI.   

Transition  

1) Slow: AI systems develop incrementally and there is the possibility of an AI winter. 

Powerful capabilities are theoretically possible, but they develop over a much longer time 

horizon (decades or longer). 

2) Moderate uncontrolled (continuous): Systems develop rapidly but with no sharp 

discontinuity. The changes spread faster than anticipated with surprising capability jumps 

that are extremely difficult for society to manage or understand (months or years to less 

than a decade). 

3) Moderate competitive (continuous): Systems develop rapidly (no sharp discontinuity). 

Radical changes are anticipated and actively pursued, for competitive advantage, 

including the lead-up or response to conflict. Unexpected capability jumps but control 

efforts are planned. This scenario is related to highly competitive race dynamics and 

could have geopolitical dimensions (many months to years, less than a decade). 

4) Fast (discontinuous): System(s) develop rapidly and at an approximate human-level 

capability and generality undergoes a radical shift in power from AGI to artificial 

superintelligence (ASI) through recursive self-improvement (minutes, hours, days). 

Diffusion 

1) Decentralized: AI systems are widely available through open-source networks when 

HLMI is developed. Resource requirements are low, bringing inordinate power to 

citizens. 

2) Multipolar: AI discoveries are made across leading companies only, with technological 

parity and resources, in several countries. Multipolar scenario.  

3) Centralized: The system is discovered by and confined to one lab or government 

program. This includes scenarios where the discovery is part of a corporation's special 

program (e.g., Google X), a surprise discovery, or an accident.  

Timeframe 

1) Less than 20 years: High-level machine intelligence or a close approximation is 

developed before 2040. The system is capable to complete most cognitive tasks of a 

human being. This includes the possibility of AGI or ASI but does not depend on that 

exact instantiation.  

2) 20 to 40 years: High-level machine intelligence or a close approximation is developed 

sometime between 2035 and 2070 The system is capable to complete most cognitive 

tasks of a human being. This includes the possibility of AGI or ASI but does not depend 

on that exact instantiation.  
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3) Greater than 40 years: High-level machine intelligence or a close approximation will 

take over 40 years to develop. The system is capable to complete most cognitive tasks of 

a human being. This includes the possibility of AGI or ASI but does not depend on that 

exact instantiation.  

Accelerants 

1) Compute overhang: A new algorithm, overlooked insight, or paradigm exploits existing 

computational resources far more efficiently than previously, allowing rapid gains in 

capability or generality.  

2) Innovation: A new insight, machine learning paradigm, or completely new architecture 

accelerates capabilities, from 0 to 100, allowing must faster and more general 

capabilities. Examples could include insight from neuroscience, a new mode of learning 

(e.g., common sense), or quantum materials or computation.  

3) Embodiment/Data: Simulated or actual embodiment, a new type or quality of data for 

ML training provides radical capability gains.  

Paradigm 

1) Current paradigm: The current machine learning paradigms can scale up radically to 

advanced capabilities with broad generality, up to and including AGI ("prosaic AGI") 

2) New approach: High-level systems requires an entirely new AI paradigm. New modes 

of learning such as system two reasoning, a fundamental insight on intelligence, or new 

architectures are required to reach high-level general decision making. 

3) Hybrid approach: Advanced general AI systems are attainable using current machine 

learning paradigms but require something else. Current learning methods are on the right 

track but require additional learning techniques, such as a hybrid approach, common 

sense reasoning, genetic algorithms plus self-supervised learning.  

Race Dynamics 

1) Cooperation: AI technologies are recognized as a global public good and cooperation 

increases between companies and national governments. Race to the top scenario.  

2) Isolation: Global governments take a protectionist turn and cooperation decreases. AI is 

developed in isolation.  Markets attempt to maintain the status quo and companies 

compete regionally or within national borders, causing wide disparities in technical 

standards and regulations.  

3) Monopolization: Technology companies increase acquisitions of smaller companies and 

talent to control AI resources. Corporations increasingly control the direction of research, 

influence over governments, and distribution of power. In the extreme, companies 

become semi-sovereign entities beyond the reach of government and international 

institutions. 

4) AI Arms Race: AI is named a strategic national asset and countries race for global 

dominance. As high-level capabilities become more likely, governments begin to control 

research and access and use top companies as an arm of military power. AI is militarized 

and conflict is more likely. 
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Dominant Risk Class 

1) Misuse: Alignment is under control and Cyber-attacks and disinformation campaigns 

increase in frequency and disruptive potential. Persistent surveillance becomes more 

likely by governments and criminals. 

2) Failures: AI systems are given more control over decision processes making failure 

modes more consequential and goal alignment remains the key danger. With systems in 

control of increasingly sensitive infrastructure, a failure could result in cascades of 

follow-on failures.  

3) Structural: Increased decision autonomy of AI systems brings subtle changes to the 

functioning of society and uncertainty of conflict. Overlap between nations’ 

offense/defense balance makes it more likely for military escalation. Values decline as AI 

takes control of all decision processes. 

AI Safety 

1) Scale invariant: Current AI safety techniques can scale to high-level systems. The 

current techniques being designed for modern ML are broadly transferable to high-level 

general systems.  

2) New approach: New AI safety techniques must be developed from first principles to be 

effective against high-powered more general systems.  

3) Custom approach: Each unique instantiation of an advanced AI system requires a 

specialized safety technique to be developed, making alignment a far more complex 

problem.  

Technical Safety Risk 

1) Goal Alignment: Goal alignment remains the primary intractable problem that we are 

unable to solve. Progress in alignment has had success, but system changes require 

entirely new solutions. The most dangerous risk from HLMI remains misaligned systems.  

2) Power-seeking: The most prevalent and dangerous concern turns out to be the 

acquisition of resources by AI systems. Even with improvements to goal alignment, 

instrumental objectives, and deception to prevent changes, is difficult to detect and varied 

across all systems. The potential to lose control is high.  

3) Inner Alignment (Mesa Optimization): Goal alignment has had significant success, but 

inner aligned agent models remain a problem and are extremely difficult to identify. 

Subtle and impossible-to-detect misalignment issues and failures remain prevalent and 

are the most dangerous concern.  

Actor 

1) Coalition of states (e.g., EU, NATO): A coalition of nation-states, international 

organizations, or military alliances develop the first radically capable advanced AI 

systems. 
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2) Country: An individual government discovers or develops radically transformative AI 

systems. This could be through a national government program, the military, or by 

nationalizing one or several corporations. 

3) Institution: A private-sector corporation (e.g., Tencent, Google), non-profit, or academic 

research institution develops the first advanced AI instantiation. 

4) Individual: A private developer discovers an advanced AI capability. This is more likely 

in circumstances where AI research and development remains open-source and resource 

requirements are low (e.g., a new AI paradigm). 

International Governance 

1) Weak: (decrease in governance) Preparation stays the same as today (reactive) or 

decreases in cooperation, collective action, and agreements due to isolationism or conflict 

and weakening of norms and institutions, possibly due to race dynamics.  

2) Moderate: A strengthening of international norms and consolidation of institutions. 

International norms on the proper use of AI systems are well established and an agreed-

upon framework of safety standards is established. 

3) Strong: International safety regimes established (e.g., IAEA), multilateral agreements, 

and verification measures (e.g., IAEA nuclear inspections) enacted for states unwilling to 

sign on to AI safety agreements. An international body on AI safety is established that 

coordinates efforts.  

AI Safety Governance 

1) Decrease: An increase in economic competition brings decreased cooperation across 

leading AI companies, impacting safety coordination. Isolation could worsen this.  

2) Moderate: AI companies and research institutions increase coordination on AI 

development and technical safety practices, with intercompany working groups on 

technical safety standards and control measures. 

3) Strengthen: AI companies and research institutions agree on third-party safety standards 

and a common framework for technical safety control measures. 

Region 

1) USA-Western European: Major companies in the US or headquartered in the US or the 

EU develop the first HLMI instantiation. This region additionally includes close allies 

often considered ―western‖ such as Australia and Japan.  

2) Asia-Pacific: Greater Asia – South, Southeast, Southwest, and East – develop the first 

HLMI instantiation. This includes the pacific islands, Eurasia, Russia, and the Middle 

East.  

3) Africa or Latin America/Caribbean: The global south, besides Asia. This includes 

Central, Sand outh America, the Caribbean, and continental Africa. 
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Superintelligence Scenarios:  

1) The internet as emergent intelligence: Unable to recognize the qualitatively different 

forms of intelligence, the internet has been developing intelligence as a large complex 

system. The collective system sparks the emergence of a single superintelligence.  

2) Cognitive Internet-of-Things: As AI is networked throughout all sensors and systems, 

machine agents proliferate across global networks as a sensor web of millions of 

independent agents, with independent alignment risks.  

3) Narrow AI systems convergence: As tool AI continues to spread and increase in power 

(CAIS model), like strands of DNA, these individual agents combine and emerge as one 

superintelligence. 
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HIGHLIGHTS 

 As AI systems become more capable and are given meaningful control, there is greater 

risk of unanticipated effects. 

 Through a hierarchical complex systems framework, this study seeks to systematically 

structure the dimensions of AI risk to understand the complex interdependencies that 

could yield alternate futures. 

 This study determined that the highest impact risks include monopolistic race dynamics, 

AI alignment failures, and power-seeking behavior.  
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