BEST PRACTICES, OIT - Telecommunications

Title: Emergency Phone Program
Source: Florida State University
Addl Info: http://www.sacubo.org/awards/bestpractices/archive/2008bp/
Abstract: Testing and maintenance of University emergency phones was haphazard at best, utilizing Police Officers’ random observations and testing of phones and emergency lighting on blue light stations throughout campus. Telephone problems were reported to the Florida State University Office of Telecommunications while lighting and electrical problems were reported to FSU Facilities, Operations & Maintenance. Reporting was random and inconsistent due to their much higher priority of law enforcement.

In 2003, the emergency phone program technician implemented two different types of monitoring software to monitor the two types of emergency phones on campus at that time: Code Blue and Talk-a-Phone.

Campus standards for emergency phone outages have been implemented and are quite strict in the interest of the safety expectations of our community. Campus elevator phones are now considered part of the emergency phone program as well.

Title: No Cost Enhanced Wireless Coverage
Source: University of Virginia
Addl Info: http://www.sacubo.org/docs/bestpractices/2010/Wireless.pdf
Abstract: The Goal: Deploy a Wireless Neutral Host System (“System”) to allow any wireless carrier that wishes to access the System the ability to enhance their network coverage and capacity in key facilities on University Grounds, especially in all residence halls and sporting venue and numerous other spectator events.

The Problem: How to build the $4.5 million carrier neutral System at no cost to the University without adding multiple unsightly antennas for each carrier on University Grounds.

The Solution: Hire a firm (“System Integrator”) to design and build the carrier neutral System and then allow wireless carriers to pay a fee to access the System. The fees generated would cover the entire cost to design and build the System, including all of the cost associated with the System Integrator, equipment, installation, and maintenance. Any expansion of the System would be paid by the carriers or by the University through revenue generated from rent payments.

The Result: A $4.5 million consolidated wireless System that cost the University $0 to build while at the same time meeting the University's goal of providing excellent wireless coverage with limited exterior antennas in all residence halls and sporting venues.